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Message from the Mayor of Kashan

Once again the world’s top mathematicians, professors, scholars, and students of
mathematics have gathered in a scientific circle in the historical city of Kashan.
The Faculty of Mathematics of the University of Kashan has been honored to host
the 51st Annual Iranian Mathematics Conference. Undoubtedly, the philosophy
of science would be incomplete in the absence of objective examples of phenom-
ena. Mathematics serves as the basic science for understanding the principles of
existence and the basis of the order of the universe. As our grasp on mathematic
theory tightens, we are humbled by the greatness of this world’s creator.

It is not a secret that Kashan has long been a cradle for flourishing men and
women like Ghiythal-DnJamshdKashanis who have advanced the boundaries of
science.

We were also pleased to have with us an acclaimed mathematician from our
city, Dr. Javad Mashreghi; president of the Canadian Mathematical Society.

As the Mayor of Kashan, I wish to welcome all scholars and mathematics
enthusiasts to this conference and to thank the esteemed keynote speakers, guests,
and participants. I pray that this message finds you in health and ever-increasing
prosperity. I wish for a world free of pandemics and a return to normal with
physical conferences.

Mayor of Kashan

Saeed Abrishami-Rad
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Foreword

The 51st Annual Iranian Mathematics Conference was held at University of Kashan
in cooperation with the Iranian Mathematical Society from February 15 to Febru-
ary 20, 2021. We were eager to host the presence of the mathematical community
of Iran at University of Kashan, and by providing an intimate and academic at-
mosphere for opportunities for exchange and scientific participation for all in the
field of mathematical sciences and their applications. University of Kashan was
founded at first as an institution of higher education in 1973. It began its activities
in October, 1974 by 200 students of mathematics and physics.

Being in a suitable geographical position, the cultural atmosphere of the region
and the long history in science and art have provided the basis for great success for
this university and now, for example, University of Kashan has been introduced as
the seventh comprehensive university in Iran by ISC National University Ranking.

The Faculty of Mathematical Sciences of University of Kashan is active with
nearly forty full-time faculty members in three levels of bachelor’s, master’s and
doctoral degrees and has made a significant contribution to the development and
achievements of University of Kashan.

Holding successful conferences, student competitions of the Iranian Mathe-
matical Society and various specialized seminars have been among the activities
of this faculty. The editor in chief of the “Bulletin of the Iranian Mathematical
Society” and the “Journal of Mathematical Culture and Thought” by the faculty
members of this faculty at various times, are some of the effective collaborations
with the Iranian Mathematical Society.

Due to the outbreak of the Corona virus, the 51st Iranian Mathematical Con-
ference is being held virtually in University of Kashan for the first time.Besides
the limitations created by holding the conference virtually, new opportunities have
emerged. We had the great opportunity by using the facilities of cyberspace to
invite prominent national and international professors from 22 different countries.

You are all aware that due to various reasons and problems in the educa-
tional, economic and social dimensions, the number of mathematics students has
decreased significantly in recent years.

The elites of the country, have emphasized on strengthening the basic sci-
ences, especially mathematics, and have introduced them as a treasure for the
development of the country. It is up to the Iranian Mathematical Society to use
the opportunity and the support the authorities, to plan for the promotion and
expansion of mathematics.

As a step towards taking responsibility for this, we added a new section to the
conference this year called “Mathematical Promotion”. This idea was welcomed
by the esteemed officials of the Iranian Mathematical Society and it is hoped that
it will be followed as part of the conference in the coming years. In this regard,
with the help of the education department of the region, a call was made and so
far we have received more than 400 articles, from interested students in different
levels of elementary and high school from all over the country.

It was decided to hold the first meeting for the promotion and popularization
of mathematics as part of the mathematics conference in the near future and to
present the selected works.
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I consider it necessary to thank the Ministry of Science, Research and Tech-
nology, esteemed officials of University of Kashan, dear colleagues in the Faculty of
Mathematical Sciences of the University of Kashan, faculty members of universi-
ties and research centers across the country who helped and guided us in particular
those who contributed to the accurate judging of the received papers.

I would like to thank all the participants who added value by sending valuable
papers and participating in the conference. Holding a conference like Iranian
Mathematics Conference virtually was a new experience for us. I hope we have
been able to do this great event well and in a desirable and worthy way. Moreover,
this will be an experience for the expansion of virtual activities in the future. I
apologize in advance for all the shortcomings, which were mainly due to our lack
of experience in holding such conferences and virtual activities.

Hoping to see you at the future conferences.

Conference Chair of AIMC51

Hassan Daghigh
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Welcome to AIMC51

The Annual Iranian Mathematics Conference (AIMC) is the country’s most impor-
tant and oldest mathematical gathering where researchers, students, and professors
at home and abroad present their latest scientific findings. The first mathematics
conference of the country was held by the University of Shiraz in April 1970, the
most important of which was the proposal to establish the Iranian Mathematical
Society, which coincided with the second mathematical conference of the country
at the Sharif University of Technology in April 1971. Since then, the conference
has welcomed a large number of scholars at home and abroad each year.

The Iranian Mathematics Conference has been held for the last fifty years
despite all the difficulties. The Faculty of Mathematical Sciences of the Univer-
sity of Kashan is now honored to hold the fifty-first gathering of this important
mathematics event of the country from February 15 to February 20, 2021 in the
cradle of Iranian civilization and traditional culture, the city of Kashan with seven
thousand years history.

We originally planned to hold the conference in person from 7 September to
10 September 2020, but due to the corona pandemic and the laws announced to
the universities by the government, we changed the time to February 2021.

AIMC 51 has 31 keynote and 7 invited speakers from 20 different countries, all
of whom are among the best and most famous mathematicians in the world in their
field. The scope of the conference covered various topics in mathematics, statistics
and computer science. The conference was attended by more than 500 researchers
from Argentina, Belarus, Brazil, Canada, Check Republic, China, Croatia, India,
Iran, Iraq, Italy, Kuwait, Netherland, Nigeria, Oman, Pakistan, Romania, Russia,
Saudi Arabia, Serbia, South Africa, South Korea, Thailand, Turkey and USA who
held 20, 40 and 60 minutes lectures.

We have fifteen keynote speakers in pure mathematics, seven keynote speakers
in applied mathematics, four keynotes in statistics and five keynotes in computer
science. There are also seven young invited speakers who are famous mathemati-
cians in their topics.

Our Keynote Speakers in Pure Mathematics are professors: Alireza Abdollahi
(University of Isfahan, I. R. Iran), Javad Asadollahi (University of Isfahan, I. R.
Iran), Mohammad Bagheri (Historian), Maurizio Brunetti (Universit di Napoli
Federico II, Italy), Henri Darmon (McGill University, Canada), Omid Ali Shehni
Karamzadeh (Shahid Chamran University of Ahvaz, I. R. Iran), Javad Mashreghi
(Laval university, Canada), Mohammad Sal Moslehian (Ferdowsi University of
Mashhad, I. R. Iran), Thekiso Seretlo (University of Limpopo, South Africa), Mo-
hammad Shahryari (Sultan Qaboos University, Muscat, Oman), Andrea Solotar
(University of Buenos Aires, Argentina), Teerapong Suksumran (Chiang Mai Uni-
versity, Thailand), Mukut Mani Tripathi (Banaras Hindu University, India), An-
drei Yu. Vesnin (Russian Academy of Sciences, Russia) and Changchang Xi (Cap-
ital Normal University, China).

The AIMC51 Keynote Speakers in Applied Mathematics are professors: Tomis-
lav Došlić (University of Zagreb, Croatia), Roberto Garrappa (University of Bari,
Italy), Nezameddin Mahdavi-Amiri (Sharif University of Technology, I. R. Iran),
Davoud Mirzaei (University of Isfahan, I. R. Iran), Kees Roos (Delft University of
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Technology, Netherland), Majid Soleimani Damaneh (University of Tehran, I. R.
Iran) and Zahra Gooya (Shahid Beheshti University, I. R. Iran).

Other main topics of AIMC 51 are Statistics and Computer Science, and the
keynote speakers of these topics are professors: Masoud Asgharian (McGill uni-
versity, Canada), Khalil Shafie (University of Northern Colorado, USA), Ahmad
Reza Soltani (Kuwait University, Kuwait), Bijan Zohuri-Zangeneh (Sharif Uni-
versity of Technology, I. R. Iran), Khodakhast Bibak (Miami University, USA),
Alain Bretto (University of Caen, France), Luca De Feo (University of Versailles
- Saint-Quentin, France), Predrag S. Stanimirovic (University of Nis, Serbia) and
Constantine Tsinakis (Vanderbilt University, USA).

Our Invited Speakers are Akbar Ali (University of Ha’il, Saudi Arabia), Mohsen
Ghasemi (Urmia University, I. R. Iran), Gülistan Kaya Gök (Hakkari University.
Hakkari-Turkey), Mohsen Kian (University of Bojnord, I. R. Iran), Ali Shukur (Be-
larusian State University, Belarus) and Ebrahim Reyhani (Shahid Rajaee Teacher
Training University, I. R. Iran). The annual meeting of the Women’s Committee
of the Iranian Mathematical Society (WCIMS) will be started by the speech of
professor Ashraf Daneshkhah, secretary of WCIMS. This meeting has professor
Carolina Araujo as honorary guest. She is the Award Wiener of Ramanujan 2020,
Brazil and vice president of the IMU committee for women. Professor Araujo will
be presented an invited talk for AIMC 51 participants.

I am very thankful to all of my colleagues in Organizing and Scientific Com-
mittee and to all of participants. My special gratitude is going to the Keynote
and Invited Speakers. I would also like to thank all the referees for the time they
allocated and their help.

Chair of the Scientific Committee of AIMC51

Ali Reza Ashrafi
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• Ali Iranmanesh — Tarbiat Modares University, I. R. Iran
• Reza Jahani-Nezhad — University of Kashan, I. R. Iran
• Reza Kahkeshani — University of Kashan, I. R. Iran
• Vilmos Katona — University of Sopron, Hungary
• Seyed Mohammad Bagher Kashani — Tarbiat Modares University, I. R. Iran
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• Seyfollah Mosazadeh — University of Kashan, I. R. Iran
• Mark Raheb Ghamsary — Loma Linda University, USA
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• Abbas Saadatmandi — University of Kashan, I. R. Iran
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• Mehdi Shams — University of Kashan, I. R. Iran
• Seyyed Mansour Vaezpour — Amirkabir University of Technology, I. R. Iran
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Nezhad, Sajad Raahati, Mohsen Yaghoubi

viii



Keynote Speakers
Name Family Affiliation

1 Alireza Abdollahi University of Isfahan, I. R. Iran
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Part 10. Contributed Posters — Interdisciplinary Mathematics 607

E. Mehraban and M. Hashemi,
Coding Theory on the Generalized Balancing Sequence 609

Gh. Ahmadi and M. Dehghandar,
Mackey-Glass Time Series Prediction Using Rough-Neural Networks 615

M. Azari,
Some Families of Composite Graphs and Distance-Based Invariants 621

N. Jafarzadeh and A. Iranmanesh,
Graph Theoretical Models for Genome Rearrangements Analysis 625

M. Karami, M. Namjoo and M. Aminian,
Nonstandard Finite Difference Scheme to Approximate the Coronavirus
Disease Model 629

F. Smarandache et al.,
On Neutro Quadruple Groups 635

xxxii



Part 11. Contributed Posters — Numerical Analysis 643

S. Amiri,
A Note on Family of Additive Semi-Implicit Runge-Kutta Schemes 645

F. Ghanadian, R. Pourgholi and S. H. Tabasi,
An Inverse Problem for an Equation Modeling Shallow Water under Small
Rotation 649

F. Gholampour, E. Hesameddini and A. Taleei,
Local RBF-PUM for the Steady-State Diffusion-Reaction System with
Discontinuous Coefficients 655

E. Khosravi Dehdezi,
The Three-Term Recurrence Variant of the Conjugate Gradient Squared
Method to Solve the Non-Symmetric Linear System Ax = b 661

A. Mirzaei and M. Kamrani,
Simulation of Some Numerical Methods for RODEs Driven by Fractional
Brownian Motion 667

H. Pourbashash and M. Khaksar-e Oshagh,
The Local Meshless Collocaion Method for Solving 2D Fractional Klein-
Kramers Dynamics Equation on Irregular Domains 671

A. H. Salehi Shayegan, M. Shahriari and A. Safaie,
Existence Theorem of a Quasi Solution to Inverse Source Problem in a Space
Fractional Diffusion Equation 677

M. Saffarian and A. Mohebbi,
The Spectral Element Method for the Solution of Two Dimensional Telegraph
Equation 683

N. Samadyar,
Approximation of Wiener Integrals via Rationalized Haar Functions 689

S. Saneifar and M. Heydari,
Construction of a New Family of Optimal Fourth Order Methods without
Derivative for Solving Nonlinear Equations 695

S. Torkaman, Gh. Barid Loghmani and M. Heydari,
An Operational Matrix Based-Method Using the Barycentric Basis Functions
to Solve the Model of HIV Infection of CD4+ T-cells 701

Part 12. Contributed Posters — Optimization 707

F. Abdollahi and M. Fatemi,
A Modified Conjugate Gradient Method for Nonsmooth Optimization Problems

709

xxxiii



H. Alimorad,
Minimal Zero Norm Solution for Quadratic Programming Problem 715

F. Nikzad, S. Nezhadhosein and A. Heydari,
A Novel Scaled Conjugate Gradient Method for Large Scale Unconstrained
Optimization Problems 721

S. Nezhadhosein and F. Nikzad,
Function Approximation Using Feed-Forward Neural Networks 727

A. Raeisi Dehkordi and A. Ansari Ardali,
The Minimax Location Problem with Closest Distance with Circle Demand
Regions 731

Part 13. Contributed Posters — Probability and Statistical
Processes 735

Z. Nikooravesh,
On the Tsallis Entropy Rate of Hidden Markov Chains 737

Z. Nikooravesh,
Generalized Entropy for Super Diffusion Walks in Graphs 743

S. Piradl,
A New Wrapped Probability Distribution with Application
in Weather Studies 749

xxxiv



Keynotes and Invited Talks





The 51st Annual Iranian Mathematics Conference University of Kashan, 15–20 February 2021

On the Use of Matrix Mittag-Leffler Functions in Fractional
Calculus: From Theory to Applications
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Abstract. The Mittag-Leffler function plays a fundamental role in fractional
calculus. Its evaluation with matrix arguments has several important applica-
tions in control theory, solution of multi-term differential equations, systems

of fractional differential equations and so on. After introducing the Mittag-
Leffler function, its matrix extension and some of its major applications, we
present here some practical methods for the computation of matrix ML func-

tions based on the efficient numerical inversion of the Laplace transform.

Keywords: Mittag-Leffler function, Fractional derivative, Matrix
function, Numerical computation.
AMS Mathematical Subject Classification [2010]: 33E12,
26A33, 65F60.

1. Introduction

Fractional calculus studies theory and applications of integrals and derivatives of
non-integer order. It has been found that fractional-order differential systems are
indeed more suitable to describe systems in which the action of some external
source does not act instantaneously but is influenced by the whole history of the
system.

Along the years, there have been proposed several ways to generalize integer-
order integrals and derivatives to any real (i.e., fractional) order. One of the most
attractive definitions is the one known as the fractional derivative of Dzhrbashyan-
Caputo (often simply Caputo) defined for 0 < α < 1 as

CDα0 y(t) =
1

Γ(1− α)

∫ t

0

(t− τ)−αy′(τ)dτ, t > 0,

where Γ(z) =
∫∞
0
tz−1e−tdt is the Euler-Gamma function and provides a gener-

alization of the factorial since Γ(n + 1) = n! whenever n ∈ N. The importance
of this definition is related to the possibility of coupling differential equations of
fractional order (FDEs) by standard initial conditions of Cauchy type as in{

CDα0 y(t) = f(t, y(t)),
y(0) = y0.

A fundamental role in the analysis and solution of FDEs is played by the
Mittag-Leffler function. This function was introduced in 1904 by the Swedish
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mathematician Magnus Gustaf Mittag-Leffler in the context of the analysis of di-
vergent series but several years after its introduction it was recognized its great
importance in fractional calculus. Nowadays it is often named as the “Queen func-
tion of fractional calculus” [9] since it has the same prominence of the exponential
function (the king function) in integer-order calculus.

For complex parameters α and β, with ℜ(α) > 0, the ML function is defined
by means of the series

Eα,β(z) =

∞∑
j=0

zj

Γ(αj + β)
, z ∈ C,

although for most of the applications it is sufficient to consider just real parameters
α and β.

There are several reasons supporting the introduction, the study and the com-
putation of the ML function in fractional calculus. One of the main reasons is that
it is the eigenfunction of the Caputo fractional derivative. Indeed, it is immediate
to see that CDα0Eα,1(tαλ) = λEα,1(t

αλ) for any real or complex λ. This property,
which turns out useful in the study of stability of FDEs, can be exploited for the
numerical computation of solution of FDEs and other related problems [3].

2. Mittag-Leffler with Matrix Arguments

The definition of the ML function can be extended in a straightforward way to
matrix arguments as

Eα,β(A) =

∞∑
j=0

Aj

Γ(αj + β)
,

where now A ∈ Cn×n is any matrix with n rows and n columns and Eα,β(A) turns
out to be a matrix of the same size. Matrix ML functions are useful, for instance,
for solving semilinear systems of fractional order{

CDα0U(t) = AU(t) + F (t, U(t)),
U(0) = U0,

(1)

which usually come from semi-discretization of time-fractional partial differential
equations [3] or from a reformulation of multi-term fractional differential equations
[10]. Moreover, they find applications in control theory where for linear time-
invariant systems of fractional order{

CDα0 x(t) = Ax(t) +Bu(t),
y(t) = Cx(t) +Du(t),

it is possible to study controllability and observability thanks to the corresponding
Gramian matrices, defined respectively as

Cα(t) :=
∫ t

0

Eα,α((t− τ)αA)BBTEα,α((t− τ)αAT )dτ,

and

Oα(t) :=
∫ t

0

Eα,1(τ
αAT )CTCEα,1((t− τ)αA)dτ.
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Since the solution of the semi-linear system of FDEs (1) can be expressed
thanks to the following variation-of-constant formula

U(t) = Eα,1(t
αA)U0 +

∫ t

0

(t− s)α−1Eα,α((t− s)αA)F (s, U(s))ds,

it is immediate to verify that suitable numerical methods can be devised by ap-
plying some specific quadrature rule whose coefficients are expressed in terms of
ML matrix functions.

3. Computation of Matrix Mittag-Leffler Functions

Despite the great importance of the matrix ML function, its computation is not an
easy task. Krylov subspace methods are usually used when the matrix argument
is of large size [5], but these methods basically projects the matrix onto a space of
smaller dimension, thus to just allow to reformulate the problem as the evaluation
of ML functions of matrices of smaller size.

To this purpose, methods specifically devised for computation of matrix func-
tions can be exploited. This is the case of the Schur–Parlett algorithm [1] based
on the Schur decomposition of the matrix argument combined with the Parlett
recurrence to evaluate the matrix function on the triangular factor. Since the
methods requires the knowledge of derivatives of the scalar function up to a cer-
tain order (which depends on the spectrum of the matrix argument), it is essential
that methods for the evaluation of derivatives of the ML function are available.

The evaluation of derivatives of the ML function, as requested by the Schur–
Parlett algorithm, is a demanding task. In this talk we present some methods [6]
based on the numerical inversion of the Laplace transform. Indeed, derivatives of
the ML function can be expressed in terms of a three-parameter ML function (also
known as the Prabhakar function) [2, 8]

dk

dzk
Eα,β(z) = k!Ek+1

α,αk+β(z), Eγα,β(z) =
1

Γ(γ)

∞∑
j=0

Γ(j + γ)zj

j!Γ(αj + β)
,

for which an analytical representation of the LT is available since

L
(
tβ−1Eγα,β(t

αz) ; s
)
=

sαγ−β

(sα − z)γ
, ℜ(s) > 0, |zs−α| < 1.

Basically, a quadrature rule is applied in the formula for the inversion of the
Laplace transform

dk

dzk
Eα,β(z) =

k!

2πi

∫ σ+i∞

σ−i∞
es

sαγ−β

(sα − z)k+1
ds,

after suitably deforming the Bromwich contour [σ − i∞, σ + i∞] in order to avoid
numerical instability due to the presence of the exponential along the imaginary
axis. An appropriate selection of the deformed contour and of the quadrature
parameters allows to obtain high accuracy at a reasonable computational time, as
already obtained for the scalar ML function [4, 7].

In this talk we not only discuss the main ideas underlying methods for the
computation of matrix ML functions, and hence of derivatives of the scalar ML
function, but we also show the efficiency of the proposed method by presenting
some numerical experiments.
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Some MATLAB codes for the evaluation of the ML function, with scalar and
matrix arguments, are freely available on the Mathworks profile page of the speaker
at the following url:
https://www.mathworks.com/matlabcentral/profile/authors/2361481
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Abstract. Atom-bond-connectivity index used to model the stability of

alkanes It is an index that makes a significant contribution to chemistry,
pharmacology etc. In this paper, some results for the general ABC index
which has chemical applications are found using different methods. These
new results for ABC index are found in terms of its edges, its vertices and its

degrees.
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AMS Mathematical Subject Classification [2010]: 05C05,
05C12, 05C75.

1. Introduction

Graph indices are one of the topics in graph theory studies. An important part
of these graph indexes are topological indices used especially in chemical graph
theory.

A graph represents a molecule and expresses the topological structure of the
molecule. The most well-known topological indexes consist of the relationship be-
tween vertex, edge, degree. Atom-bond-connectivity index is the best known index
whose mathematical properties are reported in [2]. The atom-bond connectivity
index ABC is a good example of linear and branched alkanes with tensile energy
of cycloalkanes. It is an important index that correlates and calculates the strong
bond between atoms with graphs. ABC index is an degree based topological index
in [5] such that

ABC = ABC(G) =
∑

vivj∈E(G)

√
di + dj − 2

didj
.

The ABC index plays a significant role in temperature studies in alkanes [1, 3, 4].

For example, ABC index of ethene (C2H4) is 4
√

2
3 + 2

3 .

The general ABC index ABCα is described as

ABCα = ABCα(G) =
∑

vivj∈E(G)

(
di + dj − 2

didj
)α.

2. On the General ABC Index

In this section, G may have several connected components but G does not contain
isolated vertices. Here, general ABC index for α = 1 is found by adding an edge
to G and by deleting an edge from G.
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Theorem 2.1. Let i and j be nonadjacent vertices of graph G, then

i) ABC1(G+ ij) ≤ ABC1(G), di ≥ 2,
ii) ABC1(G+ ij) ≥ ABC1(G), 0 < di ≤ 2,

where G+ ij is obtained by adding the ij edge to G.

Theorem 2.2. Let i and j be nonadjacent vertices of graph G, then

i) ABC1(G) ≥ ABC1(G− ij), di ≤ 2,
ii) ABC1(G) ≤ ABC1(G− ij), di ≥ 2,

where G− ij is obtained by deleting the ij edge from G.

Theorem 2.3. Let G be a nontrivial graph with x, y ∈ R. Then,

ABCx+y(G)ABCx−y(G)− σx,y ≤ ABCx(G) ≤
√
ABCx+y(G)ABCx−y(G),

with

σx,y =


2x−2n2((

δ − 1

δ2
)x − (

∆− 1

∆2
)x), if |x| ≥ |y|,

2x−2n2((
∆− 1

∆2
)

x+y
2 (

δ − 1

δ2
)

x−y
2 − (

δ − 1

δ2
)

x+y
2 (

∆− 1

∆2
)

x−y
2 ), if |x| < |y|.

Theorem 2.4. Let G be a nontrivial graph with m edges. G has maximum
degree ∆ and 2∆ ≤ m− 1. For any integer 4α ≥ 1,

ABCα(G) ≤ (m− 1)α−1ABC 1
α
(G)α.

3. Conclusion

ABC index is a special index in chemical graph theory. In this paper, some bounds
for the general ABC index are formed by the help of degrees, edges and vertices.
This paper aims to improve to the use of the ABC index.
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Abstract. In this talk, the new direct RBF partition of unity (D-RBF-PU)

method is presented for numerical solution of boundary value problems. The
D-RBF-PU method is a new localized RBF-based technique which avoids all
derivatives of PU weight functions as well as all lower derivatives of local
approximants. It is faster and simpler than the standard RBF-PU method,

and allows the use of some discontinuous PU weight functions to develop the
method in a more efficient and less expensive way. Alternatively, the new
method is an RBF-generated finite difference (RBF-FD) method in a PU

setting which is much faster and in some situations more accurate than the
original RBF-FD. To show the generality of the idea, we will go beyond the
RBFs and use other finite dimensional approximation spaces to construct the
local approximants on PU cells. At the end, we will extend the method for

solving surface PDEs on embedded and smooth submanifolds of the Euclidean
spaces.

Keywords: Radial Basis Function (RBF), Partition of Unity (PU)
Methods, RBF-FD, RBF-PU, Partial Differential Equations (PDEs).
AMS Mathematical Subject Classification [2010]: 65Nxx,
41Axx.

1. Introduction

Approximation by radial basis functions (RBFs) has received a lot of attention
due to many attractive advantages such as ease of implementation, flexibility with
respect to geometry and dimension and giving spectral accuracy in some situations
[10]. However, the global RBF approximations for solving partial differential equa-
tions (PDEs) produce full and ill-conditioned matrices which make them restricted
for large scale problems. So, localized approaches, such as RBF finite difference
(RBF-FD) and RBF partition of unity (RBF-PU) methods, are currently being
developed [1, 2, 3, 7, 8, 9]. However, RBF-FD and RBF-PU have their own
disadvantages which are mostly related to their computational costs for either
constructing the local approximations or solving the final linear systems.

In [4], we use the idea of direct discretization [5, 6] and link the RBF-PU
to the RBF-FD and construct a direct RBF-PU (D-RBF-PU) method which is
more efficient than both RBF-FD and RBF-PU methods. Our idea in not limited
to the RBFs and can be easily adapted for the other approximation spaces such
as multivariate polynomials. On the other hand, since the method is based on
scattered point layouts instead of a predefined background mesh, the underlying
domain of the PDE can be easily extended to smooth embedded submanifolds of
Rd. In this talk we will address all these issues.
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2. Partition of Unity Methods

Let {Ωℓ}Nc

ℓ=1 be an open and bounded covering of Ω that means all Ωℓ are open and

bounded and Ω ⊂
∪Nc

ℓ=1 Ωℓ. A family of nonnegative functions {wℓ}Nc

ℓ=1 is called a
partition of unity (PU) with respect to the covering {Ωℓ} if

1) supp(wℓ) ⊆ Ωℓ,

2)

Nc∑
ℓ=1

wℓ(x) = 1, ∀x ∈ Ω.

We start with an overlapping covering {Ωℓ}Nc

ℓ=1 of Ω. If we assume Vℓ is an ap-
proximation space on Ωℓ and sℓ ∈ Vℓ is a local approximant of a function u on Ωℓ,
then

s =

Nc∑
ℓ=1

wℓsℓ,(1)

is a global approximation of u on Ω which is formed by joining the local approxi-
mants sℓ via PU weights wℓ. For example, if X = {x1, . . . , xN} ⊂ Ω, Xℓ = X ∩Ωℓ
and sℓ are u interpolants on Xℓ then we can simply show that s is a u interpolant
on X. A possible choice for wℓ is the Shepard’s weights

wℓ(x) =
ψℓ(x)∑Nc

j=1 ψj(x)
, 1 ⩽ ℓ ⩽ Nc,(2)

where ψℓ are nonnegative, nonvanishing and compactly supported functions on
Ωℓ.

If wℓ and sℓ are smooth enough then the PU approximation (1) can be used
for solving differential equations. To describe the overall approach, assume that
we are looking for the approximate solution of a PDE problem of the form

Lu = f, in Ω,(3)

Bu = g, on Γ,(4)

where Ω ⊂ Rd is a domain, Γ = ∂Ω denotes its boundary and L and B are lin-
ear differential operators defined and continuous on some normed linear space in
which the true solution of (3)-(4) should lie. Here, B is the boundary operator
describing the Drichlet and/or Neumann boundary conditions. To obtain a nu-
merical solution, the PDE operators L and B should operate on s (and hence on
products wℓsℓ) in (1) to get

Lu ≈ Ls =
Nc∑
ℓ=1

L(wℓsℓ), Bu ≈ Bs =
Nc∑
ℓ=1

B(wℓsℓ),

where sℓ is local approximation of u in patch Ωℓ. The differential operators L and
B should contain certain partial derivatives Dα for multi-indices α ∈ Nd0. Using
the Leibniz’s rule we have

Dαs =

Nc∑
ℓ=1

∑
|β|⩽|α|

(
β

α

)
DβwℓD

α−βsℓ,
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provided that both wℓ and sℓ are smooth enough. For example if L = ∆ =
D(2,0,...,0) +D(0,2,...,0) + · · ·+D(0,0,...,2), the well-known Laplacian operator in Rd,
then

∆s =

Nc∑
ℓ=1

(sℓ∆wℓ + 2∇wℓ · ∇sℓ + wℓ∆sℓ) ,

where derivatives of wℓ are even more complicated if wℓ is defined as (2). This
will also increase the computational costs of the method. In the next section we
propose an alternative approach that avoids the above computations and reduces
both computational cost and algorithmic complexity.

3. The New Method

Again consider the PDE problem (3)-(4). In this section we present an alternative
approach in which Lu and Bu are directly approximated by the PU approximation
as

Lu ≈
Nc∑
ℓ=1

wℓs
L
ℓ =: sL, Bu ≈

Nc∑
ℓ=1

wℓs
B
ℓ =: sB ,

where sLℓ and sBℓ are the local approximations of Lu and Bu in patch Ωℓ. We
may assume sLℓ and sBℓ are identical with Lsℓ and Bsℓ on patch Ωℓ. While it is
clear that the global approximants sL and sB are different from their counterparts
Ls and Bs because (at least) derivatives of wℓ are not incorporated in the new
approximation. In the new approach, we have a direct approximation for Lu and
Bu without any detour via the local functions sℓ and the global approximation
(1). For comparison, the Laplacian is now approximated by

s∆ =

Nc∑
ℓ=1

wℓ∆sℓ.

Thus, not only all derivatives of wℓ but also many lower derivatives of the local
approximants sℓ are not actually required. This means that the single term wℓ∆sℓ
will do the whole job. At the first glance, one may expect a lost in accuracy since
some terms are ignored in the new approximation. But we will support the new
method theoretically and show that the rates of convergence for both methods are
the same.

Any finite dimensional approximation space Vℓ can be used for constructing
the local approximants sLℓ and sBℓ . However, we are interested in those which have
good approximation properties and are easily computable.

If we combine the new approach with the RBF approximation the method
is called D-RBF-PU [4] which has clear advantages over the standard and well-
established RBF-PU and RBF-FD methods. Usually, compactly supported and
smooth functions (on the whole Ω) are used to generate a smooth PU weight when
derivatives are required. Since the derivatives of the PU weight functions are not
needed, the new method can be set up on discontinuous PU weight to develop the
method in a more efficient and less expensive way, and to recover the standard
RBF-FD as a special case. In comparison with the RBF-FD, the new method
needs to solve much fewer number of local linear systems for constructing the final
differentiation matrix. This reduces the computational costs, considerably. In

11
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our experiments, average speedups of 5x with a smooth PU weight, 10x with a
constant-generated PU weight and 9x with a hybrid PU weight are observed in
both 2D and 3D examples. Although for a pure Dirichlet problem both methods
have approximately the same accuracy, the new method gives more accurate results
for Neumann or Neumann-Dirichlet boundary value problems.

We extend the D-RBF-PU for PDE problems on smooth submanifolds embed-
ded in Rd. In this talk we will give some results for spherical PDEs with cost and
accuracy comparison tests. Moreover, we will go beyond the RBFs and use some
other approximation spaces to show the generality of the idea.
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Abstract. In this paper, we propose a list decoding algorithm for the fam-
ily of unit codes introduced by C. Maire and F. Oggier. Unit codes are

constructed based on number fields and these codes are generalized version
of number field codes for which a list decoding algorithm has already been
proposed. We employ the list decoding algorithm of the number field codes
presented by J. F. Biasse and G. Quintin.
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1. Introduction

List decoding was introduced separately by Elias in [2] and Wezencraft in [7].
Biasse and Quintin proposed an algorithm for list decoding of number field (NF )
codes [1]. Construction of codes using maximal order number fields was presented
by Mair and Oggier in [4]. They were an extension of the codes provided by
Guruswami and Lenstra [3, 6]. These codes have a high minimum distance and a
high rate than the ones defined by Guruswami and Lenstra. Given that there was
a list decoding algorithm for NF -codes, the question is designing a list decoding
algorithm for the codes built in [1]. Hence, we propose a list decoding algorithm
for the unit codes that proposed in [1].

1.1. Preliminaries. The function E : Σk̄ −→ Σn is called an encoding func-
tion with parameters k̄ and n that maps a message m with k̄ symbols from the set
of alphabets Σ to a vector of length n, which is denoted by E(m). The encoded
string E(m) is referred to as a codeword. The list decoding problem is defined as

follows: Let r ∈ Σn be a received word, find a list of all messages m ∈ Σk̄ such
that the Hamming distance between r and E(m) is at most e. e is the number
of errors that the list decoding algorithm can tolerate. Let R be an integral do-
main; let I1, I2, . . . , In be n pairwise coprime ideals in R such that each R

Ij
is finite,

and let B be an arbitrary positive real number. Further assume that there is a
non-negative function Size : R→ R+ that associates a non-negative value to each
element of the ring R. Then, the ideal-based code C[R; I1, I2, . . . , In; Size, B] is
defined to be the set of codewords

∗Speaker
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{(mI1 , . . . ,
m
In
) : m ∈ R, Size(m) ⩽ B}.

We denote a number field of degree d and signature (r1, r2) by K and the ring
of integers of K by OK. In this paper we consider K as a totally real number field
of degree r1. If in the definition of ideal based code R = OK and I1, . . . , In be
n pairwise coprime ideals in OK, then this code is called NF -code. Let I be a
non-zero ideal of OK, the norm I is denoted by ℵ(I) and defined as ℵ(I) = |OK

I |.
Let (σj)j≤r1 be the embeddings of K to R. Let KR := K

⊗
Q R ≃ Rr1 × Cr2

and extend σj ’s to KR. The Hermitian form on KR, denoted by T2, is defined as
T2(x, x

′) := Σjσj(x) · σ̄j(x′), where σ̄j is the complex conjugate of σj . For any

x ∈ KR we define ∥x∥:=
√
T2(x, x) as the corresponding L2-norm of element x. A

valuation of the number field K is a function |·|: K −→ R such that the following
properties hold:

i) |x|⩾ 0 and |x|= 0 if and only if x = 0.
ii) |x · y|= |x|·|y|.
iii) There exist an element c ⩾ 1, such that for any x, y ∈ K,
|x+ y|⩽ c ·max{|x|, |y|}.

Two valuations |·|1 and |·|2 on K are called equivalent if and only if there is
a real number s > 0 such that |x|1= |x|s2 for every x ∈ K. A equivalence class of
the valuations of K is called a place of K and denoted by P. The valuation |·| of
K is called non-Archimedean if and only if it is satisfied |x+ y|≤ max{|x|, |y|} for
all x, y ∈ K. Otherwise, it is called Archimedean. Archimedean valuation of K is
equivalence with the infinite places of K and denoted by P∞. Let {e1, . . . , em} be
a linearly independent set of the vectors in Rn. Let L be an additive subgroup
of (Rn,+) such that L = Ze1

⊕
· · ·
⊕

Zem. In this case, L is called a lattice of
dimension n and rank m. L is called a full rank lattice if m = n.

1.2. The Structure of the Unite Codes. Here, we present the structure of
the unit codes from [4]. Let O∗

K be the group of the units of OK and let q = |A(Fp)|,
where A(Fp) is the set of alphabets over the finite field Fp. Using Dirichlet’s Unit
Theorem, If [K : Q] = r1 then OK ∼= Zr1 and O∗

K ≃ µK × Zr1−1 in which µK
contains the roots of unity in K (K is a totally real number field ). Also we have
r1 embeding σ1, . . . , σr1 in R and O∗

K/µK can be embedded as a lattice in Rr1 . Let
ξ1, . . . , ξr1−1 be a set of generators for the unite group modulo roots of unity. If

ξ is an algebraic number, then the (r1 − 1) × r1 matrix whose entries are log |ξji |
for i = 1, . . . , r1 − 1, j = 1, . . . , r1, has the property that the sum of any row is
zero. This implies that the absolute value R′ of the determinate of the submatrix
formed by deleting one column is independent of the column. The number R′ is
called the regulator of the algebraic number field. Consider the map Ψ as follows:

Ψ : O∗
K −→ Rr1 ,

ξ 7−→ (log|σ1(ξ)|, . . . , log|σr1(ξ)|),
and σ ∈ P∞. We consider a Z-basis {ξ1, . . . , ξr1−1} of O∗

K mod µK and the set
H0 = Ψ(O∗

K). The lattice H in Rr1 is then as follows:

H := Zx0
⊕

(
⊕

i ZΨ(ξi)) = Zx0
⊕

H0 ⊂ Rr1 ,
such that x0 = (1, . . . , 1). Restrict the map Ψ to Λ =< ξ1, . . . , ξr1−1 > and denoted
it by ΨΛ. Then,

ΨΛ : Λ −→ H0,
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ξ 7−→ Ψ(ξ),

is an isomorphism of the groups. Let PrjH0 : H −→ H0 be a projection map and t
be a positive real number. Define the set K(t) is as follows:

K(t) = {x ∈ Πσ∈P∞Kσ | |σ(x)|⩽ t, ∀σ},
where Kσ is the completion of the number field K considering the valuation σ. It
can be checked that K(t) is compact in Rr1 with volume µ(K(t)) = (2t)r1 where
µ is a Labesgue measure. Let T be the fundamental domain of H and z ∈ T such
that the following relation holds:

|(K(t) ∩H)|⩾ µ(K(t))

µ( Rr1
H )

= 2r1 tr1

r1RegK
,

where RegK is Regulator of the number field K. Set Kz(t) = (z + K(t)) and
H0,z(t) = PrjH0

(Kz(t) ∩H).

Lemma 1.1. [4, Lemma 4.3] We have |Ψ−1
Λ (H0,z(t))|≥ 2r1 tr1

(2t+1)r1RegK
.

Now, consider the set of the prime ideals {p1, . . . , pn} ofOK. Let Θ be reduction
map as follows:

Θ : O∗
K −→ Πnl=1

OK
pl
,

x 7−→ (x mod p1, . . . , x mod pn),

Definition 1.2. [4, Definition 4.4] The unit code of the number field K is
defined as follows:

Cz,t(O
∗
K) := Θ(Ψ−1

Λ (H0,z(t))).

Now, we give a brief description of the list decoding algorithm of the NF -codes
presented in [1]. Let B = Πi⩽kℵ(pi)

1
d where 0 < k < n. In this case, Size = ∥·∥

and the codeMC = {m ∈ OK | ∥m∥⩽ B} was Considered by Biasse and Quintin
[1].

Let m ∈ OK such that m is encoded as

OK −→ OK
p1
× · · · × OK

pn
,

m 7−→ (m mod p1, . . . ,m mod pn),

where pl’s are pairwise comaximal non-zero ideals of OK for l = 1, . . . , n. Let
(r1, . . . , rn) ∈ Πnl=1

OK
pl

be a received word. Let γ1, . . . , γn be the positive integer

numbers and Z be a parameter. All the codewords m retrieved in [1] satisfy
Σnl=1alγl > Z, where al = 1 if m mod pl = rl and 0 otherwise (it is called
that m and rl have weighted agreement Z). Let f ∈ OK[y] be a polynomial of
degree at most d. The codewords m with favorite weighted agreement are found
by computing roots of f satisfying the following relation:

∥m∥⩽ B =⇒ ∥f(m)∥< F,(1)

where F is a proper bound. Let Jl = {a(y)(y− rl)+ p · b(y) | a, b ∈ OK[y], p ∈ pl}
be ideals of OK[y] such that 1 ⩽ l ⩽ n. For each ideal Jl we assign a positive
integer γl for l = 1, . . . , n. Let f ∈ Πnl=1J

γl
l ⊂ OK[y], then f(m) ∈ Πnl=1p

alγl
l ,

where al = 1 if f(m) mod pl = rl and 0 otherwise.
Let f(m) ̸= 0, then

ℵ(f(m)) ≥ Πnl=1ℵ(pl)alγl .

The inequality between algorithmetic and geometric mean are concluded as follows:
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∥f(m)∥≥
√
dℵ(f(m))

1
d .

If the following relation hold:

Σnl=1alγl logℵ(pl) > −d
2 log (d) + d logF,

which results in √
d(Πnl=1ℵ(pl)γlal)

1
d > F,

then f(m) = 0, otherwise it contradicts with (1). Now, let’s illustrate the list
decoding Algorithm 1 presented in [1] for NF -codes.

Algorithm 1 List decoding algorithm for NF -codes

Require: OK, γ1, . . . , γn, B, Z, (r1, . . . , rn) ∈ Πnl=1
OK
pl
.

Ensure: All m such that Σnl=1alγl > Z.

(1) Calculate d and F .
(2) Find f ∈ Πnl=1J

γl
l ⊂ OK[y] of degree at most d such that ∥m∥⩽ B ⇒

∥f(m)∥< F.
(3) Find all roots of f and annunce those roots ξ such that ∥ξ∥⩽ B and

Σnl=1alzl > Z.

2. Main Results

2.1. List Decoding of Unit Codes when K is Totally Real. In this
section, let K be a totally real number field of degree r1. Our goal is the list
decoding of the unit codes. We assume that

r = (r1, . . . , rn) = (β mod p1, . . . , β mod pn) ∈ Πnl=1
OK
pl
,

is a received word such that the set {p1, . . . , pn} is a set of prime ideals of OK
and β ∈ OK. Let {x1, . . . , xM} be the output list of Algorithm 1. Then, we have
Σnl=1alγl > Z, where al = 1, if rl = xi mod pl, otherwise al = 0 and ∥xi∥⩽ B
for i = 1, . . . ,M . In order to employ Algorithm 1, we note that {γ1, . . . , γn} ⊂ Z,
xi ∈ OK, and Z,B ∈ R+ are parameters needed to be specified appropriately. We
want to choose xi’s such that xi ∈ O∗

K. So, we employ the following Proposition.

Proposition 2.1. [5, Proposition 4.9] Let x ∈ OK. Then, x ∈ O∗
K if and only

if |N(x)|= 1.

Therefore, we have the following conclusion.

Conclusion 1. x ∈ O∗
K if and only if Σr1j=1 log |σj(x)| = 0.

Lemma 2.2. Let t be a given parameter such that t ∈ R+ and MC = {x ∈
OK | ∥x∥⩽ B}. Let {x1, . . . , xM ′} be the elements ofMC satisfying in Conclusion
1, and T be the fundamental domain of lattice H = Zx0

⊕
H0 with x0 = (1, . . . , 1)

and z = (z′1, . . . , z
′
r1) be a point of T and z1 be an arbitrary integer such that

−t − log|σj(xi)|+z′j ⩽ z1 ⩽ t − log|σj(xi)|+z′j. To run Algorithm 1 for the unit
codes, it is suffice to assume

B = et−z1
√
e2z

′
1 + · · ·+ e2z

′
r1 .
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Lemma 2.3. Let {x1, . . . , xM ′} be the outputs of Algorithm 1 satisfying Con-
clusion 1. Let y ∈ {x1, . . . , xM ′} with Ψ(y) ∈ PrjH0

(H ∩ Kz(t)), where z =
(z′1, . . . , z

′
r1) is a point of fundamental domain H. Then, the outputs of the list

decoding algorithm for the unit codes are exactly the outputs of Algorithm 1 satisfy
Σr1j=1 log|σj(xi)|= 0 for i = 1, . . . ,M ′.

The proofs of Lemma 2.2 and Lemma 2.3 are omitted due to lack of space.
Now, we present our list decoding algorithm for the unit codes when K is a totally
real number field.

Algorithm 2 List decoding algorithm for the unit codes.

Require: t ∈ R+, Z, OK, O
∗
K, H0, H, r = (r1, . . . , rn) = (β mod p1, . . . , β

mod pn) ∈ Πnl=1
OK
pl
, (z′1, . . . , z

′
r1) ∈ T , {Ψ(ξ1), . . . ,Ψ(ξr1−1)} and {γ1, . . . , γn} ⊂

Z and Λ =< ξ1, . . . , ξr1−1 > .
Ensure: Σnl=1alγl > Z, where al = 1 if rl = xi mod pl otherwise al = 0, for
i = 1, . . . ,M . Σr1j=1 log|σj(xi)|= 0 for i = 1, . . . ,M ′ and j = 1, . . . , r1, also the
following relation holds:

−t− log|σj(xi)|+z′j ⩽ z1 ⩽ t− log|σj(xi)|+z′j , with z1 ∈ Z.

(1) Call Algorithm 1 and set B = et−z1
√
e2z

′
1 + . . .+ e2z

′
r1 and z1 = 0.

Let {x1, . . . , xM} be the outputs of Algorithm 1 i.e. Σnl=1alγl > Z
where al = 1 if rl = xi mod pl otherwise al = 0 and ∥xi∥⩽ B for
i = 1, . . . ,M .

(2) Find all xi’s such that Σr1j=1 log|σj(xi)|= 0 for i = 1, . . . ,M ′ and denote

all such xi’s by {x1, . . . , xM ′}.
(3) Find all z1’s such that for j = 1, . . . , r1

−t− log|σj(xi)|+z′j ⩽ z1 ⩽ t− log|σj(xi)|+z′j with z1 ∈ Z,(2)

let li be the number of z1’s that satisfies in (2) and i = 1, . . . ,M ′.
We denote all such z1’s by zi,k satisfying (2) for k = 1, . . . , li and
i = 1, . . . ,M ′. If there are no such z1 then we remove xi from our list.

(4) Set Zi,k = zi,k · (1, . . . , 1) and yi,k = Ψ(xi) + Zi,k for i = 1, . . . ,M ′,

j = 1, . . . , r1 and k = 1, . . . , li such that yi,k = (y
(1)
i,k , . . . , y

(r1)
i,k ), we

consider the inner product of x0 = (1, . . . , 1) and yi,k, then we must

have zi,k = [
Σ

r1
α=1y

(α)
i,k

r1
].

(5) Project yi,k over H0, then we have the projection as follow yi,k−Zi,k =
Ψ(xi).

(6) Effect Ψ−1
Λ over yi,k − Zi,k = Ψ(xi), then we have Ψ−1

Λ (yi,k − Zi,k) =

Ψ−1
Λ (Ψ(xi)) = xi.

(7) Repeat this Algorithm until finished all xi’s.
(8) Report all xi’s.
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1. Introduction

Cyclic codes over rings have created a great deal of interest, because of their new
role in algebraic coding theory. Hammons et al. showed binary nonlinear codes
can be viewed as linear codes through a Gray mapping over Z4 by exploiting the
isometry between (Zn4 , Lee distance) and (F 2n

2 , Hamming distance). Since some
binary codes with a good error-correcting capability are Gray images of cyclic
codes over finite rings (See [3, 5]), the study of cyclic codes over finite rings is
significant. So far, a few papers have been published on the decoding of codes
over finite rings (See [1, 2, 4, 5]). A decoding algorithm for cyclic codes over the
ring F2+uF2 with respect the Lee distance proposed by Udaya and Bonnecaze, also

a decoding algorithm for cyclic codes over the ring
Fp[u]
⟨uk⟩ with respect the Hamming

distance proposed by Alimoradi.
In this study,we proposed a shorter decoding procedure for cyclic codes over

the ring R = F2 + uF2 with respect the Lee distance. For any ring S the quotiont

ringD(S) is defined asD(S) = S[x]
⟨x2⟩ ≃ S

⊕
uS,where u2 = 0. Also π1, π2 : D(S)→

S are defined as π1(a+ bu) = a, π2(a+ bu) = b.We review some basic facts about
Galois rings. Let µ : R → F2 is the natural homomorphic mapping from R to its
residue field F2, where α→ α(mod u). The map µ is extended to µ : R[x]→ F2[x]
in the usual way.The image of a polynomial f(x) ∈ R[x] under this projection is
denoted by f(x). A monic polynomial f(x) ∈ R[x] is said to be a basic irreducible
polynomial over R if f(x) is irreducible in F2[x]. Let f(x) be a basic monic
irreducible polynomial of degree r in R[x]. The Galois ring of R is denoted as

GR(R, r) and is defined as R[x]
⟨f(x)⟩ . So GR(R, r) ≃ D(F2r ) by Cohen structure

theorem for complete rings. So by identification of these two rings, GR(R, r) is
a principal ideal local ring. Also the group of units of GR(R, r) ≃ D(F2r ) is
F ⋆2r(1 + uF2r ). Hence GC = F ⋆2r is a cyclic group and GA = 1 + uF2r ≃ F2r .
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2. Decoding of Cyclic Codes Over the Ring F2 + uF2

Udaya and Bonnecaze, introduced a decoding procedure for cyclic codes over the
ring F2 + uF2 by the use of a Gray map and ⟨u, u + v⟩ construction codes. They
showed that a cyclic code C of length n over this ring has the structure of C =
⟨fh, ufg⟩, where fgh = xn − 1 and Gray image C is equivalent to a ⟨u, u + v⟩
constructed code with binary codes C1 = Res(C) = ⟨fh⟩ and C2 = Tor1(C) =

⟨f⟩. It is clear that R[x]
⟨xn−1⟩ ≃ D(S), where S = F2[x]

⟨xn−1⟩ . So C1 = Res(C) = π1(C)

and C2 = Tor1(C) = π2(C).
We assume that C is a cyclic code over the ring F2 + uF2 with Lee weight k

and the number of actual errors which have occurred is less than or equal to t.
Suppose that the errors occur in the unknown coordinates l1, l2, . . . , lt. Then by
the use of the vector representation of F2+uF2 over F2, the error polynomial e(x)
can be written as follows:

(1) e(x) = (el1,0 + uel1,1)x
l1 + (el2,0 + uel2,1)x

l2 + · · ·+ (elt,0 + uelt,1)x
lt ,

where ei,j ∈ F2, for i = 1, 2, . . . , t and j = 0, 1. For any error-polynomial e(x) =∑n−1
i=0 eix

i over F2+uF2, the error-polynomial e1,ū(x) is a binary polynomial such
that for all i = 0, 1, 2, . . . , n − 1, the coefficient of xi in e1,ū(x) is equal to 1 if ei
is 1 or ū and is equal to 0 otherwise. Similarly, for all i = 0, 1, 2, . . . , n − 1, the
coefficient of xi in eu,ū(x) is equal to 1 if ei is u or ū and is equal to 0 otherwise.

Let χA be the characteristic function of A ⊆ R. If f(x) =
∑n−1
i=0 aix

i ∈ R[x], then
WL(f(x)) =

∑n−1
i=0 2χu(ai)+

∑n−1
i=0 χ1,ū(ai).Let fA(x) =

∑n−1
i=0 χA(ai) ∈ F2[x] for

any A ⊆ R. If f(x) =
∑n−1
i=0 aix

i ∈ F2[x], then WH(f(x)) =
∑n−1
i=0 χ1(ai).

So χ1,ū(ei) + uχu,ū(ei) = ei,where ei ∈ R, implies that

(2) e(x) =
n−1∑
i=0

eix
i = e1,ū(x) + ueu,ū(x).

Also, eu,ū(x) = e1,ū(x) + e1,u(x).With this notation WL(e(x)) =
∑n−1
i=0 2χu(ei) +∑n−1

i=0 χ1,ū(ei).Also WH(e1,ū(x)) =
∑n−1
i=0 χ1,ū(ei),WH(e1,u(x)) =

∑n−1
i=0 χ1,u(ei)

and WH(eu,ū(x)) =
∑n−1
i=0 χu,ū(ei).

Theorem 2.1. Let C = ⟨fh, ufg⟩ be a cyclic code over R = F2 + uF2, Z1 =
{αi, αi+1, . . . , αi+t1−1} be t1 consecutive roots of the polynomial f and

Z2 = {αj , αj+1, . . . , αj+t1+t2−1},

be t1 + t2 consecutive roots of the polynomial fh, then it is possible to completely
determine an error e(x) if WL(e(x)) ≤ ⌊ t1+t22 ⌋.

Proof. Note that unlike codes over the ring Z4, free cyclic codes over R
are not interesting because of their poor minimum Lee distance. The codes are
only interesting when t1 + t2 is approximately equal to 2t1.Let e(x) is an er-
ror polynomial over R and e1,u, e1,ū, eu,ū be its associated binary error polyno-
mials. If WL(e(x)) ≤ t, by the above notations WH(e1,ū(x)) ≤ t.Also either
WH(eu,ū(x)) ≤ ⌊t/2⌋ or WH(e1,u(x)) ≤ ⌊t/2⌋, where ⌊t⌋ represent the largest in-
teger less than or equal to t.Now let t = t1+t2

2 , as the binary code Res(C) is a BCH
code with t1 + t2 consecutive roots of the generator polynomial of codes, then the
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binary error polynomial e1,ū(x) will be decoded in Res(C), (See [5] the Peterson-
Gorenstein-Zierler algorithm.)Also, the binary code Tor1(C) is a BCH code with
t1 consecutive roots of the generator polynomial of codes, then the error poly-
nomial eu,ū(x) or e1,u(x) will be decoded in the binary code Tor1(C), ( with this
assumption that t1+t2 is approximately equal to 2t1). IfWH(eu,ū(x)) ≤ ⌊t/2⌋, then
eu,ū(x) will be decoded in the binary code Tor1(C). So it is possible to completely
decode an error e(x). If WH(e1,u(x) ≤ ⌊t/2⌋, then e1,u(x)) will be decoded in the
binary code Tor1(C). So, by the use of equation eu,ū(x) = e1,ū(x) + e1,u(x), it is
possible to completely decode an error e(x). □

We explain [6, Example 2] by the use of above procedure.

Example 2.2. Let C = ⟨fh, ufg⟩ be a cyclic code of length 31 over F2 + uF2

and α be a primitive element of order 31 in GR(F2 + uF2, 5) = (F2+uF2)[x]
⟨x5+x2+1⟩ . Let

f = f1f3, h = f5f7 and g = f0f11f15, where

f0 =x+ 1, f1 = x5 + x2 + 1, f3 = x5 + x4 + x3 + x2 + 1, f5

=x5 + x4 + x2 + x+ 1, f7 = x5 + x3 + x2 + x+ 1, f11

=x5 + x4 + x3 + x+ 1,

and f15 = x5 + x3 + 1. The sets of consecutive roots of polynomials f and fh are
given as follows:

Z1 = {α, α2, α3, α4}, Z2 = {α, α2, . . . , α10}.

Since t1 = 4 and t1+ t2 = 10, from Theorem 7 in Udaya and Bonnecaze, it follows
that the minimum Lee distance of this code is equal to 10. Then the number of
actual errors of type 1, ū in e is less than or equal to 5 and either the number of
actual errors of type u, ū in e is less than or equal to 2 or the number of actual errors
of type 1, u in e is less than or equal to 2. By the use of MATLAB software (See [7,
Section 3.5]), the error polynomial e(x) will be determined in each case. In Table
1, S0, S1, S2 denote the syndrome of the error polynomials e1,ū(x), eu,ū(x), e1,u(x),
respectively, and v(x) denote the received polynomial. We use the symbol ⋆ when
the binary error-polynomial has not solution.

Table 1

Ex 1 2

v(x) ūx3+ ūx5+ūx13+ūx25+ūx29 1 + x2 + ū(x+ x3 + x5)
S0 {1, 1, α8, 1, α7, α16, α24, 1, α25, α14} {α22, α13, α30, α26, α26, α29, α30, α21, α22, α21}
S1 {1, 1, α8, 1} {α23, α15, α8, α30}
S2 {0, 0, 0, 0} {α5, α10, α27, α20}

e1,ū(x) x3 + x5 + x13 + x25 + x29 1 + x+ x2 + x3 + x5

eu,ū(x) ⋆ ⋆
e1,u(x) 0 1 + x2

e(x) ūx3 + ūx5 + ūx13 + ūx25 + ūx29 1 + x2 + ū(x+ x3 + x5)
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The Weight Hierarchy of (u, u+ v)−Construction of Codes
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Abstract. Let Ci be an [n, ki, di] linear code over Fq for i = 1, 2. Let
C = {(u, u + v);u ∈ C1, v ∈ C2}. Motivated by finding the relationship
between dr(C) and dr(C1), dr(C2), we investigated dr(C). Hence we found

an upper bound for dr(C) according to dr(C1) and dr(C2). In addition, we
proved that d2(C) equals to an upper bound in the binary case. Note that
for a linear code D over a finite field, the r-th generalized Hamming weight
(r-th GHW) is defined as the minimum of the support size of r-dimensional

sub-codes of D and we denote it by dr(D).

Keywords: Generalized Hamming Weight, Linear code,
(u, u+ v)−construction, Weight Hierarchy.
AMS Mathematical Subject Classification [2010]: 05C69.

1. Introduction

Generalized Hamming weight introduced by Wei in his seminal paper [7]. Then
this concept of code was investigated by several authors later, see [1, 2, 4] and
[5]. Generalized Hamming Weight (GHW) investigated over rings too, see [3]. We
say that C is an [n, k, d]q linear code if C is a subspace of Fnq of dimension k, and
minimum distance d in which Fq is a field of order q and n ∈ N . The smallest
Hamming weight of the nonzero codewords of C is denoted by wt(C). Note that
d(C) = wt(C) for a linear code C. For a subspace C of Fnq , the support of C,
denoted by supp(C), is defined as follows

supp(C) = {i : ∃(v1, v2, . . . , vn) ∈ C; vi ̸= 0}.

Also, we define the r-th generalized Hamming weight (GHW) as follows

dr = dr(C) = min{∥D∥ : D ⊂ C, dim(D) = r},

where ∥D∥ = |supp(D)|. The Weight Hierarchy (WH) for a code is defined as the
sequence of GHW s of that code.

In this paper we shall study the generalized Hamming weight for (u, u + v)-
construction of codes.

2. Main Results

Definition 2.1. [6] ((u, u + v)-construction) Let Ci be an [n, ki, di] linear
code over Fq for i = 1, 2. Then (u, u+ v)-construction of these codes, denoted by
C, is defined as follows:

C = {(u, u+ v) : u ∈ C1, v ∈ C2}.
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Theorem 2.2. [6] Let Ci be an [n, ki, di]-linear code over Fq, for i = 1, 2.
Then the code C defined as C = {(u, u + v) : u ∈ C1, v ∈ C2} is a [2n, k1 +
k2,min{2d1, d2}]-linear code over Fq.

Theorem 2.3. [6] For any prime power q and x, y ∈ Fnq , we have

wt(x) + wt(y) ≥ wt(x+ y) ≥ wt(x)− wt(y).

Theorem 2.4. Let Ci be an [n, ki, di] linear code over Fq for i = 1, 2. Then
the upper bound for the weight hierarchy of code C = {(u, u+ v) : u ∈ C1, v ∈ C2}
is as follows:

dr(C) ≤
{

min{2dr(C1), dr(C2)}, 1 ≤ r ≤ k1,
dr(C2), k1 < r ≤ k2.

Proof. Let dim(C1) = k1, dim(C2) = k2, and k1 < k2. We have following
cases:

i) Let 1 ≤ r ≤ k1. Then
∃D1 ⊆ C1,dimD1 = r,D =< α1, α2, . . . , αr >, ∥ D1 ∥= dr(C1),

∃D2 ⊆ C2, dimD2 = r,D =< β1, β2, . . . , βr >, ∥ D2 ∥= dr(C2),

where α1, α2, . . . , αr ∈ C1 and β1, β2, . . . , βr ∈ C2.
Let D =< (α1, α1), (α2, α2), . . . , (αr, αr) >. Note that dim(D) =

r,D ⊆ C. Also we have ∥D∥ = 2∥α1, α2, . . . , αr∥ = 2dr(C1). Let

D′ =< (0, β1), (0, β2), . . . , (0, βr) > .

We have dim(D′) = r, ∥ β1, β2, . . . , βr ∥= dr(C2). Then, D and D′ are
satisfying the following relation

{∥D∥;D ⊆ C, dim(D) = r},
which implies dr(C) ≤ min{2dr(C1), dr(C2)}.

ii) Let r > k1. We can suppose that r = k1 + i, 1 ≤ i ≤ k2. We continue
with fixed i. There exist β1, β2, . . . , βk1+i ∈ C2 such that

dk1+i(C2) =∥ β1, β2, . . . , βk1+i ∥ .
Let D =< ((0, β1), (0, β2), . . . , (0, βk1+i) >. Hence we have

∥D∥ = ∥β1, β2, . . . , βk1+i∥ = dk1+i(C2) = dr(C2).

Therefore dr(C) ≤ dr(C2) for (k1 < r ≤ k2)}. The result is obtained by using (i)
and (ii). □

Theorem 2.5. Let Ci be an [n, ki, di] linear code over F2 for i = 1, 2. The
weight hierarchy of code C = {(u, u+ v) : u ∈ C1, v ∈ C2} is as follows:

d2(C) = min{2d2(C1), d2(C2)}.

Proof. Let d2(C) = ∥D∥. So D =< (α1, α1 + v1), (α2, α2 + v2) > in which
α1, α2 ∈ C1 and v1, v2 ∈ C2. Hence by using the concept of suppD and Theorem
2.3, we have

∥ D ∥=∥ α1, α2 ∥ + ∥ α1 + v1, α2 + v2 ∥= wt(α1 − α2) + wt(α1 − α2 + v1 − v2){
≥ wt(v1 − v2) =∥ v1, v2 ∥≥ d2(C2), v1 ̸= v2,
= 2wt(α1 − α2) = 2 ∥ α1, α2 ∥≥ 2d2(C1), v1 = v2.

26



THE WEIGHT HIERARCHY OF (U,U + V )−CONSTRUCTION OF CODES

So, min{2d2(C1), d2(C2)} ≤ d2(C).
On the other hand, we have

∃D1 ⊆ C1,dimD1 = 2, D =< α1, α2 >, ∥ D1 ∥= d2(C1),

∃D2 ⊆ C2, dimD2 = 2, D =< β1, β2 >, ∥ D2 ∥= d2(C2).

LetD =< (α1, α1), (α2, α2) >. Then ∥D∥ = ∥α1, α2∥+∥α1, α2∥ = 2∥α1, α2∥ =
2d2(C1). Also, let D′ =< (0, β1), (0, β2) >. So ∥D′∥ = ∥β1, β2∥ = d2(C2). Note
that D and D′ are satisfying

{∥D∥;D ⊆ C, dim(D) = 2}.
Therefore, we have d2(C) ≤ min{2d2(C1), d2(C2)}. Finally we have

d2(C) = min{2d2(C1), d2(C2)}.
□
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Abstract. In this paper, we present a method to construct quantum codes
over Fqr from the Gray images of quadratic residue codes over the ring R =
Fqr + vFqr , where v2 = v and q is an odd prime number. In particular, we

obtain a few quantum maximum distance separable (MDS) codes over Fqr

from quadratic residue codes and their extended over R.
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1. Introduction

The class of quantum error-correcting codes plays a very significant role in quan-
tum communication and their successful application in quantum computation. In
2014, Kaya et al. presented the structure of QR codes over Fp+ vFp and obtained
optimal self-dual codes and formally self-dual codes which have the best minimum
distance from the Gray images of QR codes over Fp + vFp in [5]. Recently, Samei
and Soufi studied the structure of QR codes over Fpr + u1Fpr + · · ·+ utFpr in [7],
where r, t ≥ 1. Many good quantum error-correcting codes over finite field have
been constructed using the Gray images of cyclic codes over finite rings.

In this paper, let R = Fqr +vFqr , where q is an odd prime number, r is a finite
natural number and v2 = v. The ring R is a finite principal ideal ring of order q2r

and characteristic q. It has two maximal ideals < 1− v > and < v >. By Chinese
Reminder Theorem, we have R = (1 − v)Fqr ⊕ vFqr , which implies that for any
r ∈ R there are a, b ∈ Fqr such that r = (1− v)a+ vb.

A linear code C over ring R of length n is a R-submodule of Rn. The Hamming
weight of a codeword is the number of non-zero components.

Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be two elements of Rn. The
Euclidean inner product of vectors x,y is < x,y >E= Σni=1xiyi. The dual or
orthogonal of C denoted C⊥ is defined as

C⊥ = {x ∈ Rn : < x, y >E= 0, for all y ∈ C}.
The code C is self-orthogonal provided C ⊆ C⊥ and self-dual provided C =

C⊥. A linear code C of length n over R is said to be cyclic if for any codeword
c ∈ C, we have:

c = (c0, c1, . . . , cn−2, cn−1) ∈ C implies that τ(c) = (cn−1, c0, c1, . . . , cn−2) ∈ C.

∗Speaker

29



A. Soufi Karbask and K. Samei

We let Rn = R[X]
<Xn−1> . Since C is a cyclic code of length n over R if and only

if C is an ideal of Rn, we associate the vector c = (c0, c1, . . . , cn−1) in Rn with
the polynomial c(x) = c0 + c1x+ c2x

2 + · · ·+ cn−1x
n−1 in Rn, where x = X+ <

Xn − 1 >. A polynomial e(x) in Rn is an idempotent if e2(x) = e(x).
A code is termed even-like if it has only even-like codewords; and it called

odd-like if it is not even-like (a vector x = (x0, x1, . . . , xn−1) in Fqr is even-like

provided that Σn−1
i=0 xi = 0). Xn − 1 has no repeated factors in Fqr [X] if and only

if gcd(n, q) = 1 (See [4, Exercise 201]), an assumption we make throughout this
paper.

2. Quadratic Residue Codes Over Fqr + vFqr

This section is a generalization of [5]. Let p be an odd prime and we will assume
that q is a prime such that qr is a square module p, where r ∈ N. Then there
exist QR codes of length p over Fqr . Let D1 =< a1(x) >, D2 =< b1(x) >,
C1 =< a2(x) > and C2 =< b2(x) > are QR codes over Fqr such that a1(x) and

b1(x) be the idempotent generators of [p, p+1
2 ] QR codes and a2(x) and b2(x) be

the idempotent generators of [p, p−1
2 ] QR codes, see section 6 of [4, ch. 6].

In this section, without loss of generality, we can assume that Qp and Np
are the sets of nonzero quadratic residue and quadratic nonresidue modulo p,
respectively.

Theorem 2.1. Let C = (1− v)C1 ⊕ vC2 be a cyclic code of length n over R.
Then there exists a unique idempotent generator of the form t(x) = (1− v)t1(x)+
vt2(x), where ti(x) is a idempotent generator in

Fqr [X]
<Xn−1> and C⊥ =< 1−t(x−1) >.

Definition 2.2. With the above notation, we define the four QR codes over
R as follows:

Q1 = (1− v)D1 ⊕ vD2,

Q2 = (1− v)D2 ⊕ vD1,

Q′
1 = (1− v)C1 ⊕ vC2,

Q′
2 = (1− v)C2 ⊕ vC1.

By Theorem 2.1, p1(x) = (1−v)a1(x)+vb1(x) and q1(x) = (1−v)b1(x)+va1(x)
and p2(x) = (1−v)a2(x)+vb2(x) and q2(x) = (1−v)b2(x)+va2(x) are idempotent
generators of QR codes in the above definition, respectively.

We investigate the properties of QR codes over R for the (distinct) cases
p ≡ −1 (mod 4) and p ≡ 1 (mod 4). It is obvious that Q′

i is the even-like subcode

of Qi, where i = 1, 2. We note that j(x) = 1
p (1 + x+ x2 + · · ·+ xp−1) in

Fqr [X]
<Xp−1>

is the idempotent generator of repetition code of length p. We recall that two
codes are said to be permutation equivalent (or equivalent) if they differ only by a
permutation of coordinates [4].

2.1. Case I. If p ≡ −1 (mod 4), then the codes have the following properties.

Theorem 2.3. Let the situation be as in definition 2.2 and p ≡ −1 (mod 4),
then

(1) Q1 and Q′
1 are equivalent to Q2 and Q′

2, respectively.
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(2) Q1 ∩Q2 =< j(x) > and Q1 +Q2 = Rp.

(3) |Q1| = qr(p+1) = |Q2|.
(4) Q1 = Q′

1+ < j(x) > and Q2 = Q′
2+ < j(x) >.

(5) |Q′
1| = qr(p−1) = |Q′

2|.
(6) Q⊥

1 = Q′
1 and Q⊥

2 = Q′
2 and Q′

1 and Q′
2 are self-orthogonal.

(7) Q′
1 ∩Q′

2 = {0} and Q′
1 +Q′

2 =< 1− j(x) >.

3. Extended Quadratic Residue Codes Over R

In this section, we can consider the extending odd-like quadratic residue codes
over R in such a way that the extensions are self-dual or dual to each other.

Remark 3.1. Let Di be odd-like quadratic residue codes of length p over finite
field Fqr , with i = 1, 2. Then there exist different QR extended codes over Fqr as
follows:

(1) D̂i = {(c0, c1, . . . , cp−1, cp)| (c0, c1, . . . , cp−1) ∈ Di with Σpi=0ci = 0},
(2) Di = {(c0, c1, . . . , cp−1,−γΣp−1

i=0 ci)| (c0, c1, . . . , cp−1) ∈ Di and γ is a
solution of equation 1 + γ2p = 0 in Fqr}.

We note that, in general the equation 1 + γ2p = 0 has a solution γ in Fqr if
and only if p and −1 are both squares or both nonsquares in Fqr .

Definition 3.2. The extended codes over R are formed by adding the same
columns that are used to extend codes over Fqr .

Theorem 3.3. [7, Theorem 2.15] Let Di be odd-like quadratic residue codes
of length p over finite field Fqr , with i = 1, 2. Then the following hold:

(1) Q̂1 = (1− v)D̂1 ⊕ vD̂2 and Q̂2 = (1− v)D̂2 ⊕ vD̂1,
(2) if the equation 1 + γ2p = 0 has a solution γ in Fqr , then

Q1 = (1− v)D1 ⊕ vD2

and

Q2 = (1− v)D2 ⊕ vD1.

Theorem 3.4. Let p ≡ −1 (mod 4), then Q1 and Q2 are self-dual.

If p ≡ 1 (mod 4), we can consider extending odd-like quadratic residue codes
over R in such a way that extensions are dual to each other.

Definition 3.5. Let p ≡ 1 (mod 4). For i = 1, 2, we define

D̃i = {(c0, c1, . . . , cp−1,
1
pΣ

p−1
i=0 ci)| (c0, c1, . . . , cp−1) ∈ Di}.

Definition 3.6. Let p ≡ 1 (mod 4). The extended codes Q̃1 and Q̃2 over R
are formed by adding the same columns that are used to extend codes over Fqr .

Theorem 3.7. If p ≡ 1 (mod 4), then

Q̃1 = (1− v)D̃1 ⊕ vD̃2,

and

Q̃2 = (1− v)D̃2 ⊕ vD̃1.

Theorem 3.8. If p ≡ 1 (mod 4), then the dual of Q̃1 is Q̂2 and the dual of

Q̃2 is Q̂1.
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4. Stabilizer Quantum Codes From Quadratic Residue Codes Over R

Let q be a prime power. A q-ary quantum code of length n ia a subspace of Cqn .
For (a|b) in R2n, where a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) ∈ Rn the
symplectic weight is defined as

swt(a|b) = |{k : ak ̸= 0 or bk ̸= 0)}|.
For (a|b) and (a′|b′) in R2n, define the symplectic inner product by

< (a|b), (a′|b′) >s = b.a′ − b′.a,

where “.” denotes the standard inner product. The following theorem is well
known.

Theorem 4.1. [6, Theorem 7] Let R be a Frobenius ring. An ((n,K, d))R
stabilizer code exists if and only if there exists an additive code C ≤ R2n of size

|C| = |Rn|
K such that C ≤ C⊥s and swt(C⊥\C) = d if K > 1 and swt(C⊥−0) = d

if K = 1.

By Theorem 4.1, we can obtain stabilizer codes over finite Frobenius ring.

Theorem 4.2. [3, Theorem 3.3] Let R be a finite Frobenius ring. Further,
let C1 and C2 denote two classical linear codes over R with parameters (n,K1, d1)
and (n,K2, d2) such that C⊥

2 ⊂ C1. Then there exists an ((n, K1K2

|Rn| , d))R stabilizer

code with minimum distance d = min{wt(c)|c ∈ (C1 \C⊥
2 ∪C2 \C⊥

1 )} that is pure
to min{d1, d2}.

Corollary 4.3. Let R be a finite Frobenius ring and C be a (n,K, d) linear

code over R. If C⊥ ⊂ C, then there exists an ((n, K
2

|Rn| , d))R stabilizer code with

minimum distance d = d(C \ C⊥).

Theorem 4.4. Let p ≡ −1 (mod 4). Then there exist [[2p, 2, dL(Q1 \Q⊥
1 )]]qr

and [[2p, 0, d]]qr quantum codes with minimum distance d = min{dL(Q1), dL(Q
′
1)}.

Theorem 4.5. Let p ≡ 1 (mod 4). Then there exists an [[2p, 2, dL]]qr quantum
code, where dL = min{wtL(c)|c ∈ (Q1 \ Q⊥

2 ∪ Q2 \ Q⊥
1 )}. Moreover, there exists

an [[2p, 0, d]]qr quantum code with minimum distance d = min{dL(Q1), dL(Q
′
2)}.

Theorem 4.6. If p ≡ −1 (mod 4), then there exists an [[2(p+1), 0, dL(Q1)]]qr
stabilizer quantum code.

Theorem 4.7. If p ≡ 1 (mod 4), then there exists an [[2(p+ 1), 0, dL(Q̃1)]]qr
stabilizer quantum code.

In the following examples, all computations are carried in magma computa-
tional algebra system [1].

Example 4.8. Over F7, we have

X3 − 1 = (X + 3)(X + 5)(X + 6),

where they are the factorization of X3 − 1 into irreducible polynomials in F7[X].
For p = 3 the quadratic residue codes D1 and D2 over F7 is generated by the
idempotent generator polynomials 4x2 + x+ 3 and x2 + 4x+ 3, respectively.

So Q1 =< (1−v)(4x2+x+3)+v(x2+4x+3) > is the quadratic residue code
of length 3 over R = F7+vF7 and Q⊥

1 =< (1−v)(6x2+3x+5)+v(3x2+6x+5) >
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is its dual code. Since dL(Q1 \Q⊥
1 ) = 3, by Theorem 4.4, there exists a quantum

MDS code with parameters [[6, 2, 3]] over F7. Moreover, there exists a quantum
code with parameters [[6, 0, 3]] over F7.

We presented an optimal formally self-dual code with parameters [12, 6, 6]9 in
[7, Example 5.12]. Now we obtain quantum code over F9 from it.

Example 4.9. Let R = F9 + vF9 and let ρ be a primitive element of the
finite field F9 and p = 5. The QR code Q1 of length 5 over R is generated by the
idempotent generator p1(x) = (1−v)(2ρe1(x)+2ρ3e2(x))+v(2ρ

3e1(x)+2ρe2(x)),
where e1(x) = x+ x4 and e2(x) = x2 + x3. It should be noted that

Q̂1 = Q1 = {(c0, c1, c2, c3, c4,−Σ4
i=0ci) : (c0, c1, c2, c3, c4) ∈ Q1 }.

So we have dL(Q̂1) = 6. Then it corresponds to a [12, 6, 6]9 formally self-dual code
which has the best possible minimum distance by [2]. So by Theorem 4.7, there
exists a quantum code with parameters [[12, 0, 6]] over F9 which d = 6 is close to
the best minimum distance.
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1. Introduction

Nowadays, elliptic curves are extensively used in public-key cryptography, for ex-
ample, in the key agreement protocols, encryption algorithms, and digital sig-
natures. Based on the Shore algorithm, using quantum computers, it is pos-
sible to solve the discrete logarithm problem and the problem of decomposing
large numbers in polynomial time [14]. Therefore it is crucial to look for pro-
tocols with security based on problems resistant to quantum attacks. As ex-
amples of quantum-resistant cryptosystems, we can mention lattice-based cryp-
tography, hash-based cryptography, multivariate cryptography, code-based cryp-
tography, and lately cryptography based on isogeny problems. In isogeny-based
cryptography, the key sizes and messages exchanged are smaller than those for
other post-quantum cryptosystems. Although isogeny-based cryptography is less
efficient than cryptosystems, such as lattice-based cryptography, due to the low
availability of efficient cryptosystems in this field, the study in these cryptosystems
is valuable. Isogeny cryptosystems based on ordinary curves were suggested by
Couveignes [5] for the first time. The supersingular curve case was first developed
in a hash function making by Charles, Lauter, and Goren [3]. Subsequent cryp-
tosystems based on the supersingular curve were suggested by Jao and De Feo
[7].

In the following, in Section 2, we briefly review the basic concepts about
elliptic curves. In Section 3, we mention isogeny problems. Then we review the
SIDH protocol that is based on one of these problems. In Section 4, we review
methods to construct isogenies and give a concrete example.

∗Speaker
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2. Preliminaries

We summarize the necessary background on elliptic curves. For more details, one
can see [15].

Let Fq be the finite field of order q, where q is a power of prime p, q = pk

and p ̸= 2, 3. Assume that Fq =
∪
n≥1

Fqn is the algebraic closure of Fq. An elliptic

curve over Fq is defined by a Weierstrass equation E : y2 = x3 + ax + b, where
a, b ∈ Fq and 4a3 + 27b2 ̸= 0. The set of Fq-rational points of E is

E(Fq) = {(x, y) ∈ F 2
q : y2 = x3 + ax+ b} ∪ {O},

where O is the point (X : Y : Z) = (0 : 1 : 0) on the projective curve Y 2Z =
X3 + aXZ2 + bZ3. The set E(Fq) is an abelian additive group under the chord
and tangent rule with O as the identity element. The j-invariant of E is j(E) =
1728.4a3/(4a3 + 27b2). For n > 1 the set of n-torsion points is defined as E[n] =
{P ∈ E(Fq) : [n]P = O}. If gcd(p, n) = 1, E[n] is a direct product of two cyclic
groups of order n and hence #E[n] = n2. E[p] has either one or p elements. E is
called supersingular in the first case and ordinary in the second case.

Elliptic curves E(Fq) : y
2 = x3 + ax+ b and E′(Fq) : y

2 = x3 + a′x+ b′ over

an extension field Fqr are isomorphic if there exists u ∈ Fqr
∗
such that a′ = u4a

and b′ = u6b. In this case the corresponding isomorphism f : E → E′ is defined
by (x, y) 7→ (u2x, u3y). There is an isomorphism f : E → E′ if and only if
j(E) = j(E′).

Let E, E′ be two elliptic curves over Fq, an isogeny is a morphism φ : E → E′

such that φ(O) = O′. For every isogeny φ : E → E′ there are rational functions
R1(x, y), R2(x, y) ∈ Fq[x, y] such that

φ(x, y) = (R1(x, y), R2(x, y)).

The degree of an isogeny is the number of points in the kernel (except insep-
arable isogenies). As an example, for every n ∈ N the multiplication by n map
[n]E on an elliptic curve E which is defined by [n]EP = P +P + · · ·+P (n times)
is an isogeny. It is easy to see that the kernel of [n] is E[n]. For every isogeny
φ : E → E′ of degree l, there exists a dual isogeny φ̂ : E′ → E such that φφ̂ = [l]E′

and φ̂φ = [l]E . Given a prime l ̸= p, the torsion group E[l] contains exactly l + 1
cyclic subgroups of order l; each one corresponds to a different isogeny. An en-
domorphism on E is an isogeny from E to itself. The set of endomorphisms of
an elliptic curve, denoted by End(E), has a ring structure with point-wise addi-
tion and function composition. The ring End(E) is either order in an imaginary
quadratic field or a maximal order in a quaternion algebra.

3. Isogeny Problems

In this section, seven isogeny problems are mentioned and we review the most
important protocol based on one of them and give a simple example.

Problem 1. Let two isogenous elliptic curves E and E′ are given, find an
isogeny φ : E → E′.

According to Tate’s theorem, two elliptic curves E, E′ over Fq are isoge-
nous over Fq if and only if #E(Fq) = #E′(Fq) [15]. So the decisional problem
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of whether there is an isogeny is solvable in polynomial time since the Schoof
algorithm computes the number of points in polynomial time [15]. The fastest
algorithm proposed for solving problem one using classical computers is Galbraith

and Stolbunov method for ordinary curves with running time
∼
O(q1/4) [9] and Delfs

and Galbraith method for supersingular curves with running time
∼
O(p1/2) [6]. Us-

ing quantum computers, for ordinary curves, a quantum subexponential algorithm
using the commutativity of the endomorphism ring of these curves is presented in
[4]. For supersingular curves, due to the noncommutativity of the endomorphism
ring, this attack is not practical. The best attack known for supersingular curves

is the Jao attack with running time
∼
O(p1/4) [2]. Since the attack in the supersin-

gular case is exponential in quantum computers, this problem has been used to
design quantum-resistant protocols.

Problem two, three, and four are variants of problem one with additional
conditions.

Problem 2. Let E and E′ be two isogenous elliptic curves, P ∈ E and Q ∈ E′.
Find an isogeny φ : E → E′ such that φ(P ) = Q.

Problem two is a variant of problem one with an additional condition. This
problem is a generalization of the discrete logarithm problem. If E = E′ and φ
is the scalar multiplication [m], then problem two will be the discrete logarithm
problem in E.

Problem 3. Given two elliptic curves E, E′ over a finite field, isogenous of
degree m, find an isogeny φ : E → E′ of degree m.

For isogeny problems to be hard the isogeny must have a large degree, so that
representation as a rational map not efficient enough.

Problem 4. Given two elliptic curves E, E′ over a finite field Fq, such that
#E(Fq) = #E′(Fq), find an isogeny φ : E → E′ of smooth degree.

Note that if E, E′ be two supersingular elliptic curves over Fp2 , then #E(Fp2) =
#E′(Fp2) = (p+1)2, so based on Tate’s theorem, every two supersingular elliptic
curves are isogenous over Fp2 . The fastest algorithm known for problem four uses

a meet-in-the-middle strategy with running time O(p1/2) [8].

Problem 5. Let p be a prime number, and E be a supersingular elliptic curve
over Fp2 . Determine the endomorphism ring of E.

There are various possible ways to show elements of End(E). One method
is to show explicit isogenies φ : E → E as rational functions. Since the degree
is usually exponential, this is not a beneficial representation. Another way is the
representation as a Z-module in quaternion algebra. In this case, the endomor-
phism ring has a polynomial sized representation based on the basis {1, i, j, k}.
Kohel regarded the endomorphism ring computation problem in his Ph.D. the-
sis [13]. In the supersingular case, it is believed that problem five and problem
one are equivalents [11]. For the ordinary case, problem five is much easier than
problem one [1, 13], Since there exists a subexponential algorithm to compute
the endomorphism ring of ordinary curves [1], while the best algorithm to com-
pute isogenies is exponential. A subexponential quantum algorithm to compute
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an isogeny between ordinary curves is proposed in [4]. The endomorphism ring
computation problem is a crucial problem for isogeny-based cryptography [1, 12].
Problem five has been studied for more than twenty years but not as widely as
classical problems like discrete logarithm or integer factorization.

One of the prominent quantum-resistant protocols is the Jao key exchange
protocol, based on the isogeny problem between supersingular elliptic curves. In
the following, after a brief overview of the Jao scheme, we present an example.

Supersingular Isogeny Diffie-Hellman (SIDH). Let l1, l2 be distinct small
primes, and e1, e2 ∈ N. Then choose a random small integer f ∈ N so that
p = le11 l

e2
2 f −1 is prime. Let E be a supersingular elliptic curve over Fp2 such that

the group structure of E(Fp2) be a product of two cyclic groups of order le11 l
e2
2 f .

Let E[le11 ] =< R1, S1 > and E[le22 ] =< R2, S2 >. The SIDH public parameters are
(E,R1, S1, R2, S2).

Alice chooses secret random integers 0 ≤ m1, n1 < le11 and set T1 = [m1]R1 +
[n1]S1. Then Alice computes an isogeny ϕA : E → EA = E/ < T1 > and publishes
(EA, φA(R2), φA(S2)).

Similarly, Bob chooses 0 ≤ m2, n2 < le22 and computes φB : E → EB = E/
< T2 >, where T2 = [m2]R2 + [n2]S2 and publishes (EB, φB(R1), φB(S1)).

To compute the shared key, Alice computes

T ′
1 = [m1]φB(R1) + [n1]φB(S1) = φB([m1]R1 + [n1]S1) = φB(T1),

and an isogeny φBA : EB → EBA = EB/ < T ′
1 >.

Similarly, Bob computes an isogeny φAB : EA → EAB = EA/ < T ′
2 >, where

T ′
2 = [m2]φA(R2) + [n2]φA(S2) = φA([m2]R2 + [n2]S2) = φA(T2).

The elliptic curves EAB and EBA are isomorphic, so j(EAB) = j(EBA). Then
the shared key is j(EAB) [7]. The security of the mentioned protocol is based
on problem six, below. The security of the SIDH protocol relies on problems,
seem to be easier to solve than the endomorphism ring computation problem
since extra points are revealed, and special primes are used. On the other hand,
there is a strong constraint on the degree of isogeny that may make it harder.
Besides, if End(E) and End(EA) are known, then we can compute the specific
isogeny of degree le11 (Section 4 of [12]). So the hardness of the endomorphism
ring computation of supersingular elliptic curves determines the security.

Example 3.1. Let p = 1511 = 23.33.7 − 1 be a prime and E(F15112) : y
2 =

x3 + x. Also let

E[23] =< R1, S1 >, E[33] =< R2, S2 >,

R1 = (974a+ 186, 388a+ 314), S1 = (88a+ 136, 1461a+ 886),

R2 = (890a+ 242, 427a+ 810), S2 = (1470a+ 417, 791a+ 1479).

Alice chooses m1 = 2, n1 = 5 and compute T1 = (367a+ 795, 879a+ 181). Then

EA(F15112) : y
2 = x3 + (647a+ 1289)x+ (1256a+ 168),

φA(R2) = (221a+ 505, 1270a+ 1002), φA(S2) = (1301a+ 1156, 1176a+ 1235).

Bob selects m2 = 14, n2 = 22 and compute T2 = (1445a+559, 627a+1303). Then

EB(F15112) : y
2 = x3 + (926a+ 1367)x+ (18a+ 431),
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φB(R1) = (795a+ 1063, 1356a+ 1037), φB(S1) = (949a+ 1035, 847a+ 901).

Then Alice and Bob compute the values

T ′
1 = (560a+ 1302, 619a+ 818), T ′

2 = (520a+ 1407, 448a+ 737),

and the corresponding isogenies.

EAB = EBA : y2 = x3 + (1355a+ 162)x+ (1152a+ 1331).

At the end, the shared key is computed as j = 348a+1299. Calculations are done
using SAGE software [17].

Problem 6. SIDH isogeny problem. Let (E,R1, S1, R2, S2) be a SIDH public
key. Let EA be the elliptic curve such that there is an isogeny φA : E → EA of
degree le11 . Let R′

2 = φA(R2), S
′
2 = φA(S2). Given (E,R1, S1, R2, S2, EA, R

′
2, S

′
2),

determine an isogeny φA : E → EA of degree le11 such that R′
2 = φA(R2) and

S′
2 = φA(S2).

Problem six is a kind of problem four where the images of two points are
revealed. For 0 ≤ x, y < le22 set T = [x]R2 + [y]S2. Then an attacker can com-
pute φA(T ) = [x]R′

2 + [y]S′
2 and so has many pairs (T, φA(T )) on the graph of

φA . By solving an interpolation problem, the attacker can compute φA. The
difficulty is that φA has degree le11 and so is described by rational functions of
exponential degree. The SIDH protocol would be insecure if Alice also reveals
R′

1 = φA(R1), S
′
1 = φA(S1). Since then an attacker can compute x, y ∈ Z such

that [x]R′
1 + [y]S′

1 = O and (x, l1) = 1, (y, l1) = 1. This case is a kind of easy
discrete logarithm problem because the orders of points are smooth (le11 ). Then
[x]R1 + [y]S1 is in the kernel of φA and the attacker can determine the kernel

and then φA. There is an O(l
e1/2
1 ) classical attack to SIDH problem [7] while a

quantum algorithm due to Tani [1] solves the problem in O(l
e1/3
1 ).

Problem 7. Decisional SIDH isogeny problem. Let (E,R1, S1, R2, S2) be a
SIDH public key. Let EA be an elliptic curve and let R′

2, S
′
2 ∈ EA[l

e2
2 ]. Let 0 <

n ≤ e1 and the parameters (E,R1, S1, R2, S2, EA, R
′
2, S

′
2, n) are given, determine

whether or not there exists an isogeny φ : E → EA of degree ln1 such that R′
2 =

φ(R2) and S
′
2 = φ(S2).

If problem seven can be solved, then we can solve the SIDH isogeny problem
easily. Let u ∈ Z be such that ul1 ≡ 1 (mod l2). Given the (E,R1, S1, R2, S2, EA, R

′
2,

S′
2) one selects an l1- isogeny ψ : EA → E′ and uses the decisional algorithm on

(E,R1, S1, R2, S2, E
′, [u]ψ(R′

2), [u]ψ(S
′
2), e1 − 1). If the decisional oracle says yes,

then we ensure the first e1 − 1 steps in the path from E to EA is true [10]. We
can solve the isogeny problem by repeating this process.

4. Computing Isogenies

Given an elliptic curve E and a subgroup G of E, there are two primary methods
to find an elliptic curve E′ and an isogeny φ : E → E′ with kernel G. The first
one is based on Velu’s method [18], and the other is based on Kohel’s approach
[13]. We can consider the kernel as points in E(Fq). The kernel specifies by the
kernel polynomial, the lowest degree polynomial with roots only at x-coordinates
of the kernel points, which is unique and monic. Velu’s method takes the kernel
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as input and returns the rational maps and codomain of the curve, while Kohel’s
approach takes the kernel polynomial as input. Velu’s method includes sums over
points in the G, so this method is efficient until #G is small. If the #G is smooth
and not small, Jao makes a chain of isogenies by repeatedly using Velu’s method
and find isogeny [7].

Example 4.1. Consider the elliptic curve y2 = x3 + 8x + 13 over finite field
F251 and the point R = (136, 223). Let G =< R > be the subgroup of E of order
5. Using Velu’s formula we have v = 217 and w = 39. The 5-isogeny φ : E → E′

is given by

φ(x, y) =

(
x5 − 66x4 − 104x3 + 119x2 + 76x− 35

x4 − 66x3 − 70x2 + 95x+ 45
,
x6 − 99x5 − 69x4 + 60x3 + 107x2 + 16x+ 83

x6 − 99x5 − 103x4 − 10x3 + 76x2 + 63x− 99
y

)
,

where E′ : y2 = x3 + 178x + 242. We made calculations using SAGE software
[17].
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Abstract. Rough extreme learning machine (RELM) is a rough-neural net-

work with a single hidden layer, where the weights of connections between
the inputs and hidden neurons are randomly assigned and remain unchanged
during the training process. In this work, on the basis of artificial emotional
learning, a stable online learning algorithm for RELM is proposed. Emotional

learning facilitate the error convergence in the training of neural models with
increasing their memory depth. RELM with the proposed stable emotional
learning algorithm that is called emotional RELM, is used to identify the dis-

crete dynamic nonlinear systems. The efficiency of the proposed methodology
are shown in simulation results.

Keywords: Discrete dynamic nonlinear system, System
identification, Extreme learning machine, Emotional learning, Rough
extreme learning machine.
AMS Mathematical Subject Classification [2010]: 93B30,
68T05.

1. Introduction

System identification is a field of science that concentrates on the building math-
ematical models for real systems from sampled data. In recent years, the neural
networks are used for the identification of nonlinear systems because of their par-
ticular properties such as universal approximation and cooperating with parallel
computation.

Often, in the identification of real systems, we are confronted with the un-
certain and imperfect knowledge. Rough-neural network (R-NN) is introduced
by Lingras [6], on the basis of rough set theory for dealing with uncertainty and
imperfect knowledge in neural networks. A rough neuron is defined as a pair of
conventional neurons, one for the upper bound and the other for the lower bound,
where the information exchanges between them [6]. R-NN is used in different
aspects such as traffic volume prediction [6], and system identification [1, 2, 3, 4].

Extreme learning machine (ELM) is a neural network with a single hidden
layer, where the weights of connections between the inputs and hidden neurons
are arbitrarily chosen and never updated. In 2006, for the first time ELM is
proposed by Huang et al. [5]. The training process in ELMs occurs very faster
than traditional neural networks. Recently, the Rough ELM (RELM) has been
proposed by the author as a combination of ELM and R-NN [1], and it has been
utilized for the identification of continuous-time nonlinear systems.
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Training a neural network is very effective on their performances. Artificial
emotional learning is a training strategy that has been introduced based on the
emotions [7]. It has been formulated by the usage of an emotional signal which dis-
plays the emotions about the total performance of the system. Emotional learning
facilitate the error convergence in the training of neural models with increasing
their memory depth.

Recently, a general description of emotional learning has been stated in [4]. In
this work, we use this technique for enhancing the performances of RELMs. Here,
RELM with an online Lyapunov-based emotional learning algorithm that is called
emotional RELM (ERELM), is used to identify the discrete dynamic nonlinear
systems (DDNSs).

The reminder of work is organized as follows. The emotional learning is ex-
plained in Section 2. Section 3 describes the structure of RELM in the identifica-
tion of DDNSs. In Sections 4, on the basis of emotional learning, a stable online
learning algorithm is proposed for RELM. Section 5 gives the simulation results,
and the conclusion is drawn in Section 6.

2. Emotional Learning

Emotional learning in artificial intelligence is a technique for accelerating the train-
ing speed. It uses the hidden information in the previous steps of training process
with increasing the memory depth of neural networks. This technique has been
proposed by Lucas et al. [7], and has been utilized in some problems of system
identification and control. A general description of this type of emotional learning
is presented in [4]. Let ek be the vector of modeling error, where k is the time
index. In the emotional learning, the emotional error rk = k1ek + k2∆ek is used
to achieve the learning laws, where k1 and k2 are the tuning parameters. Then,
we have

rk = k1ek + k2∆ek = (k1 + k2)ek − k2ek−1.

The proposed learning algorithm is developed using the emotional error rk
instead of ek. Emotional learning is a training strategy for neural networks which
facilitates the error convergence by making it possible to use the last information of
neural parameters. It is done by increasing the memory depth of neural network.

3. RELM in the Identification of DDNSs

Consider the RELM with rough neurons in the hidden layer and the conventional
neurons in the output layer (Figure 1). Suppose that uk and yk be the input
vector and the output vector of the nonlinear system, respectively. Let ŷk be the
output vector of RELM and

xk = [u1k−1, u
2
k−1, . . . , u

m
k−1, y

1
k, y

1
k−1

, y2k−1, y
2
k−1

, . . . , ymk−1, y
m
k−1

, 1]T .

be the input vector of RELM, where yi is the lower bound and yi is the upper

bound of yi (i ∈ {1, 2, . . . ,m}). The last component 1 of xk is the input according
to the biases of hidden neurons.

Let V r and V r be the weights of connections between all inputs and hidden
lower bound neurons and the weights of connections between all inputs and hidden
upper bound neurons, respectively. According to the definition of RELM, V r and
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Figure 1. Structure of RELM model.

V r are some randomly chosen numbers and remain unchanged during the training
process. Suppose thatW andW be the weights of connections between the hidden
lower bound neurons and output neurons and the weights of connections between
the hidden upper bound neurons and output neurons, respectively.

Further, ϕ
k
and ϕk be the outputs of hidden lower bound neurons and the

outputs of hidden upper bound neurons, respectively. Also, let ϕ be the activation
function of hidden neurons. Let V r and V r contain the biases of hidden neurons.
Then,

ϕ
k

= min
(
ϕ(V rxk), ϕ(V rxk)

)
, ϕk = max

(
ϕ(V rxk), ϕ(V rxk)

)
,

and the output vector ŷk of RELM is given by

ŷ = W kϕk +W kϕk.(1)

A general form for DDNSs can be given by

zk+1 = f(zk,uk),(2)

where zk and uk represent the system states and inputs, respectively. By adding
and subtracting Azk, (2) can be expressed as zk+1 = Azk + g(zk,uk), where
g(zk,uk) = f(zk,uk)−Azk represents the DDNS nonlinearity, and A is a matrix
with eigenvalues in the unit circle. Assume that RELM can model g(zk,uk) with
an accuracy of ϵk using the parameters W ⋆ and W ⋆. Using (1), then we can write

zk+1 = Azk +W ⋆ϕk +W ⋆ϕk + ϵk.(3)

In (3), the input vector of RELM is x = [uk, zk, zk]
T .Parametric model of (2) can

be constructed assuming the same structure as (3) by

ẑk+1 = Aẑk + Ŵ kϕk + Ŵ kϕk,
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where Ŵ k and Ŵ k represent the parameter estimations ofW ⋆ andW ⋆ at the time
index k, respectively. According to the structure of RELM in Fig 1, the estimated
vector ẑk+1 is crisp.

4. Online Emotional Lyapunov-Based Learning Algorithm for RELM

Recently, some stable learning algorithm has been proposed for R-NN and RELM
[1, 2, 4]. On the basis of these algorithms and emotional learning, we propose the
following online learning algorithm for RELM:

Ŵ k+1 = Ŵ k +
(
[k1 + k2]P (Ark + rk+1)ϕk − k2P (Ark + rk+1)ϕk−1

)
Γ−1
1 ,

Ŵ k+1 = Ŵ k +
(
[k1 + k2]P (Ark + rk+1)ϕk − k2P (Ark + rk+1)ϕk−1

)
Γ−1
2 ,

where Γ1 and Γ2 represent the gains of learning, and P is the matrix solution
of Lyapunov equation ATPA − P = −Q, where Q is a positive definite matrix.
RELM with this learning algorithm is called ERELM.

5. Simulation Results

Consider the following DDNS with two inputs and two outputs z1k+1 = sin(
z1k

1+(z2k)
2 + u1k),

z2k+1 = cos(1− z1kz
2
k

1+(z2k)
2 − u2k) z10 = z20 = 0.

(4)

Identification of (4) is done by RELM with one hidden layer along with the external
inputs of the form u1k = cos

(
2πk
10

)
, u2k = sin

(
2πk
10

)
. The hyperbolic tangent is

the activation function of hidden neurons. The parameters V̂ r and V̂ r are some

random numbers in the interval [−1, 1]. The initial values of the parameters Ŵ k

and Ŵ k are random numbers between -0.5 and 0.5. The input vector of RELM

and ERELM is x =
[
u1k, u

2
k, z

1
k, z

1
k, z

2
k, z

2
k, 1
]T
. The design parameters of learning

algorithms are chosen as follow: A = 0.1I2, nh = 7, 8, Q = I2, Γ1 = Γ2 =
10Inh×nh

, where nh denotes the number of hidden rough neurons and Γ1 and Γ2

denote the learning rates. For ERELM, we suppose that k1 = 1 and k2 = 1/5.
The MSEs of the identification of (4) with RELM in training and testing are listed
in Table 1. Figure 2 shows the true states z1 and z2 of (4), the estimated states
ẑ1 and ẑ2, and the errors e1 and e2 in testing of RELM (part (A)) and ERELM
(part (B)) with seven hidden rough neurons. From the Table 1 and the Figure 2,
we can conclude that in the identification of (4), the performance of ERELM is
better than RELM.

6. Conclusion

In this work, on the basis of emotional learning and Lyapunov stability theory, an
online learning algorithm is proposed for RELM in the identification of DDNSs.
Then, the effectiveness of emotional learning in the accelerating of training process
is shown in simulation results. The future works focus on the more applications
of this approach in control problems.
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Table 1. Performances comparison of RELM and ERELM in
the identification of (4).

Structure nh Parameters Train MSE Test MSE

RELM 7 28 0.0045 0.00013

RELM 8 32 0.0034 0.00003

ERELM 7 28 0.0041 0.00003

ERELM 8 32 0.0031 0.00001

Figure 2. The true states z1 and z2 of (4), the estimated states
ẑ1 and ẑ2, and the errors e1 and e2 in testing of RELM (part (A))
and ERELM (part (B)) with seven hidden rough neurons.
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Abstract. In this work, we propose a five-dimensional Ordinary Differential
Equation model with logistic growth, cell-to-cell and virus-to-cell transmis-

sion rates, cellular and humoral immune responses, rate of cure, and two
treatments. Then we examine the dynamic behavior of the system to inves-
tigate therapeutic effects on disease control.
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1. Introduction

Mathematical modeling is the attempt to present a mathematical model for a sys-
tem that applies not only to the natural sciences such as physics, biology, geology,
meteorology, engineering sciences, computer science, and artificial intelligence, but
also to the social sciences such as economics, psychology, sociology, and medicine.
Mathematical modeling helps researchers that analyze a system and predict its
behavior.

The process of describing a system (e.g., disease spread) requires assumptions,
access to data to estimate values of the model parameters, quantitative or qual-
itative predictions, and comparison of results with observational or experimental
data. So the crucial role of mathematical models is to help understand a system.
In recent decades, several intracellular dynamic models have been defined for the
HIV-1 virus. These models describe the reaction between the virus and the host
cells in diseased individuals and are valuable for understanding the dynamics of
viral infections and the effectiveness of viral therapy [8].

In 2011, Sigal et al. stated that cell-to-cell expansion of HIV-1 reduces the
efficacy of antiviral treatment because cell-to-cell transmission can cause many
infections in target cells, which can reduce the sensitivity to antiviral drugs [6].
In 2011, Xu states the model in which the saturation collision rate is used instead
of the linear collision rate for virus and cell contact [9]. In 2012, Yan and Wang
described a model that included both cell-mediated and humoral immune responses
and involved only the process of virus-to-cell infection [10]. In 2013, Wang et
al. presented an HIV model that included CTL immune response and antiviral
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treatment. In this model, CD+
4 T cell proliferation in the presence of the virus

is expressed as a logistic function [7]. At 2015, Foutz et al. Stated the principle
of HIV vaccine design based on the combined efficacy of cellular and humoral
immunity [2]. In 2016, Kamboj announced a model of Reverse Transcriptase and
Protease inhibitors drug therapy with the proliferation rate of logistic [3].

In 2017, Alawi et al. replaced the saturation function β1υ(t)
1+αυ(t) instead of the

bilinear infection rate [1]. In 2018, Lin et al. proposed an HIV-1 model with virus-
to-cell infection, cell-to-cell infection, cellular and humoral immune response, and
saturation incidence rate of the virus are considered [5]. In 2016, Kaminski stated
a method for curing infected cells by gene therapy or loss of all cccDNA from their
nucleus [4].

In this paper, using many of the mathematical models presented in HIV, we
develop the model of [5], regardless of the delay parameter, by replacing a logistic
function for CD+

4 healthy cells proliferation, two treatment rates to reduce infected
cells and virus proliferation, and rate of cure to recover infected cells to healthy
cells. Then we analyze the stability and treatment effects on it.

2. Model Formulation

Now, we extend a mathematical model for HIV infection with two treatment rates,
cure rate, the transmission of infection by the virus-to-cell and cell-to-cell, logis-
tic growth for CD+

4 T-cell uninfected, the saturation function for the infection
rate, and both types of cellular and humoral immune systems. We use five state
variables in the model. Population of uninfected CD+

4 T-cells (x), Population of
infected CD+

4 T-cells (y), Population of infectious HIV virions (v), Population of
T-cells (z), Population of B-cells (w). Also, two parameters η and ε have been
introduced as treatment rates of Reverse Transcriptase Inhibitors (RTIs) and Pro-
tease Inhibitors (PIs), respectively. Reverse Transcriptase Inhibitor prevents the
transcriptase process in cells infected by the virus HIV, and Protease Inhibitor
blocks the protease enzyme, thereby preventing the production of infectious and
mature viruses. The proposed model is illustrated below.

dx

dt
= rx

(
1− x+ y

m

)
− (1− η)β1vx

1 + αv
− β2xy + ρy − dx,

dy

dt
=

(1− η)β1vx
1 + αv

+ β2xy − (δ + ρ) y − ρ1yz,

dv

dt
= (1− ε)nδy − µv − ρ2vw,(1)

dz

dt
= c1yz − b1z,

dw

dt
= c2vw − b2w.

All parameters in model (1) are positive and assumed to be independent of time.

3. Main Results

Proposition 3.1. Let Γ(t) = (x(t), y(t), v(t), z(t), w(t)), with x(0) ≥ 0, y(0) ≥
0, v(0) ≥ 0, z(0) ≥ 0, w(0) ≥ 0, be a solution of the system (1). Then 0 ≤ x(t) ≤
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M, 0 ≤ y(t) ≤ M, 0 ≤ v(t) ≤ M, 0 ≤ z(t) ≤ M, 0 ≤ w(t) ≤ M for all t ≥ 0, for
some M > 0.

System (1) has two infection-free equilibrium points E00 = (0, 0, 0, 0, 0) and

E01 = (m(r−d)
r , 0, 0, 0, 0).

Proposition 3.2. If R0 = r
d < 1, then the infection-free equilibrium point

E00 = (0, 0, 0, 0, 0) of system (1) is asympotically stable and it is unstable when
R0 > 1.

To simplify the calculations, we set A = µ(δ+ρ)
δ1 and B = µβ2

δ1
.

Theorem 3.3. The disease-free equilibrium point E01 is asymptotically stable

when 0 < R1 = m(r−d)(η1+B)
rA < 1 and it is unstable when R1 > 1.

Then, we show that for R1 > 1, system (1) has four equilibrium points.
It has equilibrium points E1 = (x1, y1, v1, 0, 0), E2 = (x2, y2, v2, z2, 0), E3 =
(x3, y3, v3, 0, w3) and E4 = (x4, y4, v4, z4, w4).

Theorem 3.4. The following holds:

i) If R1 < 1, then the equilibrium point E1 does not exist.
ii) If R1 = 1, then the equilibrium point E1 = E01.
iii) If R1 > 1, then the equilibrium point E1 exists and it is locally asymp-

totically stable for v1 < min
{
b1δ1
c1µ

, b2c2

}
, and it is unstable for v1 >

b1δ1
c1µ

or v1 >
b2
c2
.

We set A2 = δ1
µ (η1 +Bα2) and α2 = 1 + αv2.

Theorem 3.5. The following holds:

i) If R1 ≤ 1, then the equilibrium point E2 does not exist.

ii) If R1 > 1 and T0 = α2(δ+ρ)
2(1−R1)+

Aδ1α2b1
c1µ

(
Aαδ21
µ2 +A2)+

δmb1
rc1

A2
2 < 0,

then the equilibrium point E2 exists and it is locally asymptotically stable
for v2 <

b2
c2
.

Let N = ρ2
µ , A3 = µb2

c2δ1
and α3 = 1 + αv3.

Theorem 3.6. The following statements are satisfied:

i) If R0 ≤ 1, then the equilibrium point E3 does not exist.
ii) If R0 > 1 and

Q0 = rA2α2
3 −mAα3(r − d)(Bα3 + η1) + rAα3A1(Bα3 + η1)

+mδA3(Bα3 + η1)
2 < 0,

then the equilibrium point E3 exists and it is locally asymptotically stable
when y3 <

b1
c1
.

For ρ2 = Nµ, N1 = δ1b1c2
µc1b2

, N2 = N1µρ1
δ1

and α4 = 1 + αv4.

Theorem 3.7. The following statements are satisfied:
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i) If R0 ≤ 1, then the equilibrium point E4 does not exist.
ii) If R0 > 1 and

Ψ0 = rN2
1A

2α2
4 −N1Aα4m(r − d)(BN1α4 + η1)

+ ry3N1Aα4(BN1α4 + η1) < 0,

then the endemic equilibrium point E4 exists and it is locally asymptoti-
cally stable.

4. Numerical Simulation

Since treatment plays an essential role in the control of AIDS. We examined its
effects on disease progression. In this section, we examine the theoretical results of
model (1) by numerical simulations. First, we illustrate the stability of equilibrium
points for the different values of R0 and R1.

In Figure 1, by using from the Column 1 of Table 1, we have R0 = 0.41 < 1,
then E0 = (0, 0, 0, 0, 0) or disease-free equilibrium point is stable. It shows that
the disease will disappear, and only the treatment will reduce the virus load.

In Figure 2, from the Column 2 of Table 1, we obtain R0 = 100 > 1 and
R1 = 0.05122764706 < 1, then E01 = (990, 0, 0, 0, 0) is asymptotically stable.
This leads to the saturation of the population of uninfected cells and eventually
eliminate the disease.

In Figure 3, by replacing values the Column 3 of Table 1 in system (1), we ob-
tain R1 = 2.026297059 > 1 that despite the condition ψ0 = −0.0002085467695 <
0, we have E1 = (14841.86236, 6.496271350, 1039.403416, 0, 0) is asymptotically
stable. In other words, by increasing the proliferation rate of the uninfected cells
population and decreasing the level of treatment relative to the Column 2, the
values of infected cells and the virus in Table 1 have decreased such that they have
converged to y1 and v1. Still, the levels of cellular and humoral cells will converge
to zero.

In Figure 4, from the Column 4 of Table 1, we calculate R1 = 4.703470589 > 1
that existence of the condition T0 = −1.464981642 < 0 shows that there is

E2 = (98984.77489, 9.523809524, 1047.619048, 685.1145481, 0),

and it is asymptotically stable. Which means that treatment reduces the level of
proliferation of viral and infectious cells, also prevents excessive cellular immunity.

In Figure 5, from the Column 5 of Table 1 and put parameters in system (1),
we get R1 = 2.351735294 > 1 and Q0 = −0.00005940827650 < 0 that it can be
concluded

E3 = (49497.49885, 1.996874149, 100, 0, 3589.684691),

and it is asymptotically stable. By observing Figure 5, it can be seen that stimula-
tion of the humoral immune system and timely treatment can significantly reduce
virus replication and the number of infected cells.

In Figure 6, from the Column 6 of Table 1, we find R1 = 20.39982353 > 1
and Ψ0 = −0.001109190902 < 0, therefore

E4 = (296974, 9.523809524, 1000, 2997.258841, 1571.428572),

and it is asymptotically stable.
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Figure 1. Dynamic behavior of the solutions
x(t), y(t), v(t), z(t) and w(t) of system (1) with treatment
and without treatment for R0 = 0.41 < 1 at free-equilibrium
point of E0 = (0, 0, 0, 0, 0).

Figure 2. Dynamic behavior of the solutions x(t), y(t), v(t), z(t)
and w(t) of system (1) with treatment and without treatment
at time t for R0 = 100 > 1 and R1 = 0.05122764706 < 1 at
E01 = (990, 0, 0, 0, 0).

55



N. Akbari and R. Asheghi

Figure 3. Dynamic behavior of the solutions x(t), y(t), v(t), z(t)
and w(t) of system (1) with treatment and without treatment at
time t forR1 = 2.026297059 > 1 and ψ0 = −0.0002085467695 < 0
at E1 = (14841.86236, 6.496271350, 1039.403416, 0, 0).

Figure 4. Dynamic behavior of the solutions x(t), y(t), v(t), z(t)
and w(t) of system (1) with treatment and without treatment at
time t for R1 = 4.703470589 > 1 and T0 = −1.464981642 < 0 at
E2 = (98984.77489, 9.523809524, 1047.619048, 685.1145481, 0).
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Figure 5. Dynamic behavior of the solutions x(t), y(t), v(t), z(t)
and w(t) of system (1) with treatment and without treatment at
time t for R1 = 2.351735294 > 1 and Q0 = −0.00005940827650 <
0 at E3 = (49497.49885, 1.996874149, 100, 0, 3589.684692).

Figure 6. Dynamic behavior of the solutions x(t), y(t), v(t), z(t)
and w(t) of system (1) with treatment and without treatment at
time t for R1 = 20.39982353 > 1 and Ψ0 = −0.001109190902 < 0
at E4 = (296974, 9.523809524, 1000, 2997.258841, 1571.428572).
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Table 1. Values of parameters in HIV mathematical model.

Parameters unit Column 1 Column 2 Column 3 Column 4 Column 5 Column 6
r day−1 0.0082 2 2 2 2 2
m 1000 1000 15000 100000 5× 104 300000
β1 ml . (virion . day)−1 4.8× 10−7 4.8× 10−7 4.8× 10−7 4.8× 10−7 4.8× 10−7 4.8× 10−7

β2 ml . (virion . day)−1 4.7× 10−7 4.7× 10−7 4.7× 10−7 4.7× 10−7 4.7× 10−7 4.7× 10−7

α cells−1 .ml 0.001 0.001 0.001 0.001 0.001 0.001
ρ day−1 0.01 0.01 0.01 0.01 0.01 0.01
d day−1 0.02 0.02 0.02 0.02 0.02 0.02
δ day−1 0.5 0.5 0.5 0.5 0.5 0.5
ρ1 ml . (cells . day)−1 0.001 0.001 0.001 0.001 0.001 0.001
η 0.4 0.4 0.1 0.55 0.55 0.55
ε 0.55 0.55 0.2 0.45 0.45 0.2
n ml . virion 1200 1200 1200 1200 1200 1200
µ day−1 3 3 3 3 3 3
ρ2 ml . (virion . day)−1 0.5 0.5 0.5 0.001 0.001 0.001
c1 ml . (cells . day)−1 0.021 0.021 0.021 0.021 0.021 0.021
b1 day−1 0.2 0.2 0.2 0.2 0.2 0.2
c2 ml . (virion . day)−1 10−11 10−11 10−11 10−11 10−4 10−4

b2 day−1 0.1 0.1 0.1 0.1 0.01 0.1
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Abstract. In this paper, we study the initial-boundary value problem for a
nonlinear Kirchhoff type equation with Coriolis force term and damping in
a bounded domain with smooth boundary. For this problem, we show that

the global existence and uniqueness of solution via potential well theory and
Faedo-Galerkin method. Also, we consider the asymptotic behavior of solu-
tions. Making use of integral inequalities, multiplier technique and Lyapanov

function, we establish polynomial decay and exponential decay of solution,
respectively. In two different methods, we show that the energy function
grows-up as exponential function when t→ +∞. The first method based on
a method used in Vitillaro(Arch Ration Mech Anal 149:155-182, 1999). The

second method based on some energy estimates. The result of the second
method seems to be much more better than the result of first one. Moreover,
the blow-up of solutions are established for arbitrary initial energy by using
modified concavity method.

Keywords: Kirchhoff type wave equation, Blow-up, Exponential
decay, Polynomial decay.
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1. Introduction

In this paper, we consider the following Kirchhoff type wave equation with damping
and Coriolis force term,

utt −M(∥∇u∥2)∆u− λ∆ut + δut + ηdiv(ut) = µ|u|p−1u, in ΩT ,

u(x, 0) = u0(x), ut(x, 0) = u1(x), in Ω,

u(x, t) = 0, in Γ.

(1)

Here Ω ⊂ RN , N ≥ 1, is a bounded domain with smooth boundary ∂Ω, T is a
positive constant or T = ∞, ΩT = Ω × (0, T ), Γ = ∂Ω × (0, T ), M(∥∇u∥2) =
m0 + α∥∇u(t)∥2γ with m0 ≥ 0, α ≥ 0, m0 + α > 0. While γ > 0, λ, δ, η > 0 and
p > 1 are constants. Moreover, u(x, t), the transversal displacement of the strip
at spatial coordinate x and time t, −λ∆ut and δut are called a strong damping
term and a weak one, respectively. Finally ηdiv(ut) is Coriolis force term.

Problem (1) without damping term and Coriolis force term i.e. δ = λ = η = 0
was firstly introduced by Kirchhoff [6] in 1883 as a model for small transversal
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vibrations of an elastic string with fixed endpoints. In fact, Kirchhoff equation
is an extension of the classical D’Alembert wave equation which considers the
effects of changes in length of the string during vibrations. Problem (1) models
several physical and biological systems, where u describes a process which depends
on average of itself, as for example population density. For details, we refer the
reader to [1] and the references therein for related work. Problem (1) received
much attention only after Lions paper which proposed an abstract frame work to
the problem.

Ono [8] considered problem (1) without Coriolis force term and weak damping.
He showed that existence of a global solution by using Banach contraction mapping
theorem and the decay of energy based on the method of Nakao, when the initial
energy is non-negative and small. He also proved that the local solutions blow-up
at a finite time with non-positive initial energy via concavity method. Moreover,
he used potential well theory and concavity method to show that the blow-up of
solutions with positive initial energy. Santos et al. [9] investigated

utt −M(∥∇u∥2)∆u−∆ut + f(u) = 0,

with memory condition at boundary on a bounded domain Ω. They proved global
existence of solution to this problem by using Faedo-Galerkin method. They
also established the energy decay exponentially and polynomially. Gazzola and
Squassina [3] considered the following equation

utt −∆u− ω∆ut + µut = |u|p−2u,(2)

with Dirichlet boundary condition on a bounded domain Ω. They proved global
existence of solutions with suitable initial data. They also showed blow-up of solu-
tions with high energy initial data. Gerbi and Houari [4] investigated (2) without
weak damping i.e. µ = 0 under dynamic boundary conditions on a bounded
domain Ω. They established local existence of solution by using Faedo-Galerkin
method combined with a contraction mapping theorem. They also proved the ex-
ponential growth of the energy. Bilgin and Kalantarov [2] considered the following
initial boundary value problem

utt −∇
(
(a0 + a|∇u|m−2)∇u

)
− b∆ut = g(x, t, u,∇u) + |u|p−2u,

with Dirichlet boundary condition on a bounded domain Ω. They also gave some
sufficient conditions on initial data for which blow up occurs in a finite time.

Kim et al. [5] considered

utt −M(x, t, ∥∇u∥2)∆u+ ρ(x, t, ut,∇u,∇ut) = 0,

with boundary feedback control on a bounded domain, Ω ⊂ RN , with smooth
boundary. They proved existence and uniqueness of strong solution via techniques
of functional analysis, mainly a theorem of compactness for the analysis of approx-
imation of the Faedo-Galerkin method and estimate a decay rate for the energy.
Yang and Da [10] investigated longtime dynamics of the Kirchhoff wave equation
with strong damping and critical nonlinearities

utt − (1 + ϵ∥∇u∥2)∆u+∆ut + h(ut) + g(u) = f(x),
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with ϵ ∈ [0, 1]. The well-posedness and the existence of global and exponential
attractors were established, and the stability of the attractors on the perturba-
tion parameter ϵ was proved for the IBVP of the equation provided that both
nonlinearities h(s) and g(s) are of critical growth.

In this paper, we consider problem (1) and we prove global existence and
uniqueness of solution via Galerkin method and potential well theory. We also
show exponential decay and polynomial decay of solutions by using Lyapanov
function, integral inequalities and multiplier technique. Besides,we establish that
the energy function grows-up as exponential function when t → +∞, by using
two different methods. One of the methods is the method used in Vitillaro. The
second method based on energy estimates. Moreover blow-up of solutions are
proved under some conditions on initial data and the coefficients for all initial
energy making use of modified concavity method.

2. Main Results

We study the global existence of the solution to problem (1). In order to do this,
we first define some notations.

We use standard Lebesgue space Lp(Ω) with usual norm

∥u∥p =
(∫

Ω

|u|pdx
) 1

p

.

The norm and scalar product in L2(Ω) is denoted by ∥.∥ and < ·, · > respectively.
We use Sobolev spaces H1

0 (Ω) and H
2(Ω) with usual norms. We denote the norm

of a Banach space X by ∥ · ∥X . We denote by Lp(0, T ;X), 1 ≤ p ≤ ∞, the Banach
space of the real functions u : (0, T )→ X measurable, such that

∥u∥Lp(0,T ;X) =
(∫ T

0

∥u(t)∥pXdt
) 1

p

, for 1 ≤ p <∞,

and

∥u∥L∞(0,T ;X) = inf sup
0<t<T

∥u(t)∥X , for p =∞.

We define the energy function as

E(t) =
1

2
∥ut∥2 +

m0

2
∥∇u∥2 + α

2γ + 2
∥∇u∥2γ+2 − µ

p+ 1
∥u∥p+1

p+1.(3)

Definition 2.1. A weak solution to problem (1) is a function u(x, t) such
that

i) u ∈ L2(0, T ;H1
0 (Ω) ∩ H2(Ω)), ut ∈ L2(0, T ;L2(Ω) ∩ H1

0 (Ω)) and utt ∈
L2(0, T ;L2(Ω)),

ii) for all v ∈ C∞
0 ([0, T ]× Ω) satisfies the generalized formula∫ T

0

⟨
utt(τ), v(τ)

⟩
dτ +

∫ T

0

(
m0 + α∥∇u∥2γ(τ)

)⟨
∇u,∇v

⟩
dτ

+ λ

∫ T

0

⟨
∇ut(τ),∇v(τ)

⟩
dτ + δ

∫ T

0

⟨
ut(τ), v(τ)

⟩
dτ

+ η
⟨
div(ut(τ)), v(τ)

⟩
− µ

∫ T

0

⟨
|u(τ)|p−1u(τ), v(τ)

⟩
dτ = 0,
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iii) satisfies the initial conditions, i.e.,{
u(x, 0) = u0(x), u0 ∈ H1

0 (Ω) ∩H2(Ω),

ut(x, 0) = u1(x), u1 ∈ H1
0 (Ω) ∩H2(Ω).

Now, we state our first main results.

Theorem 2.2. Assume that δ ≥ η
2 , λ ≥

η
2 and

p > 1 for n = 1, 2 or 1 < p <
n

n− 2
for n ≥ 3,(4)

and

u0 ∈ H1
0 (Ω) ∩H2(Ω) and u1 ∈ H1

0 (Ω) ∩H2(Ω).(5)

Then problem (1) has a unique weak global solution, u(t) such that{
u ∈ C

(
[0, T ],H1

0 (Ω) ∩H2(Ω)
)
∩ C1

(
[0, T ], L2(Ω)

)
,

ut ∈ C
(
[0, T ], H1

0 (Ω)
)
∩ L2

(
Ω× (0, T )

)
.

We show that the energy function decays exponentially via constructing of a
Lyapunov function by performing a suitable modification of the energy function.

Theorem 2.3. (Exponential decay) Suppose the assumptions in Theorem 2.2
hold. Then the solution u to problem (1) satisfies the following energy decay esti-
mates

E(t) ≤ (ϵ1 − κϵ2)−1(ϵ1 + κϵ2)
−1L(0) exp

(
− σ(ϵ1 + κϵ2)

−1t
)
, t ≥ 0,

where L(t) = ϵ1E(0) + ϵ2
∫
Ω
u0u1dx + ϵ2λ

2 ∥∇u0∥
2 and σ, κ, ϵ1, ϵ2 are positive

constants which will be determined in the proof.

In the sequel, we establish polynomial decay estimates for energy function by
using some integral inequalities and multiplier techniques.

Theorem 2.4. (Polynomial decay) Suppose the assumptions in Theorem 2.2
hold. Then the solution u to problem (1) satisfies the following energy decay esti-
mates

E(t) ≤ E(0)

(
(S0 + Γ3)(1 + θ)

θt+ S0 + Γ3

) 1
θ

,

where S0, Γ3 and θ are determined later in the proof.

Now, we established an exponential growth result for certain solutions with
positive initial energy to problem (1).

Theorem 2.5. Assume that λ, δ > η
2 , p ≥ 1 for n = 1, 2 or 1 ≤ p ≤ n+2

n−2

for n ≥ 3 and p > 2γ + 1. Let u be a solution to problem (1) with initial data
satisfying

∫
Ω
u0u1dx > 0, E(0) < E1 and ∥∇u0∥ > β0. Then u grows as an

exponential function, where E1, β0 are introduced in Lthe proof.

Now, we prove the energy function, E(t) grows up by using another method.
In fact, we take advantage from some energy estimates. The result will be different
from the one in Theorem 2.5.
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Theorem 2.6. Assume that λ, δ > η
2 , p > 1 for n = 1, 2 or 1 < p ≤ n+2

n−2

for n ≥ 3 and p > 2γ + 1. Let u be a solution to problem (1) with initial data

satisfying 2
∫
Ω
u0u1dx+ δ∥u0∥2 + λ∥∇u0∥2 > 2(p+1)

κ0
E(0). Then E(t) grows as an

exponential function.

We will prove blow-up of solutions to problem (1) with suitable initial condi-
tions and arbitrary initial energy. We will use the concavity argument developed
by Levine [7].

Theorem 2.7. Let δ, λ > p+1
2(p−1)−ση, 0 < η < (p − 1)

√
m0 and u0, u1 ∈

H2(Ω)∩H1
0 (Ω), where σ will be introduced in the proof. Then the solution u(x, t)

with arbitrary initial energy blows up in finite time provided that the initial condi-
tions satisfy

∫
Ω
u0u1dx > 0.
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Abstract. In this paper, by the scaling method, we obtain new conservation
laws of the fifth-order Kudryashov and Sinelshchikov equation which is gen-
eralization of the famous Kawahara equation. Scaling method applies tools
from variational calculus and linear algebra and based on scaling symmetry

of the PDE. We use this method to construct conservation laws of rank 3 and
5 for the fifth-order Kudryashov and Sinelshchikov equations.
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1. Introduction

Conservation laws are fundamental laws in physics. These laws state that some
properties of a physical system will remain unchanged over time. Obtaining the
conservation law is one of the most important applications of symmetry in phys-
ical problems. For example, scale symmetry describes a specific case of scale
freeness, in which the system is completely unchanged under scaling. There are
several methods for calculating the conservation laws of nonlinear partial differ-
ential equations (PDEs) (See [4]). A common method based on the relationship
between the conservation laws and symmetry is expressed in Noether‘s theorem
[1, 5, 6]. There is another method that does not use the Noether‘s theorem and
uses scaling symmetry to construct the density and associated flux of the conser-
vation law. This method, which is called the scaling method, is based on tools
from calculus, differential geometry, calculus of variations and linear algebra. In
this method, we consider a primitive density for conservation law with unspeci-
fied coefficients that are invariant under the scaling symmetry. Then, unspecified
coefficients are determined by calculation and using the Euler operator [2, 7]. Fi-
nally the flux of conservation law is computed by homotopy operator to invert a
divergence [8].
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In this study, we will obtain by the scaling method, conservation laws of fifth-
order Kudryashov and Sinelshchikov (K-S) equation. This equation is introduced
by Kudryashov and Sinelshchikov which is generalization of the famous Kawa-
hara equation. The fifth-order K-S equation is the following nonlinear evolution
equation:

ut + auux + bu3x + cu4x + du5x = eu2x,(1)

where a, b, c, d and e are positive constant.
This paper is organized as follows. In Section 2, we present some definitions

and result that will be used along this paper. In Section 3, by constructing the
weight-balance equations for the fifth-order K-S equation the scaling symmetry
of this equation is obtained. the primitive density of conservation law for this
equation is constructed in Section 4. in Section 5, the actual density and the
corresponding flux are constructed and some related results are obtained.

2. Notations and Definitions

In this section, we will provide the background definitions and results that will be
used along this paper. Consider a system of equations in the evolutionary from,

ut = P (x, u(M)),(2)

where x = (x1, . . . , xp) and u = (u1, . . . , uq) are independent space variables and
dependent variables, respectively. A conservation law for (2) is in the form,

Dxρ+DivJ = 0 on ∆ = 0,(3)

where ρ is the conserved density and J is the associated flux. In (3), Dt is the
total derivative whit respect to t and Div is the total Divergence. The algorithm
will described in next section can be used to compute local conservation laws for
systems that can be written in the evolutionary from (2).

Definition 2.1. The total derivative operator, Dx (in 1 D), acting on f =
f(x, t, u(M)(x, t)) of order n is defined as

Dxf =
∂f

∂x
+

N∑
j=1

Mj
1∑

k=0

uj(k+1)x

∂f

∂ujkx
,

where M j
1 is the order of f in component uj and M = max{M1

1 , . . . ,M
N
1 } [6].

Definition 2.2. Let f be a differential function of order M . In 1D, f is
called exact if f is a total derivative, i.e., there exists a differential function
F (x, u(M−1)(x)) such that f = DxF [7].

Definition 2.3. The 1D Euler operator for dependent variable uj(x) is de-
fiend as

Luj(x)f =

Mj
1∑

k=0

(−Dx)
k ∂f

∂ujkx
, j = 1, . . . , q.(4)

Theorem 2.4. A differential function f is exact if and only if Lu(x)f = 0 [7].
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Definition 2.5. Let f be an exact 1D differential function. The homotopy
operator in 1D is defined as

Hu(x)f =

∫ 1

0

N∑
j=1

Iuj(x)f [λu]
dλ

λ
, where u = (u1, . . . , uq).(5)

The integrand, Iuj(x)f is defined as

Iuj(x)f =

Mj
1∑

k=1

(
k−1∑
i=0

ujix(−Dx)
k−(i+1))

∂f

∂ujkx
,(6)

where M j
1 is the order of f in the dependent variable uj whit respect to x [8].

Theorem 2.6. Let f be exact, i.e, DxF = f for some differential function
F (x, u(M−1)(x)), then F = D−1

x f [8].

3. Computing the Scaling Symmetry of Fifth-Order K-S Equation

In this section, we obtain the scaling symmetry of the fifth-order K-S equation by
the concept of weight. It is easy to see that fifth-order K-S equation is invariant
under the scaling symmetry

(x, t, u, a, b, c, e) −→ (λ−1x, λ−5t, λu, λ3a, λ2b, λc, λ3e),(7)

where λ is an arbitrary scaling parameter. We will prove this by the concept of
weight [3].

Definition 3.1. The weight of a variable is defined as the exponent p in the
factor λp that multiplies the variable. For the scaling symmetry x −→ λ−px,
the weight is denoted W (x) = −p. Total derivatives carry a weight. Indeed, if
W (x) = −p, then W (Dx) = p.

Definition 3.2. The rank of a monomial is the sum of the weights of the
variables in the monomial. A differential function is uniform in rank if all mono-
mials in the differential function have the same rank.
The weight-balance equations for the Kudryashov and Sinelshchikov equation are

W (u) +W (Dt) =W (a) + 2W (u) +W (Dx)

=W (b) +W (u) + 3W (Dx)

=W (c) +W (u) + 4W (Dx)

=W (d) +W (u) + 5W (Dx)

=W (e) +W (u) + 2W (Dx).

Solving the linear system gives

W (u) =W (Dx) =W (c) = 1 , W (d) = 0 ,

W (t) = 5 , W (b) = 2 , W (e) =W (a) = 3.

Therefore, the relation (7) was proved. The conserved density and its associ-
ated flux must obey the scaling symmetry of the PDE. That is, the conservation
law itself must be uniform in rank. Thus, according to the scaling symmetry of
the fifth-order K-S equation, we can construct a primitive density that is a linear
combination of terms of a pre-selected rank.
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4. Constructing a Primitive Density

The primitive density is constructed by taking a linear combination with undeter-
mined coefficients of terms that are invariant under the scaling symmetry of the
PDE. Since the fifth-order K-S equation has t as evolution variable, we will com-
pute the density ρ of (3) in a fixed rank, for example in rank 5. At first, consider
a set P including all powers of dependent variable that have rank 5 or less,

P = {u5, b2u, bu3, eu2, au2, c4u, cu4, ecu, acu, u4, bu2,
c3u, bcu, eu, , au, u3, bu, c2u, cu2, u2, cu, u}.

Then we utilize the total derivative operator with respect to the space variable in
order to increase the terms in P up to rank 5 and put them into a new list,

Q = {u5, b2u, bu3, eu2, au2, c4u, cu4, ecu, acu, u3ux, buux, c3ux, cu2ux, bcux,
eux, aux, uux2 , u2uxx, bu2x, c

2u2x, cu
2
x, cuux, uxuxx, uu3x, u4x}.(8)

Now, we omit all terms that are divergences or divergence-equivalent to other
terms in Q. Therefore, by applying the Euler operator (4) to each term in (8), we
find

Lu(x)Q = {(5u4, 3bu2, b2, 3eu2, 2au, c4, 4cu3, ec, ac, 0, 0, 0, 0, 0, 0, 0,
−u2x − 2uuxx, 4uuxx + 2u2x, 0, 0,−2cuxx, 0, 0, 0, 0}.(9)

According to the Theorem 2.4, u3ux, buux, c
3ux, cu

2ux, bcux, eux, aux, buxx,
c2uxx, cuux, uxuxx, uuxxx and uxxxx are corresponding to 0 in (9). So they are
divergences terms and can be removed from Q. Next, all divergence equivalent
terms should be removed. For this, attach unspecified coefficients to each term
in (9), then set the sum of these terms equal to zero. By gathering like terms
and equating them to zero, the divergence-equivalent terms are obtained. After
canceling all divergences and divergence-equivalent terms, we have new Q,

Q = {u5, bu3, b2u, eu3, au2, c4u, cu4, ecu, acu, uu2x, u2uxx, cu2x}.
So the candidate density is,

ρ = C1u
5 + C2bu

3 + C3b
2u+ C5au

2 + C7cu
4 + C17uu

2
x + C21cu

2
x.(10)

5. Calculating the Actual Density and Associated Flux

For determining the actual density, we have to determined the unspecified coeffi-
cient. For this, we compute the total derivative of (10) with respect to t,

Dρ
t = (5C1u

4 + 3C2bu
2 + C3b

2 + 2C5au+ 4C7cu
3 + C17u

2
x)ut

+ (2C17uux + 2C21cux)uxt.

Let E = −Dρ
t . Then ut and uxt have been replaced by using (1). We must

have Lu(x)E = 0 by Theorem 2.4. Apply the Euler operator to E and set the
result identically equal to zero, one linear system for the undetermined coefficients
Ci is obtained. Solving this system we have:

C1 = C2 = C5 = C7 = C17 = C21 = 0, C3 ̸= 0.

By setting C3 = 1, we have, ρ = b2u.
Now, we calculate the flux of conservation law of rank 5. By the relation

(3), we have DivJ = −Dρ
t = E so J = Div−1(E). Therefore, we must compute

68



CONSERVATION LAWS BY SCALING METHOD FOR ...

Div−1(E). After substitution C3 = 1 into E and calculating the integrand function
from relation (6) and substituting it in 1D homotopy operator (5), J is obtained
by Theorem 2.6

1

2
u2b2a+ b2(duxxxx − eux + buxx + cuxxx).

So the conservation law in rank 5 for the fifth-order K-S equation is obtained.
In a similar way, additional conservation laws in rank 3 for the fifth-order K-S

equation is obtained,

ρ = bu,

J = 1
2ba+ b(du4x − eux + bu2x + cu3x).

6. Conclusion

In this paper, we consider fifth-order Kudryashov and Sinelshchikov equation that
admit scaling symmetry and are uniform in rank. So, at first by the scaling method,
the density of rank 5 is constructed by the Euler operator and by the homotopy
operator the flux is computed. In a similar way we obtained the conservation laws
for Kudryashov and Sinelshchikov equation of rank 3.
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1. Introduction

Let (Z, d) to be a compact metric space and (Z, β, ν) to be a measure space
where β is the Borel σ-algebra on Z and ν is a Borel probability measure. The
map f : Z → Z is measureable. Let C (Z) be the set of real valued continuous
functions of Z. For n ∈ N, ε ≥ 0 and x, y ∈ Z, the Bowen metric is defined as

dn(x, y) = max{d(f i(x), f i(y)) : i = 0, 1, . . . , n− 1}.
Bowen balls are defined as B(n, ϵ) = {y ∈ Z : dn(x, y) < ϵ} [1, 4]. A finite subset
E of Z is called an (n, ϵ)-spanning set for Z if for any x ∈ Z, there is y ∈ E with
dn(x, y) < ϵ. A finite subset F of Z is called an (n, ϵ)-separated set for Z if for
any x, y ∈ F , dn(x, y) ≥ ϵ.

Katok proved that for a continuous map f defined on a compact metric space
(Z, d) being invariant under an ergodic probability measure ν, the topological
entropy defined on a subset with measure greater than or equal to 1 − ζ is equal
to its measure-theoretic entropy for any 0 < ζ < 1 [3]. This means that for any
ergodic probability measure ν, and 0 < ζ < 1,

lim
ϵ→0

lim sup
n→∞

− logMν(n, ϵ, ζ)
n = lim

ϵ→0
lim inf
n→∞

− logMν(n, ϵ, ζ)
n = hν(f),

where Mν(n, ϵ, ζ) shows the minimal number of Bowen balls B(n, ϵ) covering a
subset of Z with ν-measure greater than or equal to 1− ζ by (n, ϵ)-spanning sets.

Let ψ ∈ C(Z) and (Snψ)(x) :=
∑n−1
i=0 ψ(f

i(x)). Then the topological pressure of
f with respect to ψ is defined as

P(f, ψ) = inf

{∑
x∈F

exp(Snψ)(x) | F is an (n, ϵ)-spanning set of Z

}
,(1)
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and the measure-theoretic pressure of f with respect to ν is given by Pν(f, ψ) =
hν(f)+

∫
ψdν. The Katok entropy formula was extended to a version of measure-

theoretic pressure function in [2] by using the (n, ϵ)-spanning sets. For a continuous
function f , ψ ∈ C(R) and a probability f -invariant measure ν, they proved (1)
equals to Pν(f, ψ).

Here, we let f to be a measurable function and define the measure-theoretic
pressure of f on a subset of Z with measure greater than or equal to 1 − ζ for
0 < ζ < 1 by using (n, ϵ)-spanning and (n, ϵ)-separated sets. Then we show theses
are equal to Pν(f, ψ) when ν is an ergodic measure and ψ ∈ C(R).

1.1. Generalization of Katok Entropy Formula to Pressure Function.
Let Z be a compact space endowed with metric d and also (Z, β, ν) be a measure
space. Take f : Z → Z be a measurable map. For any n ∈ N, ϵ > 0, ζ ∈ (0, 1),
and ergodic measure ν define

P∗
ν (f, ψ, ε, n) = inf{

∑
x∈E exp(Snψ)(x) | E, an (n, ε)-spanning set for subsets
of Z with ν-measure more than or equal to 1− ζ},

Q∗
ν(f, ψ, ε, n) = sup{

∑
x∈F exp(Snψ)(x) | F, an (n, ε)-separated set for subsets
of Z with ν-measure more than or equal to 1− ζ}.

Set
P∗
ν (f, ψ, ε) = lim sup

n→∞
− logP∗

ν (f, ψ, ε, n)
n,

P ′∗
ν(f, ψ, ε) = lim inf

n→∞
− logP∗

ν (f, ψ, ε, n)
n,

and

Q∗
ν(f, ψ, ε) = lim sup

n→∞
logQ∗

ν(f, ψ, ε, n)
n,

Q′∗
ν(f, ψ, ε) lim inf

n→∞
logQ∗

ν(f, ψ, ε, n)
n.

Moreover, define

P∗
ν (f, ψ) = limε→0 P∗(f, ψ, ε), P ′∗

ν(f, ψ) = limε→0 P ′∗(f, ψ, ε),
Q∗
ν(f, ψ) = limε→0Q∗(f, ψ, ε), Q′∗

ν(f, ψ) = limε→0Q′∗(f, ψ, ε).

Theorem 1.1. Suppose (Z, d) is a compact metric space and f : Z → Z is a
measurable map. For any ν ∈ E(f) and ψ ∈ C(Z),

P ′∗
ν(f, ψ) = Q′∗

ν(f, ψ) = P∗
ν (f, ψ) = Q∗

ν(f, ψ) = Pν(f, ψ),
where Pν(f, ψ) = hν(f) +

∫
ψdν.

For any finite measurable partition C of (Z, β) let

Cn = C ∨ f−1C ∨ · · · ∨ f−(n−1)C.
Denote by Cn(x) the member of the partition Cn to which x belongs and hν(f, C)
shows the measure-theoretic entropy with respect to the partition C.

Notations. Let Y be a subset of Z with ν(Y ) ≥ 1−ζ. Denote byR(f, Y, n, ε, ζ)
and S(f, Y, n, ε, ζ), the smallest cardinality of all (n, ε)-spanning sets and the
largest cardinality of all (n, ε)-separated sets on Y respectively.
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Lemma 1.2. For any ϵ > 0, suppose C = {C1, · · · , CN} is a finite measurable
partition of (Z, β). Then for any subset Y of Z with ν(Y ) ≥ 1− ζ,

S(f, Y, n, ϵ, ζ/4) ≥ R(f, Y, n, ϵ, ζ/4) ≥ R(f, Y, n, ϵ, ζ).

Theorem 1.3. [4] (Shannon-Mc Millan-Breimen) Let f be an ergodic mea-
sure preserving transformation of the probability space (Z, β, ν) and C be a finite
partition of (Z, β, ν). Then

log ν(Cn(x))
n → hν(f, C)a.e.

in L1(Z, β, ν).

For any n and s > 0, set Mn,ε,s = {x ∈ Z | Cn(x) ∈ Cn, ν(Cn(x)) ≥
exp[−n(hν(f,A) + s)]}. Let B(t,N, n) =

∑[nt]
m=0(N − 1)mCnm and Cnm denotes

n choose m.

Lemma 1.4. Let ν be an ergodic measure and 0 < ζ < 1. For any ϵ > 0,
suppose C = {C1, . . . , CN} is a finite measurable partition of (Z, β). Then for the
subset Mn,ε,s,

R(f,Mn,ε,s, n, ε, ζ/4) < exp[−n(hν(f, C) + s)],
S(f,Mn,ε,s, n, ε, ζ/4) < exp[−n(hν(f, C) + s)].

Lemma 1.5. Let ν be an ergodic measure and 0 < ζ < 1. For any ϵ > 0,
suppose C = {C1, . . . , CN} is a finite measurable partition of (Z, β) such that
diam(C) := max{diam(Ci) | Ci ∈ C} < ε

2 and ν(∂C) = ν(∪Ni=1∂Ci) = 0, where ∂Ci
denotes the boundary of Ci. Then for any subset Y of Z with ν(Y ) ≥ 1− ζ,

S(f, Y, n, ϵ, ζ/4) ≥ R(f, Y, n, ϵ, ζ/4) ≥ R(f, Y, n, ϵ, ζ),(2)

and

R(f, Y, n, ϵ, ζ) ≥ exp[n(hν(f, C)− ε)](1− ζ)/(4B(ε/2, N, n)).

Sketch of Proof of Theorem 1.1. Suppose Z ′ be a subset of Z with ν(Z ′) ≥
1−ζ. Let E′

ni
and F ′

ni
be its (n, ε)-spanning and (n, ε)-separated sets with minimal

and maximal cardinality respectively.
For any ni, consider the set Bi with its (ni, ϵ)-spanning set Eni . Some lines

of the proof are the similar for the sets E′
ni

and F ′
ni
. So, let G ∈ {E,F}. Then

for any x ∈ G′
ni
, there exists y := e(x) ∈ Eni such that dn(x, y) < ε. The map ψ

is continuous which gives

(Sniψ)(x) ≤ (Sniψ)(e(x)) + niκ.(3)

Therefore,∑
x∈G′

ni

exp(Sniψ)(x) ≤
∑

e(x)
x∈G′

ni

exp[(Sniψ)(e(x)) + niκ] by (3)

≤
∑

e(x)
x∈G′

ni

exp[ni(
∫
ψdν + 1

i + κ)] by the Egorov Theorem

= Card(G′
ni
) exp[ni(

∫
ψdν + 1

i )]
≤ exp[ni(hν(f, C) + r +

∫
ψdν + 1

i + κ)]. by Lemma 1.4

Therefore,

− logP∗
ν (f, ψ, ε, ni)

ni ≤ hν(f, C) + r +

∫
ψdν +

1

i
+ κ,
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and

− logQ∗
ν(f, ψ, ε, ni)

ni ≤ hν(f, C) + r +

∫
ψdν +

1

i
+ κ.

So, letting i, ni →∞ and r, κ→ 0, proves P ′∗
ν(f, ψ, ε) ≤ Pν(f, ψ) andQ′∗

ν(f, ψ, ε) ≤
Pν(f, ψ).

Now to prove the reverse direction. For the set Z ′,∑
x∈E′

ni

exp(Sniψ)(x) ≥
∑

e(x)
x∈E′

ni

exp[(Sniψ)(e(x))− niκ] by (3)

≥
∑

e(x)
x∈E′

ni

exp[ni(
∫
ψdν − 1

i − κ)]

= Card(E
′

ni
) exp[ni(

∫
ψdν − 1

i − κ)]
≥ 1−ζ

4D( ε
2 ,N,n)

exp[ni(hν(f, C)− ε+
∫
ψdν − 1

i − κ)].

According to (2), S(f, Y, n, ϵ, ζ) ≥ R(f, Y, n, ϵ, ζ). So,

Q∗
ν(f, ψ, r, ni) ≥ P ∗

ν (f, ψ, r, ni)andQ
′∗
ν(f, ψ, r, ni) ≥ P ′∗

ν(f, ψ, r, ni).

Since

lim
n→∞

logB(r,N, n)
1
n = log(N − 1)s − log ss − log(1− s)(1−s),

by letting i→∞ and κ, ε, r → 0, we get

Q∗
ν(f, ψ, ε) ≥ P∗

ν (f, ψ, ε) ≥ Pν(f, ψ),
and

Q′∗
ν(f, ψ, ε) ≥ P ′∗

ν(f, ψ, ε) ≥ Pν(f, ψ).
This proves the theorem. □
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1. Introduction

The second part of Hilbert 16-th problem, which proposed by D. Hilbert in 1990,
is to find an upper bound on the number of limit cycle which bifurcates from
the planar polynomial differential system. The method of Poincare map, Abelian
integrals or Melnikov integrals, inverse integrating factor and averaging theory
used to study the limit cycles which bifurcate from a center [1, 2, 3, 4]. Authors
in [3] provide various conditions for which the origin is a degenerate center and
also use the Poincare coefficients in polar coordinate to show that a degenerate
center may be the limit of a linear center(focus), a nilpotent singularity, and even
a hyperbolic saddle point.

Let P (x, y) andQ(x, y) are n-th degree polynomials. The origin is a degenerate
center for the differential polynomial system

ẋ = P (x, y), ẏ = Q(x, y),

if the origin is a center and after applying a change of variables and a suitable
time rescale, the system comes into the following form

ẋ = F1(x, y), ẏ = F2(x, y),

where F1, F2 are nonlinear terms. In [3], authors considered ẋ = P2m+1(x, y),
ẏ = Q2m+1(x, y) as the differential system with the degenerate center in the origin
and used the Poincare map method to consider the perturbed degenerate center
with the homogeneous polynomials as below

ẋ = P2m+1(x, y) + ϵ

2m∑
j=1

Pj(x, y), ẏ = Q2m+1(x, y) + ϵ

2m∑
j=1

Qj(x, y),(1)
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where Pj(x, y) =
∑j
k=0 α(k,j)x

kyj−k and Qj(x, y) =
∑j
k=0 β(k,j)x

kyj−k. The
perturbed degenerate center in polar coordinate computed as

dr

dθ
= rS(θ) + ϵr H(r, θ, ϵ).(2)

Then by considering r(θ, r0, ϵ) as the solution of (2) with r(0, r0, ϵ) = r0, they
assumed the Poincare map P (r0, ϵ) = r(2π, r0, ϵ) and obtained the terms of Taylor
expansion of the Poincare map with respect to ϵ, as (See [3, Lemma 8])(∂jr

∂ϵj

)
ϵ=0
(2π) = j

j−1∑
k=0

(
j − 1

k

)∫ 2π

0

χ−1(ψ)
∂kr

∂ϵk
(ψ)

∂j−1−k

∂ϵj−1−k U(r0, ψ, 0) dψ.

According to these terms, they provided conditions such that the degenerate center
of (1) is a limit of a hyperbolic saddle, a linear focus(center) and a nilpotent fixed
point (See [3, Lemma 11 and Remark 5]).

In this paper, we consider the results of [3] for the differential homogeneous
polynomial system of order five as

P (x, y) =
5∑
i=0

aix
iy5−i, Q(x, y) =

5∑
i=0

bix
iy5−i.(3)

First we construct the symmetric and Hamiltonian degenerate center. Next
we consider the perturbation of the system (3) as below

Pϵ(x, y) = P (x, y) + ϵ
(
α(0,1)y + α(1,1)x+ α(0,2)y

2 + α(1,2)xy + α(2,2)x
2
)
,

Qϵ(x, y) = Q(x, y) + ϵ
(
β(0,1)y + β(1,1)x+ β(0,2)y

2 + β(1,2)xy + β(2,2)x
2
)
,

(4)

and obtain conditions under which the degenerate center is a limit of a hyperbolic
saddle and limit of linear center (focus).

2. Main Results

In the following lemma, we provide sufficient conditions such that the origin in the
system (3) is a symmetric degenerate center and a Hamiltonian degenerate center.

Lemma 2.1. Consider the system (3).

I) Assume that the following conditions hold.
1) a1 = a3 = a5 = 0 and b0 = b2 = b4 = 0.
2) a0b1 < 0, a2b3 < 0 and a4b5 < 0.

Then the origin is a symmetric degenerate center for the system (3).
II) Assume that the following conditions hold.

1) a0 > 0, a2 > 0 and a4 > 0.
2) b0 = −a15 , b1 = −a22 , b2 = −a3, b3 = −2a4, b4 = −5a5, a25 ≤ − 1

9a4b5.

3) a21 ≤ 25
18a0a2, a

2
3 ≤ 2a2a4.

Then the system (3) is a Hamiltonian system and the origin is a degen-
erate center for it.

Proof. The proof is obvious by applying [3, Theorem 1(II), Theorem 2] for
m = 2. □

In the next lemma, we consider the perturbed degenerate center (4) and impose
conditions on it, such that the degenerate center is a limit of a hyperbolic saddle
and limit of a linear center (focus).
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Lemma 2.2. Consider the system (4) and suppose

α(1,1) = α(0,2) = α(2,2) = 0 and β(0,1) = β(1,2) = 0.

Then the following results hold.

I) If α(0,1) = β(1,1) = 1, then the degenerate center is a limit of a hyperbolic
saddle.

II) If α(0,1) = −1 and β(1,1) = 1, then the origin is a limit of a linear center
(focus).

Proof. The proof is obvious by considering [3, Remark 5] for m = 2 and
j = 1, 2. □

Now we consider the above results in a numerical example.

Example 2.3. Consider the system

Pϵ(x, y) =
x5

3
+ x4y + 2x3y2 + 2x2y3 +

5xy4

4
+ y5 + ϵ

(
α(0,1)y + α(1,2)xy

)
,

Qϵ(x, y) = −x5 − 5x4y

3
− 2x3y2 − 2x2y3 − xy4 − y5

4
+ ϵ
(
β(1,1)x+ β(0,2)y

2 + β(2,2)x
2).

The unperturbed system, i.e, ϵ = 0, according to Lemma 2.1(II) is the Hamil-
tonian degenerate center (See Figure 1(a)). Consider the perturbed system, i.e,
ϵ ̸= 0. let

ϵ = 0.1, α(0,1) = β(1,1) = β(2,2) = 1, α(1,2) = β(0,2) = 0.

By applying Lemma 2.2(I), the origin is a limit of a hyperbolic saddle (See Figure
1(b)). Now let

ϵ = 0.2, α(0,1) = −1, β(1,1) = 1, α(1,2) = 0.5, β(0,2) = β(2,2) = 0.

By applying Lemma 2.2(II), the origin is a limit of linear center (See Figure 1(c)).

Figure 1. (a) Phase portrait of the unperturbed system. (b) Phase

portrait of the perturbed system for ϵ = 0.1. (c) Phase portrait of the

perturbed system for ϵ = 0.2.
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Abstract. In this paper, we attempt to determine the stability of a model
of the burst neurons, and resettable integrator. In order to obtain the sta-

bility of the model, we investigate, polar coordinates, Taylors expansion, and
stochastic averaging method. A more comprehensive study, would include
some theorems that give us some conditions which leads us to sufficient con-
ditions on drift and diffusion coefficients for stochastic stability of the model.

The most striking result to appear from the data is that the part of saccadic
model in eye movements is stable under different noises.

Keywords: Noise, Saccadic model, Stability, Stochastic equation.
AMS Mathematical Subject Classification [2010]: 60H10,
34K50, 92C20.

1. Introduction

The task of human eye systems modeling, is one of the special cases for modeling
and examining biomechanical systems in the nature and the body of human being.
This research, which is based on the work of the saccadic model the horizontal
direction, for the eye movements, indicates to introduce the stochastic model of
the burst neurons [7]. In fact, the saccadic eye movements are the one which
enables the humans to move eyes precisely and rapidly. Indeed, neurophysiological
studies show that saccadic control signals for horizontal saccades are produced by
neurons stimulated in the brain stem [2, 4].

In recent years, research regarding stochastic dynamical systems has drawn
attention. As far as we know, the stochastic systems can describe natural phe-
nomena better, such as eye movements, neural activity etc. Different theories exist
in the dynamics of stochastic models [5]. There are some examples for stochastic
averaging method [8], such as Hopfield neural network [3].

In this work, we decided to investigate the model of burst neurons from the
saccadic system which it is based on observations the experimental findings of
Van Gisbergen et al. [6]. The evidence from researches indicates that the model
of burst neurons is simulated by control models [2, 4]. The achievements of these
studies express that Broomhead et al. 2000 have introduced a saccadic model of
slow-fast differential equations [1, 2]. More specifically, we investigate the stability
of the model of the burst neurons and resettable integrator with multiplicative
excitations which explained the connecting between the long and short lead burst
neurons.
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2. Main Results

In this paper, we have some theorems [5] that help us in order to find a different
behaviours of the burst neurons model. And hence the stability or instability can
be anticipated that.

Theorem 2.1. [5]

i) When µ1+
1
16µ2− 1

16µ4 < 0, the trivial solution of the linear Itô stochastic
differential Equation is asymptotically stable with probability 1, thus the
stochastic system is stable at the equilibrium point O.

ii) When µ1+
1
16µ2− 1

16µ4 > 0, the trivial solution of the linear Itô stochastic
differential Equation is unstable with probability 1, which implies that the
stochastic system is unstable at the equilibrium point O.

Theorem 2.2. [5] When 16µ1 + µ2 − µ4 < 0 and 2µ3 < µ4, the stochastic
system is globally stable at the equilibrium point O.

To begin with, we represent model of the burst neurons which is one of the
case of slow-fast systems. The model is

ϵḃ = −b+ αsign(m)(1− e
−|m|
β ),

ṁ = −b,
(1)

where the equilibrium point is (0, 0), α = 800 and β = 6. Here, the net burst
signal is defined by b, the motor error is m and ϵ is a small positive number.

Then, we introduce the stochastic model of the burst neurons and study its
stochastic stability by some theorems. Here, we assume that b = u and m = v,
therefore the stochastic differential equations system is:

du = 1
ϵ (−u+ αsign(v)(1− e

−|v|
β ))dt+ σ1udW1(t),

dv = −udt+ σ2vdW2(t),
(2)

where σi(i = 1, 2). This elements are selected, based on environmental condi-
tions. Wi(t) (i = 1, 2) are independent from standard Wiener or Brownian motion
processes. According to Taylors expansion, the following equivalent system is ob-
tained

du = (αvβ ϵ ± 1/2 αv2

β2ϵ + 1/6 αv3

β3ϵ −
u
ϵ +O(4))dt+ σ1udW1(t),

dv = −udt+ σ2vdW2(t),

In order to study the stability of system (2), we can rewritten model (2) by using
the polar coordinates and the Itô stochastic differential equations. We have,{

dr = [(µ1 +
1
16µ2)r +

1
8µ3r

3]dt+ (µ4

8 r
2)

1
2 dWr(t),

dθ = [ 14µ5 +
1
8µ6r

2]dt+ (µ2

8 )
1
2 dWθ(t),

(3)

where a fix point of the model is r = 0. The following notations are used here:

µ1 = − 1
2ϵ , µ2 = σ2

1 + σ2
2 ,

µ3 = 0, µ4 = 3σ2
1 + σ2

2 ,
µ5 = −2− 2 αβϵ , µ6 = − α

6β3ϵ .
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Now, according to theorems provided by Theorems 2.1 and 2.2 in Chaoliang
Luo and Shangjiang Guo [5], we investigate that the system (2) is stable at the
singular point O.

Theorem 2.3. When − 1
2ϵ −

σ2
1

8 < 0, the trivial solution of the linear Itô
stochastic differential model (3) is asymptotically stable with probability 1.

Therefore, the stochastic system (2) is stable at the singularity point O by
Theorem 2.1.

Theorem 2.4. When − 8
ϵ − 2σ2

1 < 0 and 0 < 3σ2
1 + σ2

2, the stochastic system
(2) is globally stable at the singularity point O.

Now, we illustrate that our results in the numerical simulation for the sto-
chastic model of the burst neurons agree with our results in Theorems 2.3 and 2.4.
Figure 1 shows the stability of system (2) for different noise, where we assume
α = 800 and β = 6 with the initial value (u0, v0) = (−30, 0).

Figure 1. Phase portrait for system (2) for the initial value
(b0,m0) = (−30, 0).

The paper presented stochastic burst model in different noise parameters, via
stochastic averaging method. In fact, a stable equilibrium exists in a normal
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saccadic system steady fixation. This study has identified the origin as a unique
stable equilibrium point of the saccadic system. It corresponds exactly to the
endpoint of the burst signal. Moreover, these results must be made available to
provide for further studies checking pharmaceutical treatment for nystagmus.
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Abstract. The dynamic of HIV infection of CD4+ T cells is considered
as a fractional order nonlinear ordinary differential equations system. In

this paper using Laplace transform and Adomian decomposition method the
fractional nonlinear system reduces to a linear algebraic system. By solving
the algebraic system, the solutions are calculated. The numerical solution
of illustrative case study shows that the purposed method is easy implement

and accurate.
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1. Introduction

CD4+ T cells have an important role in adjusting the immune system. Pereslon
introduced the infection model of HIV into the human immune system [5] in 1980.
HIV destroys the human body defense soldiers, CD4+ T cells, in the blood. So
the human body becomes defenseless against all other infections. In the case of
treatment on the right and early time, the immune system can be protected and
HIV progress is going to be controlled. Indeed the determination of the numbers
of infected T cells and uninfected T cells is vital in treatment of the infection. A
mathematical model for the dynamic of the HIV infection on the CD4+ T cells is
derived in [1] as follows:

cD
γ1S = ρ− µS + ωS

(
1− S+I

Smax

)
− βV S,

cD
γ2I = βV S − δI,

cD
γ3V = NδI − αV,

(1)

subject to the initial conditions

S(0) = λs, I(0) = λi, V (0) = λv,

and the descriptions of unknowns and parameters of system (1) are given in Table
1. Also Smax is the maximum CD4+ T cell concentration in the body, N is the
virus particles produced by infected CD4+T cells and the factor 1− S+I

Smax
presents
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the the logistic growth of the healthy CD4+ T cells and fractional order derivative
is assumed in Caputo sense.

The main aim of this paper is finding the unknowns S(t), I(t) and V (t) for
determine the dynamic of infection of HIV. For this purpose first by using Laplace
transform the system of nonlinear differential equations reduced to a system of
algebraic equations and then Adomian decomposition method is applied for ob-
taining the solutions in the power series form. We will truncate the obtained
solutions and introduce the approximated solutions of system (1).

2. Caputo Fractional Derivative

Now we briefly present the known definition of Caputo fractional derivative.

Definition 2.1. The Caputo fractional derivative operator of order nonneg-
ative ι is defined as [2]

cD
αf(x) =

1

Γ(n− α)

∫ x

0

f (n)(t)

(x− t)α+1−n dt, n− 1 < α ≤ n, n ∈ N.

Based on applying the Laplace transform on the system (1), we express the
following property for Caputo derivative.
The Laplace transform of Caputo fractional derivative is as follows

L{cDαf} = sαL{f} −
n−1∑
k=0

sα−k−1f (k)(0), n− 1 < α ≤ n.

Table 1. Model variables and parameters and their descriptions.

variables description

S(t) the concentration of susceptible CD4+ T cells
I(t) the concentration of infected CD4+ T cells
V (t) free HIV virus particles in the blood
parameters description
ρ Rate of CD4+ T cells produced in body
µ Natural turnover rates of uninfected T cells
ω Growth rate of CD4+T cell
β Infection rate
δ Natural turnover rate of infected T cells
α Natural turnover rate of virus particles

3. Numerical Implementation

In this section first applying Laplace transform to both sides of the model (1) we
get 

sγ1L{S} = sγ1−1λs +
ρ
s + (ω − µ)L{S} − ω

Smax
L{S(S + I)} − βL{V S},

sγ2L{I} = sγ2−1λi + βL{V S} − δL{I},

sγ2L{V } = sγ3−1λv +NδL{I} − αL{V },

(2)
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then by writing the unknowns of the system (2) in Adomian infinite series, we
have

S(t) =
∞∑
j=0

sj ,

I(t) =

∞∑
j=0

ij ,(3)

V (t) =
∞∑
j=0

vj ,

also the nonlinear variable terms of the system (2) are written by Adomian poly-
nomials as

S2(t) =
∞∑
j=0

Aj =
1

Γ(j + 1)

dj

dtj

(
j∑
l=0

λlsl

)2

λ=0

,

S(t)I(t) =

∞∑
j=0

Bj =
1

Γ(j + 1)

dj

dtj

(
j∑
l=0

λlsl

j∑
l=0

λlil

)
λ=0

,(4)

S(t)V (t) =
∞∑
j=0

Cj =
1

Γ(j + 1)

dj

dtj

(
j∑
l=0

λlsl

j∑
l=0

λlvl

)
λ=0

.

Now by substituting equations (3)-(4) in (2), we get

L{sj+1} =
1

sγ1

(
(ω − µ)L{sj} − ω

Smax
L{Aj + Bj} − βL{Cj}

)
,

L{ij+1} =
1

sγ2

(
βL{Cj} − δL{ij}

)
,

L{vj+1} =
1

sγ3

(
NδL{ij} − αL{vj}

)
,

(5)

where

L(s0) =
λs
s

+
ρ

sγ1+1
, L(i0) =

λi
s
, L(v0) =

λv
s
.

By taking inverse Laplace transform of linear system (5), we obtain the analytical
solutions of nonlinear system (1) as (3). TheM -term approximation for analytical
solutions of the Laplace Adomian decomposition method are

SM (t) =
M−1∑
j=0

sj ,

IM (t) =
M−1∑
j=0

ij ,(6)

VM (t) =

M−1∑
j=0

vj .
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Now for accelerating the convergence of the numerical solutions, Diagonal
Pade Approximant (DPA[n,n]) is employed [4]. Pade approximant [n,m] is a
special case of rational approximation which approximate the function f(t) as

PA[n,m](f) =
ant

n + an−1t
n−1 + · · ·+ a0

bmtm + bm−1tm−1 + · · ·+ bm
,

where an, bm and b0 are unvanished. In this paper the DPA[3,3] is applied for the
obtained solutions SM (t), IM (t) and VM (t) for increasing the order of convegence.

4. Numerical Result

In this section we solve the fractional order nonlinear system (1) by purposed
method for γ1 = γ2 = γ3 = 0.5, 0.75, 1, ρ = 0.1, µ = 0.02, ω = 3, β = 0.0027,
δ = 0.3, α = 2.4, N = 10 and Smax = 1500. The results S(t), I(t) and V (t)
calculated for M = 5 in (6) and approximated by DPA[3,3], are given in Table 2
and compared with the results of [3], which applied variational iteration method
for solving HIV infection of CD4+ T cells. It is clear that the results of two
approaches are in good agreement.

Table 2. Comparison of numerical solutions for γ = 1.
(I(t)∗: The results for I(t) have been multiplied by 105.)

Methods t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1

Presented Method 0.208794 0.401055 0.699141 1.127030 2.237627

S(t) DPA[3,3] 0.208807 0.406133 0.763571 1.397756 2.505684

VIM [3] 0.208807 0.406135 0.762453 1.397881 2.506747

Runge-Kutta 0.208808 0.406241 0.764424 1.414047 2.591594

HDM [3] 0.061880 0.024391 0.024391 0.009968 0.003305

Presented Method 6.0156× 10−1 1.2953 2.0380 2.7956 3.5450

I(t)∗ DPA[3,3] 6.0325× 10−1 1.3149 2.1015 2.7950 2.4318

VIM [3] 6.0326× 10−1 1.3149 2.1014 2.7951 2.4316

Runge-Kutta 6.0327× 10−1 1.3158 2.1224 3.0177 4.0038

Presented Method 0.061877 0.038233 0.023226 0.012647 0.005274

V (t) DPA[3,3] 0.061880 0.023851 0.023421 1.397756 2.505684

VIM [3] 0.061880 0.023920 0.023920 0.016218 0.01608

Runge-Kutta 0.061880 0.023704 0.023704 0.014600 0.009101
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Abstract. This conference paper deals with control bifurcations of linear

controllability for a generic family of planar differential plants with locally
nilpotent linearly uncontrollable equilibrium. The results, of course, are read-
ily applicable to higher dimensional systems via center manifold theory; e.g.,

see [4]. We show how control bifurcations can help to design a compensator
for controllers who start to fail their responsibilities. We illustrate the original
idea from A. J. Krener, Kang, and Chang [7, 8] to show how one can move
a linearly uncontrollable equilibrium to a linearly controllable equilibrium.

Then, we apply input-state feedback linearization method for introducing a
local compensator to tune its dynamics. We claim that our approach is a
powerful and natural mathematical alternative method for many compen-
sator design techniques in nonlinear control theory.

Keywords: Control bifurcations, Uncontrollable nilpotent system,
Linear controllability.
AMS Mathematical Subject Classification [2010]: 58E25,
34H20, 37N35.

1. Motivation

Most controlled designed plants in control engineering and industry fail to perform
properly after certain time. These failures may be due to many reasons such
as reduction in the efficiency of its components or those of its environment. In
any case, these will change certain parameters of the plant and therefore, the
controller design fail to reach its desired dynamics. As soon as the controller
fails to follow the desired dynamics, the controlled plant is called singular and
the change in its qualitative dynamics is named a “control bifurcation”. Note
that this should not be confused with “bifurcation control”. Control bifurcation
refers to a controlled plant while bifurcation control refers to a parametric singular
(differential) system. For bifurcation control, one needs to tune the parameters
of the singular parametric differential system so that the system follows a desired
dynamics. This is always considered a positive phenomenon. However, the control
bifurcation is a controlled system whose qualitative dynamics change. Control
bifurcations for controlled systems in industry are mainly considered as a negative
phenomena. However, cognitive uses of control bifurcations in mathematics can
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be utilized for a positive compensator design. Instances of mathematical control
bifurcations are bifurcations in linear controllability, linear observability, linear
accessability, etc.

We here are concerned with control bifurcations of linear controllability. Linear
controllability is an important factor for many of nonlinear control methods such
as back-stepping method, input state feedback linearization, gain scheduling, etc.
In this paper we deal with control bifurcations of a generic family with nilpotent
singularity. We see how the local bifurcations in this system may result in a control
bifurcation of linear controllability. We apply the input state feedback linearization
approach to illustrate how the control bifurcations can help in applying a input
state feedback linearization and solve a regularization problem for a generic linearly
uncontrollable nilpotent singular system.

2. Linear Controllability and Control Bifurcations

Control bifurcation was first introduced in [7]. Despite important and vast num-
ber of applications in control engineering and industry, this has been taken up
with other researchers neither in nonlinear control community nor in dynamical
system community. The main reason is due to the complexity of locating the con-
trol bifurcations in singular systems. This four pages conference paper aims to
illustrate the subject and introduces our in progress project (but at its starting
point) on this challenging subject. In this paper we supply a feedback controller
design approach based on control bifurcations. This approach is an application
of our tools in parametric normal forms and bifurcation control analysis [2, 3].
We claim that this is an ideal mathematics and natural alternative to the existing
methods in modern nonlinear control theory.

Consider the linear control system

ẋ = Ax+Bu.(1)

Here, u stands for the controller, x ∈ Rn is the state variable and A is a linear
transformation on Rn. The dimensions of u and B must be compatible and well-
defined according to Eq. (1). The linear system (1) is called (linearly) controllable
when for every initial and final states (xi, xf ) and finite time T, there exists an
unconstrained controller design such that the controlled system (1) transfers the
state xi to the final state xf in finite time T ; e.g., see [1]. It is well-known that
a nonlinear plant in the vicinity of an equilibrium is called linearly controllable
when its linearization satisfies Kalman’s controllability condition. More precisely,
assume that the linear system 1 is the linearised system of the nonlinear plant,
u ∈ Rm×1 and B ∈ Rn×m. A necessary and sufficient condition for (A,B) to be
linearly controllable is that Kalman’s controllability matrix

C =
[
B,AB, . . . , An−1B

]
,

has a full rank. We consider a nonlinear plat with an equilibrium whose lineariza-
tion is given by (1) and Kalman’s controllability matrix does not have a full rank.
Then, many methods from nonlinear control theory is not applicable for this sys-
tem. Control bifurcations of linear controllability is helpful in this case. In other
words, control bifurcations make many methods from nonlinear control theory ap-
plicable for local controllability of linearly uncontrollable systems. For example,
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the proposed approach is applicable to the cases uncontrollable by the classical
input-state feedback linearization and back-stepping methods in nonlinear control
theory; see [9].

3. Illustration of the Proposed Approach Using an Example

Kang et al. [7] studied a nonlinear system with an uncontrollable linearization at
the origin. They proved that a generic system of this type has a nearby control-
lable equilibrium. Then, they suggested a regularization approach to stabilize an
uncontrollable equilibrium by moving it into a nearby linearly controllable equi-
librium. In this conference paper, we illustrate the original ideas of the theory
using the example given by a linearly uncontrollable equilibrium (the origin) for
the plant

f1 : ẋ := −y2 + xy + 2x2,(2)

f2 : ẏ := −x+ y2 − xy + 19

28
x2 + v + µ4 + µ6y,

where v, µ4 and µ6 are referred by controller inputs. The time-reversed truncated
parametric normal form for this system is given by

ẋ = −9

4
µ4

2 + ν2x+ a1y
2 + b1xy + b3xy

3,(3)

ẏ = −x− 1

4
(9µ4 + 2µ6)y + b1y

2 + b3y
4,

where

a1 = b1 = 1, b3 =
−69
350

.

There are Hopf bifurcation varieties

TH± =

{
(µ4, µ6) |µ6 = −9

2
µ4 ±

9

2
µ4 −

27

32
µ4

2 ± 222507

8960
µ4

3

}
,

THmC± =

(µ4, µ6) |µ6 = −9

2
µ4 ±

15µ4

14

√
9− 619

√
3

28

√
|µ4| ±

2041875

50176
µ4

 ,

as homoclinic bifurcation varieties; see [2] for more details on Hopf and homoclinic
bifurcation varieties. These bifurcation varieties are plotted in Figure 1. Now we
aim to use these bifurcation varieties to move the equilibrium from the origin to
nearby points so that the new equilibria would be linearly controllable.

For any equilibrium (x∗, y∗), we have the matrixes A,B and the Kalman’s
controllability matrix given by

A =

∂f1∂x (x∗, y∗)
∂f1
∂y

(x∗, y∗)

∂f2
∂x

(x∗, y∗)
∂f2
∂x

(x∗, y∗)

 , B =

[
0
1

]
, det [B,AB] ̸= 0,

respectively. For any µ4 ̸= 0, ν1 < 0. Thus, each nonzero input choices for (µ4, µ6)
taken from either of the regions (a), (b), (c), and (d) in Figure 1 give rise to
two linearly controllable local equilibria of a saddle and of either a source or a
sink type. For an instance, we only focus on Region (c) in Figure (1). There
are two equilibria: a saddle and a stable focus that both of them are linearly
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controllable. Set µ4 = −0.002 and µ6 = 0.005. There exist an estimated saddle
point (x, y) = (−0.00197, 0.00197) and a stable focus.

Now we can design a local controller via input-state feedback linearization.
We, first, transfer the saddle equilibria to origin by transformations x = x1 −
0.00197 and y = y1+0.00197, where x1 and y1 are new state variables. Therefore,
the new system is approximately given by

F1 : ẋ1 = 2x1
2 + x1y1 − y12 − 0.0059x1 − 0.0059y1,(4)

F2 : ẏ1 = 0.67x1
2 − x1y1 + y1

2 − 1.0046x1 + 0.01y1 + v.

In the second step, we prove that the new system (4) has necessary conditions for
applying input-state feedback linearization. By [9, Theorem 6.2, Page 238], the
system ẋ = f(x) + g(x)u with x ∈ Rn, u ∈ R is feedback linearizable if and only if
there is a domain D0 ⊂ D such that

1. The matrix G(x) =
[
g(x), adfg(x), . . . , ad

n−1
f g

]
has rank n for all x ∈ D0.

2. The distribution ∆ =
{
g(x), adfg(x), . . . , ad

n−2
f g

}
is involutive in domain

D0.

Therefore, we have

adFg = [F, g] =

[
−x1 + 2y1 + 0.0059
x1 − 2y1 − 0.01

]
and G = [g adFg] =

[
0 −x1 + 2y1 + 0.0059
1 x1 − 2y1 − 0.01

]
.

The matrix G = [g adFg] is in full rank when det(G) = x1 − 2y1 − 0.0059 ̸= 0.
Since for g1, g2 ∈ ∆, 0 = [g1, g2] ∈ ∆, the set ∆ = {g} is always involutive.
Therefore, there exists a function h(x) so that we can use it to linearize the system.
The function h(x) must satisfy

∂Lifh

∂x
g = 0 i = 0, . . . , n− 2, and

∂Ln−1
f h

∂x
g ̸= 0.

In our cases, we have

∂h

∂x
g = 0,

∂h

∂y1
= 0,

∂Lfh

∂x
g ̸= 0,

∂h

∂x1
(x1 − 2y1 − 0.0059) ̸= 0,

∂h

∂x1
̸= 0.

Then, we can choose h(x) = x1 and the change of variables

z1 = x1, z2 = Lfh = 2x1
2 + x1y1 − y12 − 0.0059x1 − 0.0059y1,

to transform the state equations into ż1 = z2, and

ż2 = (x1 − 2y1 − 0.0059)u+ 8.67x1
3 + 3.64x1

2y1 − 3y1
3 − 0.027y1

2 − 1.04x1
2

+1.99x1y1 + 0.006x1 − 0.000029y1.

Then, the controller is given by

v :=
3y1

3 − 8.67x1
3 − 3.64x1

2y1 + 0.027y1
2 + 1.04x1

2 − 1.99x1y1 − 0.006x1 + 29 × 10−6y1 + v′

x1 − 2y1 − 0.0059
,(5)

and we have

ż1 = z2, and ż2 = v′.

Using pole placement method, the linear controller v′ = kz, and choosing appro-
priate constant k, we can guarantee that trajectories of z1(t) and z2(t) approach to
0. Let the desired poles be −1. Then, k1 = −1 and k2 = −2. These contribute into
a state feedback controller design for the nonlinear plant (2). Note that we only
need to compose all invertible transformations and then, feedback the controller
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into the differential system (2). Here, the most challenging part refers to the use
of parametric normal forms and its transformations. Due to the tedious compu-
tations, they cannot be made by hand calculations and the implementations in a
computer algebra system are inevitable; e.g., see [2, 3]. The numerical simulations
are now given in Figures 1(b) and 1(c).

Figure 1. (a) Numerical transition sets for the controller inputs
(µ4, µ6from the controlled system., (b) Tranjectories of the system
(4) with controllers (5) and initial values (0.1,0.1) converge to ori-
gin., (c) Solution tranjectories (2)-(5) and initial values (0.1,0.1)
converging to the origin.
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1. Introduction

Here Hn = (R2n+1, ◦ ) is the Heisenberg group with the following noncommutative
law of product

(x, y, t) ◦ (x′, y′, t′) = (x+ x′, y + y′, t+ t′ + 2(⟨y|x′⟩ − ⟨x|y′⟩)),

where x, x′, y, y′ ∈ Rn, t, t′ ∈ R and ⟨ | ⟩ denotes the standard inner product in
Rn. We denote by Ω the unit Korányi ball centered at the origin and ∇Hn ,∆Hn

are the Heisenberg gradient and the Kohn-Laplacian (the Heisenberg Laplacian)
operators on Hn, respectively, as defined in [5, 6, 7, 9]. Actually we consider the
weighted Lebégue space

Lra(Ω) = {u :

∫
Ω

a(|ξ|)|u|rdξ <∞},

endowed with the norm

|u|a,r = (

∫
Ω

a(|ξ|)|u|rdξ) 1
r .

The Heisenberg Sobolev space is defined by

H1(Ω,Hn) := {u : Ω→ R : u, |∇Hnu| ∈ L2(Ω)},

endowed with the norm

∥u∥H1 = (

∫
Ω

(|∇Hnu|2 + |u|2)dξ) 1
2 .

∗Speaker
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We set H1
0 (Ω,Hn) := C∞

0 (Ω)
∥u∥H1

where according to the Poincaré’s inequality in
the Heisenberg Sobolev space, the norm

∥u∥∗ = (

∫
Ω

(|∇Hnu|2)dξ) 1
2 ,

is a norm on H1
0 (Ω,Hn) which is equivalent to the standard one. Additionally, we

define

H2(Ω,Hn) := {u : Ω→ R : |∆Hu|, |∇Hu| ∈ L2(Ω)},
which is equipped with the norm

∥u∥H2 = (

∫
Ω

(|∆Hnu|2 + |∇Hnu|2 + |u|2)dξ) 1
2 .

Hardy’s inequality is the crucial inequality in the Sobolev spaces where this in-
equality in the Heisenberg Sobolev space was proved by Mokrani in 2009 [3].

Lemma 1.1. For n ≥ 1 and for any u ∈ H1
0 (Ω,Hn), we have∫

Ω

|u|2

(|z|4 + |t|2) 1
2

dξ ≤ (
n+ 1

n2
)2
∫
Ω

|∇Hnu|2dξ.

From now on we set

X = H1
0 (Ω,Hn) ∩H2(Ω,Hn),

endowed with the norm

∥u∥ = (

∫
Ω

|∆Hnu|2dξ) 1
2 .

In the following theorem we recall compact embeddings in this space which
we use to verify our main result.

Theorem 1.2. [1] The following embeddings are compact:

(i) if Q = 4, then X ↪→ Ls(Ω), 1 ≤ s <∞,

(ii) if Q > 4, then X ↪→ Ls(Ω), 1 ≤ s < Q∗,

where Q∗ = 2Q
Q−4 that in which Q = 2n+ 2 is homogeneous dimension of Hn.

Now, we state the main result of this paper.

Theorem 1.3. Let Ω be the unit Korányi ball centered at the origin in the
Heisenberg group Hn, 2 < r < 2Q

Q−4 and a ∈ L∞(0, 1) be an increasing positive

nonconstant radial function. Then the elliptic problem
−∆Hnu+ λu = a(|ξ|Hn)|u|r−2u, ξ ∈ Ω,

u > 0, ξ ∈ Ω,

∂u
∂n = 0, ξ ∈ ∂Ω,

admits at least one increasing solution in Xrad if λ > 0, where

Xrad = {u ∈ X : u is a radial function}.
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2. Proof of the Result

In this section, first we recall the following variational principle which is main tool
for proving the result [2].

Theorem 2.1. Let V be a reflexive Banach space, V ∗ its topological dual and
K be a closed convex subset of V . Let Φ : V → R be a Gâteax differentiable convex
and lower semi continuous function, and let the linear operator Λ : Dom(Λ) ⊂
V → V ∗ be symmetric and positive. Assume u is a critical point of functional
I(w) = ΨK(w)− Φ(w), where

ΨK(w) :=


Φ∗(Λw), w ∈ K,

+∞, w /∈ K,
and there exists v ∈ K satisfying the linear equation Λv = Dφ(u). Then u ∈ K is
a solution of the equation

Λu = DΦ(u).

To apply Theorem 2.1, we need to consider the reflexive Banach space

V = Xrad ∩ Lra(Ω),
equipped with the norm

|u|V :=∥u∥λ + |u|a,r

=(

∫
Ω

|∇Hnu|2 + λ|u|2dξ) 1
2 + (

∫
Ω

a(|ξ|)|u|rdξ) 1
r .

We set Λu := −∆Hnu + λu to be the symmetric linear operator mentioned in
the Theorem 2.1 and consider I(u) := ψK(u) − φ(u) as an energy functional
corresponding to the problem restricted to

K := {u ∈ V : u is positive radial function and
∂u

∂n
= 0 on ∂Ω},

where convex and lower semi continuous function φ is defined by

φ(u) =
1

r

∫
Ω

a(|ξ|Hn)|u|rdξ,

and ψK is as in Theorem 2.1.
In order to verify I has a critical point, namely u, we apply Mountain Pass

Geometry (MPG) Theorem established in [8]. For this reason we check the condi-
tions of the theorem and also using embeddings mentioned above we prove that I
satisfies the Palais-Smale compactness condition. Our main difficulty was passing
limit through integral that we use a fact of [4, Problem 127, page 81]. Then we
prove that if h ∈ L2(Ω), the problem

−∆Hv + λv = h(ξ), ξ ∈ Ω,

∂v
∂n = 0, ξ ∈ ∂Ω,

admits at least one solution. Using this matter, we show that for any critical point
of I there exists v ∈ K such that satisfies the linear equation Λv = Dφ(u). Indeed,
we check all states of the variatioal principle so u is a solution of the problem in
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the weak sence. Maximal principle guarantees that u is nontrivial. Therefore, we
have proved our claim.
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Abstract. A well-known method to compare the behavior of two dynamical

system is the definition of the gap metric. However, in general, there exists
no explicit solution for calculation of the gap metric in the cases dealing with
non-linear dynamical systems. In this paper, with a new mapping definition
between the constructed graph spaces (sub-spaces of the Hilbert space) by

the non-linear operators, we present a new formulation to calculate the upper
bound of the gap metric. The introduced metric, called as the s-gap metric,
considers the weakest topology of the most far constructed tangent spaces.
The results are fruitful in the robust control theory when encountering with

the stability analysis of the non-linear feedback systems.
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1. Introduction

The gap metric introduced in [4] covering the linear time invariant (LTI) dynamical
systems in which the weakest topology between the constructed graph of two linear
dynamical systems is calculated. After a while, the application of the concept
was extended to linear time varying (LTV) and non-linear dynamical systems in
author’s recent papers [1, 2]. Indeed, the idea behind the recent literatures in the
extension of the gap metric to non-linear cases is to consider the linear systems
coming from the constructed manifold topologies. This consideration is common
through the control theory literatures as [3, 5] and has a drawback in which the
disturbance coming from Taylor expansion is ignored in all of them.

The motivation of this paper is to formulate the gap metric in order to present a
clear frequency interpretation between two dynamical systems covering the created
manifold topologies and residual Taylor term.
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1.1. Notations. For the input, state and output signals of the non-linear
dynamical system, assume the signal spaces U ∈ Lmp , X ∈ Lnp and Y ∈ Lqp,
respectively, where p is the signal norm type and alsom, n and q are the dimension
of the input, state and output signal. Similarly, we consider the set (in euclidean
space) of the inputs, states and outputs with the symbols U ∈ Rm×1, X ∈ Rn×1

and Y ∈ Rq×1. Now, we can consider N as an operator on the arbitrary graph
sub-spaces U1 ⊂ U and Y1 ⊂ Y as N : U1 → Y1. Furthermore, to define the
extended space, we need to the truncation operator as Ta,bu(t) = u(t) ∀t ∈ [a b]
and zero for others. Assume the direct sum of the input and output signal spaces
as W = U ⊕ Y. Then, the graph of the operator N is defined as:

GN =

[
Im
N

]
U1 ⊂ W.

Now, consider two graph spaces constructed by operators N1 and N2, then
the gap between the corresponding spaces is defined as:

δ(N1,N2) = inf
(u2
x2
)∈GN2

sup
(u1
x1
)∈GN1

|| ( u2
x2

)− ( u1
x1

) ||
|| ( u1

x1
) ||

.(1)

Through the paper, we show the continues state space representation of any
linear system as P = {A,B,C,D} with mapping P : u(t) → x(t) and equations
ẋ(t) = Ax(t) +Bu(t) and y(t) = Cx(t) +Du(t).

2. Main Results

In this section, we firstly calculate the upper bound of the non-linear gap metric
and then the s-Gap metric is introduced as a meter on the non-linear operator
space.

2.1. The Upper Bound of the Non-Linear Gap Metric. Consider the
non-linear dynamic system of:

N : ẋ = f(x(t), u(t)).

Then, on the operating point of [x(tl), u(tl)] ∈ D , it can be reformulated as:

N : ẋ(t) = f(x(tl), u(tl)) +A(x(tl), u(tl))(x(t)− x(tl)) +B(x(tl), u(tl))(u(t)− u(tl)),

where A = ∂f
∂x and B = ∂f

∂u at point of [x(tl), u(tl)]. Now, consider the following
definition.

Definition 2.1. We define a mapping in which the truncated signal of
Ttl,tl+1

q(t) ∈ GN , in which tl+1 → tl, is mapped to the operator

Pel = {Al, [BlI], Cl, Dl} .

Note that S covers all of the operators Pel constructed from linearization of any
arbitrary differentiable non-linear operator. In the frequency domain, we show the

operator Pel : [(u(t)−u(tl))T (x(t)−x(tl))T ]T → x(t) as
(
Nl

Ml

)
: q(t)→

(
u(t)−u(tl)
x(t)−x(tl)

)
withM∗

l Ml+N
∗
l Nl = I. Then, we define the Sq(t) = {

(
N0

M0

)
,
(
Nl

Ml

)
, . . . ,

(
Nl

Ml

)
} ∈ S

which is constructed from the manifold way of q(t). This representation is suitable
for the gap metric calculations. In the following, the norm preserving characteristic
of the Sq(t) and an explicit representation for the gap metric between two non-
linear dynamic systems are represented in Theorems 2.2 and 2.3, respectively.
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Theorem 2.2. The operator Sq(t) ∈ S is an isometric isomorphism.

Proof. Let for t ∈ [ti tf ] the new signal illustration of

q(t) = lim
∆t→0

L∑
l=1

Ttl,tl+∆tq(t),

in which tl+1 = tl +∆t and also L = (tf − ti)⧸∆t. Thus,

Sq(t)q(t) = lim
∆t→0

L∑
l=1

Ttl,tl+∆tSq(t)q(t),

or equivalently, Sq(t)q(t) = lim∆t→0

∑L
l=1

(
Nl

Ml

)
Ttl,tl+∆tq(t). Consequently,

∥Sq(t)q(t)∥ = ∥ lim
∆t→0

L∑
l=1

(
Nl

Ml

)
Ttl,tl+∆tq(t)∥,

and the fact ∥
(
Nl

Ml

)
Ttl,tl+∆tq(t)∥ = ∥Ttl,tl+∆tq(t)∥ leads to ∥Sq(t)q(t)∥ = ∥q(t)∥.

□

Theorem 2.3. Assume two non-linear dynamic systems as N1 and N2 with
corresponding graphs GN1 and GN2 . Then, the upper bound of the gap metric given
by Eq. (1) can be calculated as:

δg(N1,N2) ≤ inf
Qmn∈H∞

sup
m,n∈{1,2,...,∞}

||
(
NN1,n

MN1,n

)
−
(
NN2,m

MN2,m

)
Qmn||∞

= δs (N1,N2) (D1,D2) ,

where Di, i ∈ {1, 2} is the equivalent domain of GN1 in the Euclidean space.

Proof. Tacking two differential operator as Sq1(t) : q1 → ( u1
x1

) and Sq2(t) :
q2 → ( u2

x2 ). Then, the gap Eq. (1) is equivalent to:

δg(GN1GN2) = sup
q1(t)∈GN1

inf
q2(t)∈GN2

||Sq1(t)q1(t)− Sq2(t)q2(t)||
||Sq1(t)q1(t)||

.

Note that Sq1(t)q1(t) is isometric isomorphism. Thus,

||Sq1(t)q1 − Sq2(t)q2||
||Sq1q1||

≤
||
(
NN1,1

MN1,1

)
Tt0,t0+∆tq1 −

(
NN2,1

MN2,1

)
Tt0,t0+∆tq2||

||q1||

+ · · ·+
||
(
NN1,∞
MN1,∞

)
Tt0,t0+∆tq1 −

(
NN2,∞
MN2,∞

)
Tt0,t0+∆tq2||

||q1||
.

Also define, Ql : Ttl,tl+∆tq1(t)→ Ttl,tl+∆tq2(t), then,

||Sq1(t)q1 − Sq2(t)q2||
||Sq1q1||

≤

∑∞
l=0 ||

(
NN1,l

MN1,l

)
Tt0,t0+∆tq1 −

(
NN2,l

MN2,l

)
Tt0,t0+∆tq2||

||q1||

=

∑∞
l=0 ||

(
NN1,l

MN1,l

)
Tt0,t0+∆tq1 −

(
NN2,l

MN2,l

)
QlTt0,t0+∆tq1||

||q1||
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≤ sup
l∈{1,...,∞}

||
(
NN1,l

MN1,l

)
−
(
NN2,l

MN2,l

)
Ql||∞.

□

2.2. The s-Gap Metric. In the previous section, we calculate the upper
bound of the gap metric. Now, we are ready to extend the vinnicomb metric
concepts to the non-linear cases. This helps to present a clear frequency response
when comparing two non-linear dynamic systems. To that aim, we firstly need to
define the following conditions for the s-gap metric.


det
(
I + P

(
Tq1(t)GN1

)
P
(
Tq2(t)GN2

))
(ω) ̸= 0, ∀ω

wno det
(
I + P

(
Tq1(t)GN1

)
P
(
Tq2(t)GN2

))
+N

(
P
(
Tq1(t)GN1

))
−N

(
P
(
Tq2(t)GN2

))
= 0.

(2)

Therefore, the s-gap metric is defined as:

δs
(
P
(
Tq1(t)GN1

)
, P
(
Tq2(t)GN2

))
(3)

=

{
supm,n∈{0,1,...,∞} ||G̃2,mG1,n||∞, Eq. (2),

1, otherwise.

Note that N shows the winding number of the argument transfer function. The
idea behind definition of the Eq. (3) is the fact of

δg(N1,N2)(D1,D2) ≥ sup
m,n∈{0,1,...,∞}

||G̃2,mG1,n||∞,

and the δs(N1,N2)(D1,D2) is the sufficient condition for the stability in the wind-
ing number point of view. We refer the reader for more details to [4]. In the fol-
lowing theorem, we show that δs(N1,N2)(D1,D2) defines a metric on the operator
space.

Theorem 2.4. δs(N1,N2)(D1,D2) defines a metric on the operator space.

Proof. We must show that,

δs(N1,N2)(D1,D2) ≤ δs(N1, P
(
Tq(t)GN

)
)(D1,∞)

+ δs(N2, P
(
Tq(t)GN

)
)(D2,∞).

Based on the Figure 1,

δv
(
P
(
T
q
′
1(t)

GN1

)
, P

(
T
q
′
2(t)

GN2

))
≤ δv

(
P
(
Tq(t)GN

)
, P

(
T
q
′
1(t)

GN1

))
+ δv

(
P
(
Tq(t)GN

)
, P

(
T
q
′
2(t)

GN

))
.

Also clearly,

δv
(
P
(
Tq(t)GN

)
, P
(
T

q
′
1(t)

GN1

))
≤ δv

(
P
(
Tq(t)GN

)
, P
(
Tq1(t)GN1

))
,

for the set of D1, and furthermore,

δv
(
P
(
Tq(t)GN

)
, P
(
T

q
′
2(t)

GN2

))
≤ δv

(
P
(
Tq(t)GN

)
, P
(
Tq2(t)GN2

))
,
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..

Sq(t)

.

D1

.

Sq′1(t)

.

D2

.

Sq′2(t)

.

Sq1(t)

.

Sq2(t)

.

δs

.

δs

.

δs

.

δv

Figure 1. The triangular inequality concept (A domain varies)...

D

.

δv

.

δs

.

δs

.

Sq′ (t)

.

Sq1(t)

.

Sq′1(t)

.

Sq(t)

Figure 2. The triangular inequality concept (A single tangent
space varies).

for the set of D2 are satisfied which conclude the first inequality. As more expla-
nations, we point to the Figure 2. Based on this figure, we can write,

δv
(
P
(
Tq

′
(t)GN

)
, P
(
T

q
′
1(t)

GN1

))
≤ δv

(
P
(
Tq(t)GN

)
, P
(
Tq

′
(t)GN1

))
+ δv

(
P
(
Tq(t)GN

)
, P
(
T

q
′
1(t)

GN1

))
.

Also, note that,

δv
(
P
(
Tq(t)GN

)
, P
(
Tq1(t)GN1

))
≥ δv

(
P
(
Tq(t)GN

)
, P
(
T

q
′
1(t)

GN1

))
.

This concludes,

δv
(
P
(
Tq

′
(t)GN

)
, P
(
T

q
′
1(t)

GN1

))
≤ δv

(
P
(
Tq(t)GN

)
, P
(
Tq

′
(t)GN1

))
+ δv

(
P
(
Tq(t)GN

)
, P
(
Tq1(t)GN1

))
and the proof is complete. □

Based on the given results, the δs (N1,N2) (D1,D2) defines a metric on the
operator space. This criteria is fruitful for stability analysis of the non-linear
feedback systems under uncertainty. The corresponding applications is the matter
of the future publications.
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Abstract. In this research, we consider the nonlinear theorems of r-concave,
(−r)-convex and mixed monotone operators to establish the existence of pos-

itive solutions for fractional q-differential systems of operator equations on a
normal cone in a real Banach space, with multipoint boundary conditions.
The examples are given to confirm our results.
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1. Introduction

The quantum calculus is an old subject that was first developed by Jackson [7]. In
2011, Lv investigated the fractional differential equation cDσ[y](t)+g(t, y(t)) = 0,
for t ∈ J0 = (0, 1) under multipoint boundary conditions y(0) = 0, cDν [y](1) =∑m−2
i=1 ai

cDν [y](ei), where
cDσ is the standard Riemann - Liouville fractional de-

rivative, n = [σ] + 1, here J0 = [0, 1], 1 < σ ≤ 2, ν ∈ J0, with 0 ≤ σ − ν − 1,

ai, ei ∈ J0, for i = 1, 2, . . . ,m−2 and
∑m−2
i=1 aie

σ−ν−1
i < 1 [8]. In [6], Henderson et

al., by employing the Schauder fixed point theorem investigated the system of non-
linear differential equation y′′(t) + µy(t)g(z(t)) = 0 and z′′(t) + µv(t)h(y(t)) = 0,
for 0 < t < T , under the multipoint boundary conditions η1y(0) − η2y′(0) = 0,

y(T ) =
∑m−2
i=1 aiy(ei) + a0 and η̂1z(0) − η̂2z′(0) = 0, z(T ) =

∑m−2
i=1 âiz(êi) + â0,

where m ≥ 3.
In this study, we investigate the system of nonlinear fractional q-differential

equations

cDσ
q [y](t) + η1g(t, z(t)) + η2h(t, z(t)) = 0,

cDσ
q [z](t) + η1g(t, y(t)) + η2h(t, y(t)) = 0,(1)

∗Speaker
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cDσ
q [y](t) + η1g(t, y(t)) + η2h(t, z(t)) = 0,

cDσ
q [z](t) + η1g(t, z(t)) + η2h(t, y(t)) = 0,(2)

for all t ∈ J0, under multipoint boundary conditions

cDν
q [y](1) =

m−2∑
i=1

ai
cDν

q [y](ei),
cDν

q [z](1) =
m−2∑
i=1

ai
cDν

q [z](ei),(3)

and y(0) = 0, z(0) = 0, where 1 < σ ≤ 2, ν ∈ J0 with σ − ν − 1 ≥ 0, η1,
η2 ∈ (0,+∞) with η1 ≥ η2,

cDσ
q is the standard Riemann-Liouville fractional

q–derivative, g, h : J0 × [0,∞) → [0,∞) is continuous and ai, ei ∈ J0 for i =

1, 2, . . . ,m− 2 with
∑m−2
i=1 aie

σ−ν−1
i < 1.

2. Preliminaries, Background Materials and Some Lemmas

We recall some basic definitions, notations and results of q-fractional calculus
which are used throughout this paper [2]. Let a ∈ R. Define [a]q = (1− qa)/(1−
q) [7]. The power function (y − z)nq with n ∈ N0 is defined by (y − z)

(n)
q =∏n−1

k=0(y − zqk), for n ≥ 1 and (y − z)(0)q = 1, where y and z are real numbers and

N0 := {0} ∪N [1]. The q–Gamma function is given by Γq(σ) = (1− q)(σ−1)/(1−
q)σ−1, where σ ∈ R\{0,−1,−2, . . .} [7].

Note that, Γq(σ + 1) = [σ]qΓq(σ). The q–derivative of function g, is defined

by Dq[g](τ) =
g(τ)−g(qτ)

(1−q)τ , and Dq[g](0) = limτ→0 Dq[g](τ) [1].

Furthermore, the higher order q–derivative of a function g is defined by Dn
q [g](τ)

= Dq[D
n−1
q [g]](τ), for n ≥ 1, where D0

q[g](τ) = g(τ) [1]. The q–integral of a func-
tion g is defined on [0, b] by

Iq[g](τ) =

∫ τ

0

g(ξ) dqξ = τ(1− q)
∞∑
k=0

qkg(τqk),

for 0 ≤ τ ≤ b, provided the series is absolutely converges [2].
The operator Inq is given by I0q[g](τ) = g(τ) and Inq [g](τ) = Iq[I

n−1
q [g]](τ) for

n ≥ 1 and g ∈ C([0, T ]) [2]. It has been proved that Dq[Iq[g]](τ) = g(τ) and
Iq[Dq[g]](τ) = g(τ) − g(0), whenever g is continuous at τ = 0 [1]. The fractional
Riemann–Liouville type q–integral of the function g on J0 = (0, 1) for σ ≥ 0 is
defined by I0q[g](τ) = g(τ) and

Iσq [g](τ) =
1

Γq(σ)

∫ τ

0

(τ−qξ)(σ−1)g(ξ) dqξ = τσ(1−q)σ
∞∑
k=0

qk
∏k−1
i=1 (1− qσ+i)∏k−1
i=1 (1− qi+1)

g(τqk),

for t ∈ J0 [1, 3].
The Caputo fractional q–derivative of a function g is defined by

cDσ
q [g](τ) = I[σ]−σq [D[σ]

q [g]](τ) =
1

Γq([σ]− σ)

∫ τ

0

(τ − qξ)([σ]−σ−1)D[σ]
q [g](ξ) dqqξ,

where t ∈ J0 and σ > 0 [3]. It has been proved that Iνq [I
σ
q [g]](τ) = Iσ+νq [g](τ),

and Dσq [Iσq [g]](τ) = g(τ), where σ, ν ≥ 0 [3].
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Lemma 2.1. Let r > ℓ > 0. Then, the formula cDσ
q [I

ν
q [g]](τ) = Iν−σq [g](τ)

holds almost everywhere on τ ∈ [a, b] for g ∈ L1[a, b] and it is valid at any point
τ ∈ [a, b] if g ∈ C[a, b].

Let σ > 0, g ∈ L1([a, b],R+). Then we have Dσ+1
q [g](τ) ≤ ∥Dσ

q [g]∥L1 [4]. Let
Y be a real Banach space and P be a cone in Y which defined a partial ordering
in Y by y ≤ z if and only if y − z ∈ P . P is said to be normal if there exists a
positive constant r such that ϑ ≤ v ≤ w implies ∥v∥ ≤ N∥w∥ [5]. P is called solid
if its interior P is nonempty. An operator O : D × D → E is said to be mixed
monotone if O(v, w) is nondecreasing in v and non increasing in w, i.e., for all vi,
wi ∈ D with i = 1, 2, v1 ≤ v2, and w2 ≤ w1 imply O(v1, w1) ≤ O(v2, w2) [5]. For
all v, w ∈ E , the notation v ∼ w means that there exists ℓ > 0 and η > 0 such that
ℓv ≤ w ≤ ηv [5]. Clearly, ∼ is an equivalence relation. Given h > 0 (i.e., h ≥ 0 and
h ̸= 0), we denote by Ph the set Ph = {v ∈ E | v ∼ h}. It is easy to see that Ph ⊂ P .
Suppose that 0 < n − 1 ≤ σ < n and y ∈ A ∩ L, here A = C(J) and L = L1(J).

Then Iσq [D
σ
q [y]](τ) = y(τ) +

∑n−1
i=0 diτ

i for some constants di ∈ R [9]. Let D = P
or D = P ◦ and r be a real number with 0 ≤ r < 1. An operator O : P → P is said
to be r-concave ((−r)-convex) if it satisfies O(ℓv) ≥ ℓrO(v), (O(ℓv) ≤ ℓ−rO(v)),
for all ℓ ∈ J0 and v ∈ D [10]. An operator O : E → E is said to be homogeneous
if it satisfies O(ℓv) = ℓO(v), for all ℓ > 0 and v ∈ E [11]. An operator O : P → P
is said to be subhomogeneous if it satisfies O(ℓv) ≥ ℓO(v), for all ℓ ∈ J0 and
v ∈ P . Let P be a normal cone in a real Banach space E and O1 : P → P be an
increasing r-concave operator and O2 : P → P be an increasing subhomogeneous
operator. Assume that there is h > 0 such that O1(h) ∈ Ph and O2(h) ∈ Ph
and there exists a constant γ̂0 > 0 such that O1(v) ≥ γ̂0O2(v), for all v ∈ P .
Then operator equation O1(v) + O2(v) = v has a unique solution v∗ in Ph [11].
Moreover, constructing successively the sequence wn = O1(wn−1) + O2(wn−1),
n ≥ 1 for any initial value w0 ∈ Ph, we have wn → v∗ as n→∞ [11].

Theorem 2.2. [10] Let P be a normal cone of the real Banach space E and O :
P×P → P be a mixed monotone operator. Suppose that for fixed w, O(·, w) : P →
P is r1-concave, for fixed v, O(v) : P → P is (−r2)-convex, where 0 ≤ r1+r2 < 1,
and there exist elements y0, z0 ∈ P with y0 ≤ z0 and a real number τ0 > 0 such
that y0 ≥ τ0z0, y0 ≤ O(y0, z0) and O(z0, y0) ≤ z0. Then O has exactly one fixed
point y0 ≤ v∗ ≤ z0, and constructing successively the sequence vn = O(vn−1, wn−1)
and wn = O(wn−1, vn−1), for n ≥ 1 and initial value (v0, w0) ∈ [y0, z0] × [y0, z0],
we have vn → v∗, wn → w∗(n→∞).

3. Main Results

Lemma 3.1. Let w ∈ C(J0). Then, the fractional q-differential equation

cDσ
q [y](t) + w(t) = 0,

for t ∈ J0, 1 < σ ≤ 2, under boundary conditions cDν
q [y](1) =

∑m−2
i=1 ai

cDν
q [y](ei),

y(0) = 0, has a unique solution which is given by y(t) =
∫ 1

0
Gq(t, ξ)w(ξ) dqξ, where

Gq(t, ξ) = 1Gq(t, ξ) + 2Gq(t, ξ), in which 1Gq(t, ξ) =
1

Γq(σ)
[tσ−1(1 − ξ)(σ−ν−1) −

(t−ξ)(σ−1)], whenever ξ ≤ t, 1Gq(t, ξ) =
1

Γq(σ)
tσ−1(1−ξ)(σ−ν−1), whenever t ≤ ξ,

2Gq(t, ξ) =
1

∆Γq(σ)
[
∑

0≤ξ≤ei(aie
σ−ν−1
i tσ−1(1−ξ)(σ−ν−1)−aitσ−1(ei−ξ)(σ−ν−1))],
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whenever ξ ≤ ei, 2Gq(t, ξ) =
1

∆Γq(σ)
[
∑
ei≤ξ≤1 aie

σ−ν−1
i tσ−1(1− ξ)(σ−ν−1)], when-

ever ei ≤ ξ, for almost all t, ξ ∈ J0, where ∆ = 1−
∑m−2
i=1 aie

σ−ν−1
i .

Lemma 3.2. Suppose that h(t) = tσ−1. Then Gq(t, ξ) is defined in Lemma 3.1
satisfies

Gq(t, ξ) ≤ h(t)[
1

Γq(σ)
(1− ξ)(σ−ν−1) +

1

O1(Γq(σ))

m−2∑
i=1

aie
σ−ν−1
i (1− ξ)(σ−ν−1)]

and

Gq(t, ξ) ≥ h(t)[
1

Γq(σ)
((1− ξ)(σ−ν−1) − (1− ξ)(σ−1))

+
1

O1(Γq(σ))

m−2∑
i=1

(aie
σ−ν−1
i (1− ξ)(σ−ν−1) − ai(ei − ξ)(σ−ν−1))].

In the space E = C(J0,R) equipped with the norm ∥y∥ = supt∈J0
|y(t)|, the

set P = {y ∈ E : y(t) ∈ [0,∞)} is a cone in E .

Remark 3.3. From Lemma 3.1, we know that system (1)-(2) and (1)-(3) can
be translated into the equations

y(t) =

∫ 1

0

Gq(t, ξ)(η1g(ξ, z(ξ)) + η2h(ξ, z(ξ))) dqξ,

z(t) =

∫ 1

0

Gq(t, ξ)(η1g(ξ, y(ξ)) + η2h(ξ, y(ξ))) dqξ,(4)

and

y(t) =

∫ 1

0

Gq(t, ξ)(η1g(ξ, y(ξ)) + η2h(ξ, z(ξ))) dqξ,

z(t) =

∫ 1

0

Gq(t, ξ)(η1g(ξ, z(ξ)) + η2h(ξ, y(ξ))) dqξ,(5)

respectively. Thus (y, z) is solution of systems (1), (2) and (3) if and only if (y, z)
is a solution of system (4), and (y, z) is a solution of system (2) and (3) if and only
if (y, z) is a solution of system (5). For convenience, we denote

P1(ξ) =
1

Γq(σ)
((1− ξ)(σ−ν−1) − (1− ξ)(σ−1))

+
1

∆Γq(σ)

m−2∑
i=1

(aie
σ−ν−1
i (1− ξ)(σ−ν−1) − ai(ei − qξ)(σ−ν−1)),

P2(ξ) =
1

Γq(σ)
(1− ξ)(σ−ν−1) +

1

∆Γq(σ)

m−2∑
i=1

aie
σ−ν−1
i (1− ξ)(σ−ν−1).

Theorem 3.4. Suppose that the following assumptions hold.

(A1) Functions g, h ∈ C = C[J0 × R+,R+], g(t, w) and h(t, w) are increasing
in w ∈ R+, and h(t, w) ̸= 0 whenever w = 0.

(A2) There exists a constant r ∈ J0 such that g(t, ℓw) ≥ ℓrg(t, w), h(t, ℓw) ≥
ℓrh(t, w), for almost all t ∈ J0, ℓ ∈ J0 = (0, 1), w ∈ R+.
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(A3) There exists a constant γ̂0 > 0 such that g(t, w) ≥ γ̂0h(t, w), t ∈ J0, for
w ∈ R+.

Then, equations of system (1), (2) and (3) have a unique positive solution (y◦, z◦)
in Ph × Ph, where h(t) = tσ−1, t ∈ J0. Furthermore, for any initial value y0 and

z0 ∈ Ph, constructing successively the sequence yn(t) =
∫ 1

0
Gq(t, ξ)[η1g(ξ, zn−1(ξ))+

η2h(ξ, zn−1(ξ))] dqξ, zn(t) =
∫ 1

0
Gq(t, ξ)[η1g(ξ, yn−1(ξ))+ η2h(ξ, yn−1(ξ))] dqξ, for

n ∈ {0} ∪ N, we have (yn(t), zn(t))→ (y◦(t), z◦(t)) as n→∞.

Corollary 3.5. Suppose that the following assumptions hold:

(A4) g ∈ C, g(t, w) is increasing in w for w ∈ R+, g(t, 0) ̸= 0.
(A5) There exists a constant r ∈ J0 such that g(t, λw) ≥ λrg(t, w), for almost

all t ∈ J0, λ ∈ J0, w ∈ R+.

Then, system cDσ
q [y](t) + η1g(t, z(t)) = 0, cDσ

q [z](t) + η1g(t, y(t)) = 0, for

t ∈ J0, with the multipoint boundary conditions cDν
q [y](1) =

∑m−2
i=1 ai

cDν
q [y](ei),

cDν
q [z](1) =

∑m−2
i=1 ai

cDν
q [z](ei) and y(0) = 0, z(0) = 0, has a unique positive

solution (y◦, z◦) in Ph × Ph, where h(t) = tσ−1, t ∈ J0,
cDσ

q is the standard

Riemann-Liouville fractional q-derivative, g : J0 × [0,∞)→ [0,∞) is continuous,
1 < σ ≤ 2, ν ∈ J0 with 0 ≤ σ − ν − 1, 0 < ai, ei < 1 for i = 1, 2, . . . ,m − 2
with

∑m−2
i=1 aie

σ−ν−1
i < 1 and η1, η2 ∈ (0,+∞) with η1 ≥ η2. Moreover, for

any initial value y0 ∈ Ph and z0 ∈ Ph, constructing successively the sequence

yn(t) = η1
∫ 1

0
Gq(t, ξ)g(ξ, zn−1(ξ)) dqξ, zn(t) = η1

∫ 1

0
Gq(t, ξ)g(ξ, yn−1(ξ)) dqξ, for

n = {0} ∪ N, we have (yn(t), zn(t))→ (y◦(t), z◦(t)) as n→∞.

Theorem 3.6. Consider the following assumption:

(A6) g, h ∈ C, g(t, w) and h(t, z) are nondecreasing and nonincreasing in
the second argument, respectively. In addition to, g(t, w) and h(t, z) are
bounded in [J0 × R+].

(A7) There exist 0 ≤ r1 < 1 and 0 ≤ r2 < 1 with 0 ≤ r1 + r2 < 1 such that
g(t, kw) ≥ kr1g(t, w) and h(t, kw) ≤ k−r2h(t, w) respectively, for each
k ∈ J0 = (0, 1).

Then, Eqs. (1), (2) and (3) have exactly one positive solution (y◦, z◦) ∈ [y0, z0]×
[y0, z0], where y0, z0 ∈ P with y0 ≤ z0, and constructing successively the sequence

yn(t) =

∫ 1

0

Gq(t, ξ)[η1g(ξ, yn−1(ξ)) + η2h(ξ, zn−1(ξ))] dqξ,

zn(t) =

∫ 1

0

Gq(t, ξ)[η1g(ξ, zn−1(ξ)) + η2, h(ξ, yn−1(ξ))] dqξ,

for n ∈ {0} ∪ N, we get (yn(t), zn(t))→ (y◦(t), z◦(t)) as n→∞.

Example 3.7. Consider the system of nonlinear fractional q-differential equa-
tions

cD
17
9
q [y](t) +

125(t3+ 3
√
z(t)+2)

34 + 139
71 [

3
√
z(t)

(2+t2)(3+ 3
√
z(t))

+ t3

4 +
√
2] = 0,

cD
17
9
q [z](t) +

125(t3+ 3
√
y(t)+2)

34 + 139
71 [

3
√
y(t)

(2+t2)(3+ 3
√
y(t))

+ t3

4 +
√
2] = 0,

(6)
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for t ∈ J0, with the multipoint boundary conditions cD
2
9
q [y](1) =

8
15
cD

2
9
q [y](

1
5 ) +

3
5
cD

2
9
q [y](

3
10 )+

4
7
cD

2
9
q [y](

5
8 ),

cD
2
9
q [z](1) =

8
15
cD

2
9
q [z](

1
5 )+

3
5
cD

2
9
q [z](

3
10 )+

4
7
cD

2
9
q [z](

5
8 ),

and y(0) = z(0) = 0. We define g(t, w(t)) and h(t, w(t)) by g(t, w) = t3 + 3
√
w+2,

h(t, w) =
3
√
w

(2+t2)(3+ 3
√
w)

+ t3

4 +
√
2. One can easy show that g(t,w), h(t, w) are

increasing with respect to w, h ≥
√
2 > 0 whenever w = 0. Thus σ−ν−1 = 2

3 ≥ 0

and for m = 5, we get
∑m−2
i=1 aie

σ−ν−1
i = 1267

1458 < 1. Put r = 1/3. Then for γ ∈ J0,
t ∈ J0, w ∈ R+, we can notice that g(t, γw) ≥ γrg(t, w), h(t, γw) ≥ γrh(t, γw).
Also, we deduce that g(t, w) ≥ γ̂0h(t, w), where γ̂0 = 1 > 0, for each t ∈ J0,
w ∈ R+. Thus, (A1)-(A3) hold. Theorem 3.4 implies that system (6) has a unique

positive solution in Ph × Ph, where h(t) = t
8
9 .

Example 3.8. Consider the system of nonlinear fractional q-differential equa-
tions 

cD
15
7
q [y](t) + 21

10 [
cos2 t+ 5

√
y(t)

5(1+cos2 t)(1+ 5
√
y(t))

+ t+ 5
√
125]

+ 13
10 [

| sin t|√
4+| sin t|+z(t)

+ t2 +
√
85] = 0,

cD
15
7
q [z](t) + 21

10 [
cos2 t+ 5

√
z(t)

5(1+cos2 t)(1+ 5
√
z(t))

+ t+ 5
√
125]

+ 13
10 [

| sin t|√
4+| sin t|+y(t)

+ t2 +
√
85] = 0,

(7)

for t ∈ J0, with the multipoint boundary conditions cD
1
4
q [y](1) =

1
5
cD

1
4
q [y](

3
8 ) +

8
13
cD

1
4
q [y](

2
3 ),

cD
1
4
q [z](1) = 1

5
cD

1
4
q [z](

3
8 ) +

8
13
cD

1
4
q [z](

2
3 ) and y(0) = z(0) = 0. We

define g(t, w) and h(t, w) by g(t, w) = t + cos2 t+ 5
√
w

5(1+cos2 t)(1+ 5
√
w)

+ 5
√
125, h(t, w) =

t2+ | sin t|
(4+| sin t|+w)

1
2
+
√
85. Obviously, g, h are increasing with respect to the second

argument, h(t, 0) ≥
√
85 > 0. Thus σ − ν − 1 = 25

28 ≥ 0 and for m = 4, we get∑m−2
i=1 aie

σ−ν−1
i = 119

250 < 1. Put r = 1
5 , r1 = 1

5 , r2 = 1
2 . On can easy check that g,

h ∈ C[J0×R+,R+] and g(t, w) is nondecreasing in w and h(t, w) is nondecreasing

in w, g(t, w) ≤ 2+ 5
√
125, h(t, w) ≤ 2+

√
85 and 0 < r1+r2 = 7/10. Then for γ ∈ J0,

t ∈ J0, w ∈ R+, we can notice that g(t, γw) ≥ γr1g(t, w), h(t, γw) ≤ γr2h(t, γw).
Then all the conditions of Theorem 3.6 are fulfilled. Consequently, there exist
y0, z0 ∈ P , and system (7) has exactly one positive solution in [y0, z0]× [y0, z0].
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1. Introduction

The concept of shadowing was originated from the Anosov closing lemma and
because of its rich consequences, shadowing plays an important role in the general
qualitative theory of dynamical systems. Another variant of shadowing is the
specification property in which one can approximate distinct finite pieces of orbits
by an actual orbit with a certain uniformity. It was first introduced by Bowen [3]
to study the ergodic property of Axiom A diffeomorphisms. It has been shown that
every mapping with the specification property is chaotic in the sense of Devaney;
see [1]. The authors in [4, 5], respectively, defined some kind of specification such
as weak specification and pseudo-orbital specification properties for a continuous
map on a compact metric space and studied their relations with other dynamical
properties.

Bahabadi [2] introduced the notions of shadowing and average shadowing
properties for free semigroup actions. He obtained that a semigroup with average
shadowing property is chain transitive.

Ergodic shadowing and pseudo orbital specification properties for finitely gen-
erated semigroup actions were introduced in [6], and it was proved that these
properties are equivalent to the semigroup being topologically mixing and having
the ordinary shadowing property.

Here, we introduce the definition of weak specification property for semigroup
actions and study the connection between this property with ergodic shadowing
and pseudo orbital properties. Indeed, we prove the following results.

Theorem 1.1. Let G be a semigroup generated by the family {id, g1, . . . , gm}
of continuous maps on the compact metric space X, where gi is surjective for some
i ∈ {1, . . . ,m}. Then the following properties on G are equivalent:

1) ergodic shadowing,
2) chain mixing and ordinary shadowing,
3) topologically mixing and ordinary shadowing,
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4) weak specification and ordinary shadowing,
5) pseudo-orbital specification.

2. Preliminaries

In this section, we describe the free semigroup actions and state some notations
and definitions. Let N = {1, 2, 3, . . .} and let Z+ = {0, 1, 2, 3, . . .}. Given a finitely
generated semigroup G with a finite set of generators G1 = {id, g1, g2, . . . , gm},
where gi : X → X, i ∈ P = {1, . . . ,m}, is a continuous self-map on the compact
metric space (X, d). We write G =

∪
n∈Z+ Gn, where G0 = id and

Gn = {gin ◦ · · · ◦ gi2 ◦ gi1 : gij ∈ G1}.

Indeed, Gn consists of elements that are concatenations of at the most n elements
of G1.

Let Fm be the free semigroup with generators {1, . . . ,m}. One way to interpret
this statement is to consider the itinerary map ι : Fm → G given by

w = w1w2 . . . wn → gnw = gw1 ◦ · · · ◦ gwn ,

and to regard concatenations on G as images by ι of paths on Fm.

Let G1 = {id, g1, . . . , gm} be a finite collection of continuous maps on the
compact metric space X. Th symbolic dynamic is a way to display the elements of
semigroup G associated with this family. Let Σm be the space of infinite sequences
of m symbols {1, . . . ,m}, that is, Σm = {ω = ω0ω1ω2 . . . : ωi ∈ {1, . . . ,m}}. For
any sequence ω = ω0ω1ω2 . . . ∈ Σm, take g0ω := id and for any n > 0, gnω(x) :=
gωn−1 ◦ · · · ◦ gω0(x). Let Am be a set of finite words of symbols {1, . . . ,m}, that
is, if w ∈ Am, then w = w0 . . . wl−1, where wi ∈ {1, . . . ,m} for all i = 0, . . . , l− 1.
Also, for 0 ≤ i ≤ l − 1, we denote giw := gwi−1 ◦ · · · ◦ gw0 .

Let (X, d) be a compact metric space and let G be a semigroup associated
with the finite family {id, g1, . . . , gm} of continuous self maps on X. Given w =
w0 . . . wn−1 ∈ Am and ϵ > 0. An (ϵ, w)-chain of semigroup G from x to y is a
finite sequence x0 = x, x1, . . . , xn = y such that

d(gwi(xi), xi+1) < ϵ for any i = 0, . . . , n− 1.

We say that G is chain transitive if for any x, y ∈ X and any ϵ > 0, there exists an
ϵ-chain from x to y. Also G is called chain mixing if for any two points x, y ∈ X
and any ϵ > 0, there is a positive integer N such that for any integer n ≥ N , there
is an ϵ-chain from x to y of length n. We say that the semigroup G is topologically
mixing, if for any two open subsets U and V of X, there exists an integer N ∈ N,
such that for any n ≥ N, gnω(U) ∩ V ̸= ∅, for some ω ∈ Σm.

For a sequence ξ = {xi}i≥0, δ > 0, and ω = ω0ω1ω2 . . . ∈ Σm, put

Np(ξ,G, ω, δ) = {i ∈ Z+ : d(gωi(xi), xi+1) ≥ δ},

Npc(ξ,G, ω, δ) = Z+ \Np(ξ,G, ω, δ),
and

Npn(ξ,G, ω, δ) = Np(ξ,G, ω, δ) ∩ {0, . . . , n− 1}.
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To simplify the notation, we denote them by Np(ξ, ω, δ) and Npn(ξ, ω, δ), respec-
tively. Given a sequence ξ = {xi}i≥0 and a point z ∈ X, consider

Ns(ξ, ω, z, δ) = {i ∈ Z+ : d(giω(z), xi) ≥ ϵ},

Nsc(ξ, ω, z, δ) = Z+ \Ns(ξ, ω, z, δ),
and

Nsn(ξ, ω, z, δ) = Ns(ξ, ω, z, δ) ∩ {0, . . . , n− 1}.

Definition 2.1. Let δ > 0 and let ξ = {xi}i≥0 ⊂ X. We have the following
concepts:

(1) ξ is a (δ, ω)-pseudo orbit of G for some ω = ω0ω1 . . . ∈ Σm, if for any
i ∈ Z+, d(gωi(xi), xi+1) < δ, see [2].

(2) ξ is a (δ, ω)-ergodic pseudo orbit of G for some ω = ω0ω1 . . . ∈ Σm

provided that the set Np(ξ, ω, δ) has zero density (See [6]), that is,

lim
n→∞

|Npn(ξ, ω, δ)|
n

= 0.

Remark 2.2. Clearly, every orbit {gnω(x)}n≥0 is a (δ, ω)-pseudo orbit, and
every (δ, ω)-pseudo orbit is a (δ, ω)-ergodic pseudo orbit. Moreover a (δ, ω)-ergodic
pseudo orbit may be represented as

ξ = {x0, x1, x2, . . . xm1 ;xm1+1, xm1+2, . . . , xm2 ;xm2+1, xm2+2, . . .},

where {xmi+1, xmi+2, . . . , xmi+1}, i ∈ Z+ are finite (δ, wi)-chains with

wi = ωmi+1ωmi+2 . . . ωmi+1−1 ∈ Am, m0 = −1,

and {mi}i∈Z+ has zero density.

Now, we use the above notions of approximate trajectories to define the various
types of shadowing properties.

Definition 2.3.

(1) [2] A semigroup G has the shadowing property, provided that for every
ϵ > 0, there exists δ > 0 such that, for any (δ, ω)-pseudo orbit ξ of G,
there is a point z ∈ X such that for any i ∈ Z+,

d(giω(z), xi) < ϵ.

(2) [6] A semigroup G has the ergodic shadowing property if for each ϵ > 0
there exists δ > 0 such that every (δ, ω)-ergodic pseudo orbit ξ of G can
be ϵ-ergodic shadowed by some point z in X, that is, there exists φ ∈ Σm

with φi = ωi for i ∈ Npc(ξ, ω, δ), such that

lim
n→∞

|Nsn(ξ, φ, z, ϵ)|
n

= 0.

Now, we introduce the notion of weak specification property for the context
of semigroup actions.

Definition 2.4. We say that the semigroup G has weak specification property
if for any ϵ > 0, there exists N(ϵ) > 0 such that for any set {x1, . . . , xk} of points
of X, any sequence of nonnegative integers a1 < b1 < a2 < b2 < · · · < ak < bk
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with aj+1− bj ≥ N(ϵ), and any wj = waj . . . wbj−1 ∈ Am, (1 ≤ j ≤ k), there exist
a point z ∈ X and ω ∈ Σm with ωi = wi for any aj ≤ i ≤ bj − 1 such that

d(giω(z), g
i−aj
wj (xj)) < ϵ, for any aj ≤ i ≤ bj , 1 ≤ j ≤ k.

In the following, we recall the stronger notion of specification for the semigroup
G, which is called pseudo-orbital specification property and is equivalent to ergodic
shadowing property (See [6]).

Definition 2.5. We say that a semigroup G has the pseudo-orbital specifica-
tion property if for any ϵ > 0, there exist δ = δ(ϵ) > 0 and N(ϵ) > 0 such that for
any nonnegative integers a1 < b1 < a2 < b2 < · · · < ak < bk with aj+1−bj ≥ N(ϵ)
and (δ, wj)-pseudo orbits ξj with ξj = {x(j,i)}, aj ≤ i ≤ bj , 1 ≤ j ≤ k, and

wj = wjaj . . . w
j
bj−1 ∈ Am, there exist a point z ∈ X and ω ∈ Σm with ωi = wji for

aj ≤ i ≤ bj − 1 and 1 ≤ j ≤ k, such that

d(giω(z), x(j,i)) < ϵ, for any aj ≤ i ≤ bj , 1 ≤ j ≤ k.

It is clear from the definition that the pseudo-orbital specification property
implies the weak specification property.

3. Weak Specification Property of Semigroup Action

In this section we show that if a semigroup G has the shadowing property, then
weak specification and pseudo-orbital specification properties are equivalent. It is
clear from the definition that any semigroup with the pseudo-orbital specification
property, has the weak specification property. In the following, we present a finitely
generated semigroup action with the weak specification property, that does not
have the pseudo-orbital specification property.

Example 3.1. Let X = S1, let g1 be any C1-expanding map on X and
g2 := Rα : X → X be the rotation of the angle α. Let G be a semigroup with
generating set {id, g1, g2}. The semigroup G does not have the shadowing property,
as g2 does not have not the shadowing property. Therefore it does not have
the pseudo orbital specification property (since the pseudo-orbital specification
property implies shadowing [6, Theorem 1.1]). We show that G has the weak
specification property. Since g1 is an expanding map by [7, Lemma 11.2.7], There
exists ϵ0 > 0 such that for any ϵ ≤ ϵ0, any x ∈ X, and any n ∈ N, gn1 (B(x, n, ϵ)) =
B(gn1 (x), ϵ), where

B(x, n, ϵ) := {y ∈ X, max
0≤i≤n

d(gi1(x), g
i
1(y)) < ϵ}.

Also for any ϵ > 0, there exists N = N(ϵ) such that gN1 (B(x, ϵ)) = S1 for any
x ∈ X. By this observation, for given ϵ > 0, any set {x1, . . . , xk} of points of X,
any sequence of nonnegative integers a1 < b1 < a2 < b2 < · · · < ak < bk with
aj+1 − bj ≥ N(ϵ), and any wj = waj . . . wbj−1 ∈ Am, (1 ≤ j ≤ k), we can find a
point z ∈ X such that for ω ∈ Σm with

ωi :=

{
wi, i ∈ [aj , bj − 1],

1, i ∈ Z+ \ [aj , bj − 1],
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we have

d(giω(z), g
i−aj
wj (xj)) < ϵ, for any aj ≤ i ≤ bj , 1 ≤ j ≤ k.

Here, we shall show that by assuming the shadowing property for finitely
generated semigroup G, weak specification property implies the pseudo-orbital
specification property.

Theorem 3.2. If a semigroup G associated with the family of continuous self
maps {id, g1, . . . , gm} satisfies that gi is surjective for some i ∈ {1, . . . ,m} and
has the shadowing and weak specification properties, then it has the pseudo-orbital
specification property.

Using Theorem 3.2 and [6, Theorem 1.1], we obtain Theorem 1.1.
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1. Introduction

In this paper we study the energy functional of the form

Eσ2,p [u,Ω] :=

∫
Ω

[
1

p
σ

p
2

2 (u) + Φ(det∇u)
]
dx,

over the space

A(Ω) = {u ∈W 1 ,2p(Ω,Rn) : det∇u > 0 forLn − a.e, u
∣∣
∂Ω

= x}.

Here Ω is a n-dimensional annulus, i.e., Ω = {x ∈ Rn : a < |x| < b} with 0 <
a < b < ∞ , 2 ≤ p ≤ ∞ and σ2(u) = | ∧2 ∇u|2 =

∑
1≤i<j≤n

λ2iλ
2
j . Notice that

0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn are singular values of the ∇u and the convex function Φ
holds in the following assumptions:

[H1] Φ : (0,∞)→ (0,∞),

[H2] Φ ∈ C2(0,∞),

[H3] lim
t↓0

Φ(t) = lim
t↑∞

Φ(t)

t
=∞.

By using Green’s deformation tensor (See [3]), the energy functional E can be
written as

Eσ2,p[u,Ω] =

∫
Ω

[
1

p
σ

p
2
2 (u) + Φ(det∇u)

]
dx

=

∫
Ω

[
1

p 2
p
2

(∣∣∇u∣∣4 − ∣∣(∇u) (∇u)t∣∣2) p
2

+Φ(det∇u)
]
dx.(1)
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The system of Euler-Lagrange equations relating to the above energy func-
tional over the space A(X) as follows: divD[∇u(x)] = 0, x ∈ Ω,

det∇u(x) > 0, x ∈ Ω,
u(x) = x, x ∈ ∂Ω.

Noticing that the divergence operator acts row-wise and the tensor field D is
defined by

D(ξ) :=
1

2
p−2
2

(∣∣ξ∣∣4 − ∣∣ξ ξt∣∣2) p−2
2 [
|ξ|2ξ − ξ ξt ξ

]
+Φ′(det ξ)cofξ,

for all ξ ∈Mn×n satisfying det ξ > 0.
A motivation for the study of such problems is nonlinear elasticity, where

Eσ2,p denotes the elastic energy of a homogeneous hyperelastic material and A(Ω)
denotes the space of orientation preserving deformations of Ω fixing the boundary
pointwise (See, e.g., [1, 2]).

Now we introduce a class of maps as generalized twists, which described as

u(x) = G(r) θ,

where G(r) = f(r)Q(r), r = |x|, θ =
x

|x|
, Q ∈ C

(
[a, b],SO(n)

)
and f ∈ C[a, b].

For Q, f to be in the A(Ω), we need to consider condition L2-summability on

ḟ = d
drf , Q̇ = d

drQ and also Q(a) = Q(b) = In, f(a) = a, f(b) = b, ḟ > 0 on
(a, b).

2. Main Results

In this section, based on the generalized twists, we introduce the system of Euler-
Lagrange equations for σ2-energy functional.

Proposition 2.1. Let u be a generalized twist. Then the σ2-energy functional
(1) can be expressed in the form of

Gσ2,p[Q, f ] :=

∫ b

a

[
G(r, f, ḟ , Q̇) + nωnΦ

(
ḟ

(
f

r

)n−1)]
rn−1 dr,

where the integrand itself is given through an integral over the unit sphere as fol-
lows:

G(r, f, η, ξ) :=

∫
Sn−1

1

p 2
p
2

[
(n− 1)(n− 2)

(
f

r

)4

+

2(n− 1)

(
fη

r

)2

+ 2(n− 2)
f4

r2
∣∣ξθ∣∣2] p

2

dHn−1(θ),

over the space of admissible maps

G = G(a, b) := (Q, f) :



Q ∈W 1,p([a, b],SO(n)),

Q(a) = Q(b) = In,

f ∈W 1,p[a, b],

ḟ > 0 L1-a.e. on (a, b),

f(a) = a, f(b) = b.


,
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Proof. By using the fact that u(x) = Q(r) f(r)θ, we have

∇u =
(
ḟ − f

r

)
Qθ ⊗ θ + fQ̇θ ⊗ θ + f

r
Q.

After some calculations, it is easy to obtain that∣∣∇u∣∣2 = tr
[
(∇u) (∇u)t

]
= (n− 1)

(
f

r

)2

+ ḟ2 + f2
∣∣Q̇θ∣∣2,

and

det(∇u) = det

[
f

r
Q+

(
ḟ − f

r

)
Qθ ⊗ θ + fQ̇θ ⊗ θ

]
= ḟ

(
f

r

)n−1

.

Substituting above relation into (1), the proof can be concluded. □

Proposition 2.2. Consider (Q, f) ∈ G such that Q ∈ C2
(
(a, b),SO(n)

)
,

f ∈ C2(a, b), ḟ > 0 on (a, b) and Gσ2,p[Q, f ] < ∞. Then the system of Euler-
Lagrange equations for Gσ2,p[·, ·] over the G has the form as follows:

i) when n = 2

d

dr

[
fpḟp−1

rp−1
+Φ′ f

]
=
fp−1 ḟp

rp−1
+Φ′ ḟ ,

ii) when n ≥ 3
d

dr

[
Gηr

p−1 + nωnf
n−1Φ′] = rn−1Gf + n(n− 1)ωnḟ f

n−2Φ′,

d

dr

[
rn−1 GξQ

t − rn−1QGt
ξ

]
= 0,

where Φ′ = Φ′
(
ḟ
(
f
r

)n−1
)
.

Proof. First we prove the second part. Let f ∈ G. For every ε ∈ R and
φ ∈ C∞(a, b) with φ(a) = φ(b) = 0, set fε = f +εφ. According to the assumption

f ∈ C2(a, b), then ḟ is a continuous function on (a, b). Since suppφ ⊂ (a, b) is a

compact set, there exists c > 0 such that ḟ ≥ c > 0 on suppφ. Therefor, ḟε > 0
when |ε| × sup

(a,b)

|φ̇| < c and the pair (Q, fε) ∈ G. Moreover by selecting ε smaller,

we obtain

0 =
d

dε
Gσ2,p[Q, fε]

∣∣∣∣
ε=0

=
d

dε

[ ∫ b

a

[
G(r, fε, ḟε, Q̇) + nωnΦ

(
ḟε

(
fε
r

)n−1)]
r dr

]∣∣∣∣
ε=0

=

∫ b

a

([
Gf (r, f, ḟ , Q̇)rn−1 + n(n− 1)ωnf

n−2ḟΦ′])φ+([
rn−1Gη(r, f, ḟ , Q̇) + nωnf

n−1Φ′])φ̇dr.
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Based on the integration by parts formula we get

0 =

∫ b

a

([
Gf (r, f, ḟ , Q̇)rn−1 + n(n− 1)ωnf

n−2ḟΦ′]
− d

dr

[
rn−1Gη(r, f, ḟ , Q̇) + nωnf

n−1Φ′])φdr.(2)

The (2) holds for all φ, then we have

d

dr

[
Gηr

p−1 + nωnf
n−1Φ′] = rn−1Gf + n(n− 1)ωnḟ f

n−2Φ′.(3)

□

For every fixedQ ∈ C2(a, b), ε ∈ R and variation matrixH ∈ C∞
0

(
(a, b),Mn×n

)
,

we set Qε = Q+ εH. By using [5, Proposition 3.1], there is an arbitrary matrix
F ∈ C∞

0

(
(a, b),Mn×n

)
such that H := Q(F − F). By simple manipulation, it is

derived that Qε ∈ G, hence we can write

0 =
d

dε
Gσ2,p[Qε, f ]

∣∣∣
ε=0

=

∫ b

a

(
Gξ(r, f, ḟ , Q̇ε) :

d

dε
Q̇ε

)∣∣∣
ε=0

rn−1 dr

=

∫ b

a

[
Gξ(r, f, ḟ , Q̇) :

(
Ḟ− Ḟt

)
Q+ ε

(
F− Ft

)
Q̇

]
rn−1 dr

:= I+ II.

In the following, we shall derive the terms I and II.

I =

∫ b

a

[
Gξ(r, f, ḟ , Q̇) :

(
Ḟ− Ḟt

)
Q
]
rn−1d

=

∫ b

a

[
rn−1Gξ(r, f, ḟ , Q̇)Qt :

(
Ḟ− Ḟt

)]
dr.

Now by utilizing integration by parts, it can be observed that

I = −
∫ b

a

[
d

dr

(
rn−1Gξ(r, f, ḟ , Q̇)Qt

)
:
(
Ḟ− Ḟt

)]
dr.

For the second term, we evaluate Gξ as follows

Gξ(r, f, ḟ , Q̇) =

∫
Sn−1

[
(n− 2)S

f4

r2
Q̇θ ⊗ θ

]
dHn−1(θ),

where

S :=
1

2
p−2
2

[
(n− 1)(n− 2)

(
f

r

)4

+ 2(n− 1)

(
f ḟ

r

)2

+ 2(n− 2)
f4

r2
∣∣Q̇θ∣∣2] p−2

2

.

From above relation, the second term is given by

II =

∫ b

a

∫
Sn−1

[
(n− 2)f4 rn−3 S⟨Q̇θ ⊗ θ, (F− Ft) Q̇⟩

]
dHn−1(θ)

=

∫ b

a

∫
Sn−1

[
(n− 2)f4 rn−3 S⟨Q̇θ, (F− Ft) Q̇θ⟩

]
dHn−1(θ)

= 0.
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Since matrix (F − Ft) is a skew-symmetric, so ⟨Q̇θ, (F − Ft) Q̇θ⟩ = 0. Thus,
summarising, we have∫ b

a

(
d

dr

[
rn−1 Gξ(r, f, ḟ , Q̇)Qt : (F− Ft)

)
dr = 0.(4)

The (4) holds for all skew-symmetric (F− Ft) ∈ C∞
0 ((a, b),Mn×n), then we get

d

dr

[
rn−1GξQ

t − rn−1QGt
ξ

]
= 0.

To prove the first part, put n = 2 in the Eq. (3).

Remark 2.3. When n = 2, the only solution of the Euler-Lagrange equation
is f = r (See [4]).

Theorem 2.4. (Existence of σ2-energy minimizing loops) Let n ≥ 3 and
consider the energy functional Gσ2,p over the space G. Then, for each α ∈ Z2 =
{0, 1} there exists pair (Qα, fα) ∈ cα[G] such that

Gσ2,p[Qα, fα] = inf
cα[G]

Gσ2,p.

Proof. The proof here follows by using an adaptaion of the argument form
[5] and hence will be abbreviated. □
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Abstract. In this paper, we investigate the reaction-diffusion system of
integro-partial differential equations describing tumor growth with cancer
stem cells(CSCs). We show the existence of the solution for this problem and

numerical simulations confirm the evidence of tumor growth paradox, which
indicates that, accelerated tumor growth with increased the death rate of
cancer cells(CCs).

Keywords: Mathematical modeling of tumors, Integro-partial
differential equations, Tumor growth paradox, Cancer stem cell.
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45Kxx.

1. Introduction

Mathematical modeling of tumor growth is an efficient tool to understand, predict,
and improve the outcome of cancer treatment. In recent years, many papers have
been devoted to analysis of these mathematical models describing the growth of
tumors in presence of cancer stem cells. For instance [1, 2] and [4]. Hillen et
al. proposed the following reaction-diffusion system of integro-partial differential
equations [4]

ut(x, t) = Du∆u+ γδ

∫
Ω

K
(
x, y, p(x, t)

)
u(y, t)dy,(1)

vt(x, t) = Dv∆v + (1− δ)γ
∫
Ω

K
(
x, y, p(x, t)

)
u(y, t)dy

+ ρ

∫
Ω

K
(
x, y, p(x, t)

)
v(y, t)dy − αv(x, t).

with initial conditions

u(x, 0) = u0(x) ∈ [0, 1], v(x, 0) = v0(x) ∈ [0, 1], u0 + v0 ≤ 1, x ∈ Ω.

Here Ω ⊂ Rn is the domain and x, y ∈ Ω. This model describes the evolution
and distribution of u(x, t), v(x, t) and p(x, t) = u(x, t)+ v(x, t), which indicate the
density of CCs, CSCs and total tumor cell respectively. The further assumptions
as follows:

(a) The function K = K(x, y, p) is an integral kernel showing the probability
density of the cell located at y generates a cell at x and redistributes cells

∗Speaker
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only within domain Ω, hence K(x, y, p) is equal to 0 for all x /∈ Ω.
It can be written asK

(
x, y, p(x, t)

)
= F (p(x, t))K(x, y), whereK(x, y) ≥

0 and K ∈ C(Ω × Ω). F ∈ C1 is a continuous, nonnegative, non-
increasing and Lipschitz function on [0, 1] with F (0) = 1, F (1) = 0. We
can assume that K(x, y) is a radial function; i.e, K(x, y) = K(|x − y|),
where x, y ∈ Ω. An example of this function can be

K(x, y) =
1√
πσ

exp(− (x− y)2

σ2
).

(b) Du ≥ 0 and Dv ≥ 0 are the diffusion coefficients of CCs and CSCs.
(c) γ > 0, ρ > 0 are positive constants representing the number of cycles per

unit time for CSCs and CCs, respectively.
(d) δ ∈ [0, 1] is the fraction of symmetric divisions of CSCs. If δ → 0 it

divides into one CSC and one normal CC, whereas if δ → 1 the CSC
divides into two CSCs. In most cases δ ≪ 1.

We intend to approximate (1) to form a system of reaction-diffusion equations.
Then, we discuss the existence of the solution and finally we will give some nu-
merical examples which confirm the evidence of tumor growth paradox.

2. The Reaction-Diffusion Model

Consider the integral appearing in (1) in the one-dimensional case and and ap-
proximate u(y, t) till the second order using Taylor expansion of u ∈ C2(Ω) as it
was done in [2] to approximate r.h.s of (1) as follows:∫ +∞

−∞
K(|x− y|)F

(
p(x, t)

)
u(y, t)dy = F

(
p(x, t)

) ∫ +∞

−∞
K(|x− y|)[u(x, t) + ux(x, t)(y − x)]dy

+ F
(
p(x, t)

) ∫ +∞

−∞
K(|x− y|)[

1

2
uxx(x, t)(y − x)2 + o(3)]dy.

Since K is symmetric, the first order moment cancels. A is the integral of K and
B is half of its second order moment. We consider Ω = (−r, r), where r = |y − x|
and taking r →∞. Thus, the system (1) is rewritten as

ut = Duuxx + γδF (p)(Au+Buxx),(2)

vt = Dvvxx + (1− δ)γF (p)(Au+Buxx)

+ ρF (p)(Av +Bvxx)− αv, x ∈ R, t > 0.

with initial condition of problem (1).

2.1. Existence Proof. Borsi et al. [1] proved the existence, uniqueness and
boundedness of the local and global solutions. They transformed the existence
problem of solutions for the nonlinear integro-differential system. Fasano et al. [2]
explained the following theorem to prove the existence of the solution, too.

Also, L. Maddalena [5] analyzed the nonlinear system of integro-differential
equations. She proved that an invariant limited set exists in the positive cone and
this gives positivity and global existence of solutions.

Remark 2.1. It should be noted that we will demonstrate the local existence
of solutions in the one-dimensional model (2). In the case of this model, if we
compute the diffusion coefficients Du and Dv we see that it depends on the con-
centration of cells, which is determined by p, and this goes to zero when p → 1.
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We can include the diffusive terms in the spirit of approximation in coefficient B.
Because of this, we consider D = 0 in (2).

Theorem 2.2. Let u0, v0 ∈ C2+α such that, for all x ∈ R, p0(x) = u0(x) +
v0(x) ≤ 1 −M , M ∈ (0, 1). Then the system (2) has a unique solution (u, v)
in the interval (0, T ⋆) that satisfies u + v < 1 − N for 0 < N < M in the region
R[0, T ⋆).

Definition 2.3. The Hölder space Ck,γ(Ω̄) consists of all functions u ∈ Ck(Ω̄)
for which the norm

∥u∥Ck,γ(Ω̄) =
∑
|α|≤k

∥Dα∥C(Ū) +
∑
|α|=k

[Dαu]C0,γ(Ū) ,

is finite.

Proof. We use the fixed point theorem to prove this claim. For some T > 0,
we define the set

∑
= {(u, v) ∈ Hα,α2 (R × (0, T ))2 : u(x, 0) = u0(x), v(x, 0) =

v0(x), x ∈ R}. Suppose u+ v < 1−N for 0 < N < M such that ∥u∥α, ∥v∥α < k
for some k > 0.

∑
is the set of initial conditions that applies to the space

Hα,α2 (R × (0, T ))2 for some T > 0. Now we take (u, v) ∈
∑

fixed and solve the
equations of the system (2), so we have

Ut = γδF (u+ v)(AU +BUxx),(3)

Vt = γ(1− δ)F (u+ v)(AU +BUxx) + ρF (u+ v)(AV +BVxx)− αV.

for x ∈ R, t > 0, where U(x, 0) = u0(x), V (x, 0) = v0(x). Equation (3) with it’s
condition can be considered as Cauchy problem that would be solved indepen-
dently, provided that U ∈ C2+α for all x ∈ R and t > 0, since u0(x) ∈ Hα(R) [2].
Since, U is Hölder continuous with exponent α, the norm ∥U∥α ≤ N∥u0∥α. Thus,
we’ve found U in (3).

Now, we consider the function Y (t) = ∥u0∥eγδAt and ω(x, t) = Y (t)−U(x, t).
We notice that,

ωt = Y ′(t)− U(t) = γδA∥u0∥eγδAt − γδF (u+ v)[AU +BUxx]

= γδY (t)− γδF (u+ v)[AU +BUxx].

As if ωxx = −Uxx, so

ωt − γδF (u+ v)[Aω +Bωxx] = γδA[1− F (u+ v)]Y > 0.

Then, we see that the operator L = ∂
∂t − γδF (u + v)[A + B ∂

∂x2 ] is parabolic in
R× (0, T ). Therefore, applying [3, Theorem 5] concludes that ω > 0. This implies
that, Y − U > 0 and U ≤ ∥u0∥eγδAt. Thus, we can choose T ⋆ and ϵ1 > 0 small
enough, such that U ≤ ∥u0∥ + ϵ1. □

3. Numerical Examples

We apply numerical simulation to represent that this model shows the tumor
growth paradox i.e, a larger death rate of CC lead to a larger tumor. This effect
was already found by Hillen [4] for ODE model, here we confirm that, this paradox
also exist in (1) formulation.
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Figure 1. Density of CCs and CSCs as function of time for dif-
ferent values of mortalities.

Figure 2. Plot of u, v, p = u + v at selected times for different
values of CC’s death rate(α).

To solve system (1) we used finite difference scheme, with an explicit forward
method in time. The r.h.s integrals approximated by the trapezoidal rule. The
initial values and parameters set as follows:

u0(x) = exp(−10x2), v0(x) = 0, x ∈ (−30, 30),
δ = 0.2, σu = 0.5, σv = 0.1, γ = 1, ρ = 0.5.

Figure 1 shows the results of two simulations corresponding to different mor-
tality of CC. In particular, the two cases considered are with α = 0.005 (blue line)
and α = 0.01 (red line).

Figure 2 shows that the distribution of u, v, p at selected times (T=100, T=150)
for different value of α. For small value of α (α = 0.2) we can see that the behavior
is quite different for large α (α=2), where non-stem cancer cells play a minor role.
As a result, a higher death rate for CCs leaves more space for the invasion of CSCs.
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Abstract. We study the mathematical modeling and dynamics of a two-
compartment CA3 hippocampal pyramidal cell with Caputo fractional deriv-

ative. We investigate the solutions, bifurcation diagrams and chaotic behavior
of the system. Chaotic regions are obtained for different values of the frac-
tional derivative order and different injection currents. The obtained results
can be considered as help to control relevant diseases caused by maximal

injection currents abnormality.
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1. Introduction

In 1994, Pinsky and Rinzel developed a two-compartment model for CA3 hip-
pocampal pyramidal neurons in a guinea pig. Their work was motivated by a com-
plex 19 compartments Traub model [1]. By this reduced Pinsky-Rinzel model, it
is possible to explain how interactions between the somatic and dendritic compart-
ments occur. This recent model allows a very good computational implementation
and attracted the attention of many scholars [2].

The Pinsky-Rinzel model is a non-smooth and mathematical analysis of its
dynamical behavior by classic methods is hard and sometimes just impossible. In
2001, Hahn and Drand built up a mathematical analysis of the dynamical prop-
erties of the model, based on Strogatz’s works [1]. They probed the changeover
between resting, bursting, and spiking states affected by increasing the amount of
extracellular potassium concentration.

In this paper, we survey the solutions (membrane potentials and currents) of
the fractional-order CA3 hippocampal pyramidal neurons model. We study the
bifurcations of the model as the fractional derivative order, α, changes and we
identify regular and chaotic regimes. Next, we consider the somatic and dendritic
injections, ISapp and IDapp , as bifurcation parameters and explore the chaotic be-
havior of the system in each case. In this paper, sometimes we also name this
model as the Pinsky-Rinzel model.
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2. Mathematical Model of Fractional-Order Pinsky-Rinzel Model

In this part, we aim to extend the integer-order CA3 model to a fractional-order
CA3 model. There are several definitions for fractional derivatives and integrals
in fractional calculus but in this paper, we proposed the CA3 model based on the
Caputo derivative.

Definition 2.1. The fractional integral of order α of function f(t) is defined
as [3]

Iαf(t) =
1

Γ(α)

∫ t

0

f(τ)(t− τ)α−1dτ,(1)

where Γ(.) is Euler’s Gamma function and f(t) ∈ Cn.

Definition 2.2. The left fractional derivative of order α in the sense of Caputo
is defined by

CDαf(t) =

{
In−αDnf(t), n− 1 < α < n,

Dnf(t), α = n,
(2)

where n ∈ N and Dn is the integer derivative of order n.

The Pinsky-Rinzel model is based on two compartments, the somatic and den-
dritic tree, where the somatic compartment is combined with fast Sodium INa and
delayed rectifier Potassium IKDR and leak current. The dendritic compartment has
a persistent Calcium ICa, Calcium activated Potassium IKCa and after hyperpolar-
isation Potassium current IKAHP and leak current. Electronic coupling between the
two compartments is modeled using two parameters; gc is the strength of coupling
and p is the percentage of the total area in the somatic-like compartment. ISapp

or IDapp are coupling currents between the two compartments [2].
In this article, inspired by inter-order model [1], we propose fractional-order

differential equations for the somatic (Vs) and dendritic (Vd) membrance poten-
tials.

Cm(α)CDαVs = −ILeak − INa − IKDR +
IDapp

p
+

ISapp

p
,(3)

Cm(α)CDαVd = −ILeak − ICa − IKCa + IKAHP +
ISapp

(1− p)
+

IDapp

(1− p)
,(4)

where Cm(α) =
τα

Rm
, Rm is the membrane resistance, and τ is the time constant.

Maximal conductance parameters were taken (in ms/cm2) as gNa = 30, gKDR = 15,
gKCa = 15, gKAHP = 0.8, gCa = 10, gL = 0.1 and gc = 2.1, while reversal potentials
were taken (in mV) as VNa = 60, VK = −75, VCa = 80, and VL = −60. The
size of the axosomatic compartment as a proportion of the entire cell was given
by p = 0.5 and that of the dendritic compartment as 1 − p. The capacitance is
Cm = 3 µF/cm2.
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The Various currents of the model are defined as follows

INa = gNam
2
∞(Vs)h(Vs −VNa),

ICa = gCas
2(Vd −VN),

IKCa = gkCaC χ(Ca)(Vd −VCa),

ISD = −IDS = gc(Vd −Vs),

ILeak = gL(V −VL).

The activation and inactivation variables add here to these equations

CDαω(V) =
ω∞(V)− ω
τω(V)

,(5)

ω∞(V) =
αω(V)

αω(V)− βω(V)
,(6)

τω(V) =
1

αω(V) + βω(V)
,(7)

where, independly, we consider ω = h, n, s,m,C and q. The rate functions are
defined as follows

αm(Vs) =
0.32(−46.9−Vs)

exp(−46.9+Vs

4 )− 1
,

βm(Vs) =
0.28(Vs + 19.9)

exp(Vs+19.9
5 )− 1

,

αn(Vs) =
0.016(−24.9−Vs)

exp(−24.9+Vs

5 )− 1
,

βn(Vs) = 0.25 exp(−1− 0.025Vs),

αh(Vs) = 0.128 exp
(−43−Vs

18

)
,

βh(Vs) =
4

1 + exp( (−20−Vs)
5 )

,

αs(Vd) =
1.6

1 + exp(−0.072(Vd − 5))
,

βs(Vd) =
0.02(Vd + 8.9)

exp( (Vd+8.9)
5 )− 1

,

αC(Vd) =
(1−H(Vd + 10)) exp( (Vd+50)

11 + (Vd+53.5)
27 )

18.975

+H(Vd + 10)(2 exp(
(−53.5 + Vd)

27
)),

βC(Vd) = (1−H(Vd + 10))(2 exp(
(−53.5−Vd)

27
)− αc(Vd)),

αq(Ca) = min(0.00002Ca, 0.01),

βq(Ca) = 0.001,

χ(Ca) = min
( Ca

250
, 1
)
,
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where w = h, s, n,m are defined simply by continuous rate functions, while the C,
q and χ are formulated as discontinuous rate functions, where H(.) is the Heaviside
step function. To help us to get bifurcation analysis easily, we approximate these
discontinuous functions. The approximated functions are as below

C∞(Vd) =

 1

1 + exp(
10.1− Vd
0.1016

)


0.00925

,

τC(Vd) =3.627 exp(0.03704Vd),

q∞(Ca) =0.7894 exp(0.0002726Ca)− 0.7292 exp(−0.01672Ca),
τq(Ca) =657.9 exp(−0.02023Ca) + 301.8 exp(−0.002381Ca),
χ(Ca) =1.073n(0.003453Ca + 0.08095) + 0.08408n(0.01634Ca− 2.34)

+0.01811n(0.0348 Ca− 0.9918),

also we have

dCa

dt
= −0.13ICa + 0.075Ca.

The first minus sign is based on the convention that inward currents are negative.
Figure 1 shows the action potential in Pinsky-Rinzel model in case α = 0.85
and α = 1. In fact, Figure 1 shows a comparison between fractional-order and
integer-order cases. In fractional case α = 0.85, refractory period is smaller than
integer case α = 1. We also consider ISapp as the bifurcation parameter and let
IDapp = 0, gc = 2.1, the bifurcation diagrams of the system when the parameter
ISapp varied with α = 1 and α = 85 are shown in Figure 2.
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Figure 1. refractory period (trp2) for α = 0.85 (yellow) and
refractory period (trp1) for α = 1 (red).
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Figure 2. Bifurcation diagram when the parameter ISapp varied
with the different values of the order α.

3. Conclusion

In this work, we investigated the bifurcation analysis of a fractional-order model
of a two-compartment CA3 hippocampal pyramidal cell. Chaotic regions were
achieved for different values of the fractional derivative order and different injec-
tion currents. Since the membrane capacitance has been considered to be ideal,
the fractional-order model is deemed as a more accurate description of physical
processes underlying a long-range memory behavior.
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Abstract. Lévy Flights model has attracted much attention and it performs
much better than the other sequential sampling models. But there are some
drawbacks with the Lévy Flights model. The first one is that it could just
model decisions with only two options. Secondly, there is no exact likeli-

hood function for this model. In this work, a new paradigm is presented for
modeling the decision making that can be applied for both 2-alternative and
multi-alternatives. Moreover, a space fractional partial differential equation
(fPDE) is proposed for approximating the probability distribution of the first

passage time of the model.

Keywords: Lévy Flights, Fractional calculus, Decision making,
Sequential sampling models.
AMS Mathematical Subject Classification [2010]: 91E10,
00A06, 35R11.

1. Introduction

A wide range of psychological assessments are based on the performance (i.e. re-
action time and accuracy) of the patient in a 2-alternative decision task and the
balance between reaction time and accuracy (i.e. speed-accuracy tradeoff) is a very
informative measure [2]. Since 1978, when Ratcliff has introduced a drift-diffusion
model for modeling the process of making a decision between 2-alternatives [4],
sequential sampling models have grown very much. Various sequential sampling
models have been introduced by the researchers that all of them are based on
accumulating a fixed amount of evidence until reaching a threshold [1]. The first
model for capturing the speed-accuracy tradeoff pattern which is presented by
Ratcliff can be formulated as a random walk model fluctuating between two con-
stant boundaries and the process is stopped by overshooting or hitting one of the
boundaries. The boundary that is hit or overshot declares which option should be
selected. Thus, it can be formulated as follows [4]{

x(0) = z > 0,

x(t+∆t) = x(t) + v∆t+ e
√
∆, e ∼ N (0, 1).

(1)
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The process has stopped whenever x(t) > a or x(t) < 0 in which a shows
the upper boundary, zero stands for the lower boundary, v presents the drift rate
and implies the speed of information processing, and z which is 0 < z < a, is the
starting point bias. Additional to these parameters, a non-decision time should
be added to the decision time (i.e. the non-decision time stands for summation of
encoding time and motor time) [7]. Figure 1 illustrates the drift-diffusion model.

Figure 1. A schematic view of drift diffusion model.

As mentioned in Eq. (1), the process of information accumulation is considered
as a noisy process and its noise has a normal distribution. This assumption is an
add-hock assumption that the researchers have added to the model [5], but it is
revised in the Lévy Flights model which is introduced by Voss and his collaborators
in 2019 [8]. In this model, the noise of the accumulation process has a α-stable
distribution and is formulated as follows{

x(0) = z > 0,

x(t+∆t) = x(t) + v∆t+ e∆t
1
α , e ∼ stable(α, β = 0, γ = 1√

2
, δ = 0).

By considering the α-stable distribution as the distribution of accumulation pro-
cess of noise, some jumps have occurred during the decision process. There are
some psychological evidence that jumping through the accumulation process has
psychological meaning [9] and should be extended to other sequential sampling
models. To this end, we are going to extend the Lévy Flights model to multi-
alternative decisions.

In the remaining of the paper, the Race Levy model will be introduced in
Section 2. Space fractional differential equation which is utilized for obtaining the
first passage time distribution of the model is presented in this section. Section 3,
contains a finite difference scheme for solving the mentions space fractional equa-
tion and some simulation results of the model. Finally, a conclusion is presented
in Section 4.

2. Race Lévy Flights Model

In the race accumulator framework, there is one accumulator corresponding to
each option. Therefore, there is a race competition between the accumulators and
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the first accumulator which reaches the threshold determines which option should
be selected. Therefore, the Race Lévy model can be formulated as follows{
xi(0) = zi > 0,

xi(t+∆t) = xi(t) + vi∆t+ ei∆t
1
α , ei ∼ stable(α, β = 0, γ = 1√

2
, δ = 0),

and the process finishes when ∃i xi(t) > a. The first passage time distribution of
the model is equivalent to the response time distribution of human performance
in a behavioral task. Therefore, we start with the location of the accumulator
through time. If the i-th accumulator starts from zi and the threshold locates on
a, then the distance between the starting point and the threshold is a − zi. So,
the location of the accumulator can be obtained by [3]{

∂
∂tpi(x, t) + v ∂

∂xpi(x, t) = Dα
xpi(x, t),

pi(x, 0) = δ(x), p(a− zi, t) = p(−∞, t) = 0,

where Dα
xp(x, t) =

−1
2 cos απ

2

(
C
−∞D

α
xp(x, t) +

C
x D

α
∞p(x, t)

)
, and C

aD
α
b is the Caputo

sense fractional derivative [3], pi(x, t) presents the distribution of the location of
the accumulator trough the time and the survival probability of the i-th accumu-

lator is Si(t) =
∫ a−zi
−∞ pi(x, t)dx. So, the first passage time of i-th accumulator

calculated as fpti(t) = −dSi(t)
dt . Finally, the probability of the first accumula-

tor finishing from all accumulators is given by the following defective probability
density function [6]

fpti(t)
∏
i ̸=j

Sj(t).

So by approximating pi(x, t), the likelihood function of the model can be obtained.

3. Model Behaviour

In this part, two examples are provided to illustrate that the model can capture
the first passage time distribution of behavioral data. To this end, 3000 sample
data are simulated and the fpt(t) is also approximated using a finite difference
scheme. In this scheme, Eq. (2) and Eq. (3) are used for discretizing the space
fractional operator [3]

−∞Dα
xi
p(xi, tn) =

∫ xi

−L

p(2)(ξ, tn)

(xi − ξ)(α−1)
=

∆x2−α

(2− α)(3− α)

i∑
k=0

λk,i−kp
(2)(xk, tn) +O(∆x2),(2)

xiD
α
d p(xi, tn) =

∫ d

xi

p(2)(ξ, tn)

(xi − ξ)(α−1)
=

∆x2−α

(2− α)(3− α)

N∑
k=i

λk,k−ip
(2)(xk, tn) +O(∆x2),(3)

λk,m =


(m− 1)3−α − (m− 3 + α)m2−α, k = 0, N,

(m− 1)3−α − 2m3−α + (m− 1)3−α, 0 < k < N, k ̸= i,

1, k = i.

Moreover, by using a central scheme for first and the second-order derivatives,
a linear system of algebraic equations is obtained for each time step. For more
detail about the obtained linear system of algebraic equation see [3]. Figure 2 and
Figure 3 show the behaviour of the model and approximation of their first passage

141



A. H. Hadian Rasanan, J. Amani Rad and A. Padash

time distribution for two different parameters set. The first parameter set is {α =
2, z = 0, v = 2, a = 2}, and the second one is {α = 1.6, z = 0, v = 2.3, a = 3}.

As obvious in Figure 2 and Figure 3 the approximations and simulations are
compatible with each other and the model can capture the first passage time
distribution.

Figure 2. Simulation behavior of the model for α = 2, z = 0,
v = 2 and a = 2.

Figure 3. Simulation behavior of the model for α = 1.6, z = 0,
v = 2.3 and a = 3.
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4. Conclusion

In this paper, a random walk model has been introduced for modeling the perfor-
mance of patients in multi-alternative decisions. The proposed model is based on
the combination of race accumulator framework with the Lévy Flights model. Ad-
ditionally, a mathematically tractable procedure for approximating the likelihood
function of the model is presented. This procedure is based on approximating
the solution of a space partial fractional differential equation by a finite difference
scheme.
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Abstract. Mathematical modeling of diseases enables one to predict when
the disease occurs, and therefore, leading to the successful control to the dis-

eases before it gets epidemic. This paper constructs a biological model in the
mathematical aspect. Solutions for a Lotka-Volterra diseased predator-prey
model are analyzed. Properties such as positivity, boundedness for solutions
are studied. The threshold parameters for existence of both species are de-

termined. Based on these parameters, local and global asymptotic stability
is then analyzed. Finally, a numerical simulation that verifies the obtained
analytical discussion is presented.
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1. Introduction

The main reason to use mathematical modeling for a contagious disease is “such
models explain in a clear way the eco-social mechanisms that are influential in
controlling the contagious disease”. Some essential abbreviations are given as fol-
lows: M: shows the class of those who have moderate immunity to the disease.
S: shows the class of those that are susceptible to the disease. E: shows those
that are exposed to the disease and cannot transmit it. I: shows the infected class
that can be transmitters. R: shows the class of those that have recovered. If a
contact occurs between the infected individuals and those who are susceptible to
the disease, the individual can be grouped in E. In E wherein the individuals are
in incubation period; they are infected but cannot transmit the disease. After this
period, the sick individual can be grouped among the class I who can transmit the
disease. After the end of recovery, the individuals enter class R and get immune
to the disease permanently or temporarily. Mathematical models for contagious
diseases are in forms such as SI, SIS, SEIS, SIR, SIERS, MSIERS, SIRS and etc.
For example, In SIR, the sick individual is relatively immune to the disease after
recovery. Such studies and applications in biology, ecology, population dynamic,
eco-epidemiological model, diseases and their transmission and prey -predator sys-
tem with infection have been carried out in [3] and [5]. Linearization method has

∗Speaker

145



M. H. Rahmani Doust and A. Ghasemabadi

been offered as a practical methodology for investigating locally asymptomatic sta-
bility [4]. A four-species model and the Lotka-Volterra models used to introducing
and branching practical models applied to disease have been worked [1] and [2].

2. Main Results

We model a system of Lotka-Volterra predator-prey equations by considering as-
sumptions: (i) The prey species is ill, (ii) Feed predator species only with ill prey,
(iii) Disease transfers to predator. (iv) If prey is not ill, this species has logistic

model with birth growth rate and death rate ′′b1− a1r1N1

K1

′′
and ′′d1+(1−a1) r1N1

K1

′′
,

respectively, where r1 = b1 − d1 and 0 ≤ a1 ≤ 1. (v) Parameter α is the average
of contacts between preys and predators. Hence, the receive rate of diseases for
susceptible prey in the duration of predation is multiple of α.


I

′

1 = β1(N1 − I1)I1 − γ1I1 − [d1 + (1− a1) r1N1

K1
]I1 − aN2I1,

N
′

1 = r1(1− N1

K1
)N1 − aN1N2,

I
′

2 = (N2 − I2)(β2I2 + αI1)− d2I2 − γ2I2,
N

′

2 = kaN1N2 − d2N2.

(1)

Table 1. Description of parameters for system (1).

a1 Convex combination constant of prey

b1 Natural birth rate constant of prey

d1 Natural death rate constant of prey

d2 Natural death rate constant of predator

r1 = b1 − d1 Growth rate constant of prey

K1 Carrying capacity of the environment of prey

β1 Daily contact rate of prey

β2 Daily contact rate of predator

γ1 Recovery rate constant of prey

γ2 Recovery rate constant of predator

k Efficiency in turning predation into new predators

α Average number of contacts

a Predation rate

2.1. Equilibria and Thresholds Parameters. We are going to find the
equilibria. Setting the right sides of system (1) equal zero, we find equilibria as:

E0 = (0, 0, 0, 0),

E1 = (0,K1, 0, 0),

E2 = (0, N1E , 0, N2E) = (0,
d2
ka
, 0,

r1
a
(1− d2

kaK1
)),

E3 = (0, N1E , I2E , N2E),

E4 = (I1E , N1E , I2E , N2E).
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And so

N1E =
d2
ka
,N2E =

r1
a
(1− d2

kaK1
),

I1E = N1E(1−
γ1 + d1 + (1− a1)r1N1E/K1 + aN2E

β1N1E
).

To positivity N2E , we should have d2 < kaK1, and I2E should be positive root of
the following equation:

I22 + I2[
d2 + γ2
β2

−N2E + α
I1E
β2

]− αN2EI1E
β2

= 0,

I22 +AI2 +B = 0, A =
d2 + γ2
β2

−N2E + α
I1E
β2

, B = −αN2EI1E
β2

,

I2E =
−A+

√
A2 − 4B

2
.

System (1) has three following threshold parameters:

R0 =
β1K1

γ1 + b1 − a1γ1
, R1 =

β1N1E

γ1 + d1 + (1− a1)r1N1E/K1 + aN2E
,(2)

R2 =
β2N2E

γ2 + d2
.

We analyze the stability of nontrivial equilibria for (1). Coefficient matrix at
point E4 is:

J =


a11 a12 0 a14
0 a22 0 a24
a31 0 a33 a34
0 a42 0 0

 .(3)

a11 = −3β1I1E , a12 = I1E [β1 − r1
1− a1
K1

], a14 = −aI1E ,

a22 = −r1N1E

K1
, a24 = −aN1E , a31 = −α(I2E −N2E),

a33 = [−β2(N2EE − I2E)− d2 − αI1E − γ2]− 2β2I2E ,

a34 = β2I2E + αI1E , a42 = kaN2E .

The characteristic equation for matrix J (3) can be obtained as follows:

(a11 − λ)(a33 − λ)[λ2 − a22λ− a24a42] = 0,

λ1 = a11, λ2 = a33, λ3 =
a22 +

√
a222 + 4a24a42
2

, λ4 =
a22 −

√
a222 + 4a24a42
2

.

Theorem 2.1. Let R1 > 1 and R2 < 1, where R1 and R2 are threshold
parameters for system (1). Then E4 is locally asymptotic stable.

Theorem 2.2. Consider system (1). If d2
k aK1

> 1, then E1 is locally asymp-

totic stable. If d2
k aK1

> 1, then E1 is globally asymptotic stable.

Theorem 2.3. If d2
k aK1

< 1, then lim
t→+∞

N1(t) = N1E , and lim
t→+∞

N2(t) = N2E .
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Theorem 2.4. Consider threshold parameters (3) for (1), if R1 > 1 and
R2 < 1. Then E4 is globally asymptotic stable.

3. Numerical Simulation

We simulate solutions of (1). Consider parameters of the system (1) as

β1 = 2, K1 = 100, d1 = 0.2, α = 0.7, γ1 = 0.6, r1 = 0.1,

β2 = 0.4, k = 0.5, d2 = 0.2, b1 = 0.5, γ2 = 0.6, a1 = 0.4.

We get the critical value a(0) = 0.0383589737, and, the system (1) is as follows:

İ1 = [2(N1 − I1)− 0.8− 0.0006N1 − 0.0383589737N2] I1,

Ṅ1 = [0.1− 0.001N1 − 0.0383589737N2] N1,

İ2 = [0.4(N2 − I2)− 0.8] I2 + 0.7(N2 − I2)I1,

Ṅ2 = [0.0191794N1 − 0.2] N2,

We compute R0 = 2.232569247 > 1, R0 = 0.5 < 1. By Theorem 2.1, If
R1 > 1, R2 < 1, then (I1E , N1E , I2E , N2E) = (22.32, 40, 4.5848, 6.5) is asymptotic
stable verified in Figures 1, 2, 3 and 4.

Figure 1. The component I1E at E4 converges to 22.32 the start-
ing point 22.5.

4. Conclusion

One may reach main conclusion on the following points: “One way to protect
species is controlling of their diseases. Most of the prevalent diseases occur in
specific times and under certain conditions. Mathematical modeling of diseases
enables one to predict when the disease occurs and so it leads to the successful
control to the diseases before it gets epidemics. The present work has shown that
gaining the threshold parameters can prevent the outbreak of a disease.”
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Figure 2. The component N1E at E4 converges to 40 the start-
ing point 40.5.

Figure 3. The component I2E at E4 converges to 4.5848 the
starting point 2.5.

Figure 4. The component N2E at E4 converges to 6 the starting
point 6.5.
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Abstract. In this paper, we address the problem of analyzing and comput-

ing the steady-states of the overlapping generation model. The computation
of steady-states coincides with a geometrical representation of the algebraic
variety of a polynomial ideal which tends to apply computational algebraic
geometry methods to solve the problem. However, as the associated poly-

nomial ideal to these models have parametric coefficients, it is necessary to
deal with the ring of parametric polynomials. In doing so, we apply novel
parametric computational tools such as comprehensive Gröbner systems to
discuss the parameters space. In addition, the parameters are bounded and

in fact restricted into some real intervals. This property causes to do some
extra steps more than the computation a comprehensive Gröbner system.
Having all the constraints on the parameters, we design a new algorithm to
determine the value of each steady-state depending on the different behaviour

of parameters. Doing so, the space of parameters will be divided into a finite
number of algebraic sets in the way that each one determine a number of
steady states, if there is any.

Keywords: Computer Algebra, Gröbner basis, Comprehensive
Gröbner system, Steady-states, OLG model.
AMS Mathematical Subject Classification [2010]: 13P10,
91B52.

1. Introduction

Gröbner bases are known as effective computational tools to analyze and solve
systems of polynomial equations. There are several applied problems (See [5] for
instance) which will be solved by computing a suitable Gröbner basis. Before
stating the main results, we review the concept of Gröbner bases in some lines.
For more information, one can see [1].

∗Speaker

151



M. Riahi, A. Basiri, S. Rahmany and F. Kübler

Let K be a field and x = x1, . . . , xn be n (algebraically independent) vari-
ables. Each power product xα = xα1

1 . . . xαn
n is called a monomial, where α =

(α1, . . . , αn) ∈ Zn≥0. We can sort the set of all monomials over K by special types
of total orderings so called monomial orderings: the total ordering ≺ on the set
of monomials is called a monomial ordering whenever ≺ is well-ordering and in-
variant under multiplication. Among the monomial orderings, we point to the
lexicographic ordering denoted by ≺lex as follows: assuming xn ≺ · · · ≺ x1, we
say that xα ≺lex xβ if α is smaller than β in the lexicographical sense. Each
K−linear combination of monomials is called a polynomial on x over K. The set
of all polynomials has the ring structure with usual polynomial addition and mul-
tiplication, and is called the polynomial ring on x over K and denoted by K[x].
Let f be a polynomial and ≺ be a monomial ordering. The greatest monomial
w.r.t. ≺ contained in f is called the leading monomial of f , denoted by LM(f).
Further, if I is an ideal, in(I) is the ideal generated by LM(I) and is called the
initial ideal of I. We are now going to remind the concept of Gröbner basis of
a polynomial ideal: The finite set G ⊂ I is called a Gröbner basis of I w.r.t.
the monomial ordering ≺ if in(I) = ⟨LM(G)⟩. There are several algorithms to
compute Gröbner bases which are also implemented in some software packages
[2]. Let G be a Gröbner basis for I w.r.t. the monomial ordering ≺. For each
polynomial f , the normal form of f w.r.t. G denoted by NFG(f) is a polynomial
such that none of its terms is divisible by LM(G). Also, by V(I) we mean the set
of all common solutions of the polynomials of I.

We turn now to the ring of parametric polynomials. Let p := p1, . . . , ps and
x := x1, . . . , xn be the sequences of parameters and variables respectively. We call
K[p][x], the parametric polynomial ring over K, with parameters p and variables
x. This ring is in fact the set of all parametric polynomials as

∑m
i=1 hix

αi , where
hi ∈ K[p] is a polynomial on p with coefficients in K, for each i.

Definition 1.1. The set of triples {(Zi,Wi, Gi)}ℓi=1 in which for each i,
Zi,Wi ⊂ K[p] and Gi ⊂ K[p][x] is called a comprehensive Gröbner system of
the parametric ideal I with respect to the monomial ordering ≺ if for each eval-
uation map σ : p 7→ p̄ there exists an 1 ≤ i ≤ ℓ in which for all p ∈ Zi (resp.
q ∈ Wi), p(p) = 0 (resp. q(p) ̸= 0), and σ(Gi) is a Gröbner basis for σ(I) with
respect to ≺.

Remark that, by [6, Theorem 2.7], every parametric ideal has a comprehensive
Gröbner system. Now we give an example from [3] to illustrate the definition of
comprehensive Gröbner system.

Example 1.2. Consider the following parametric polynomial system in
Q[a, b, c][x, y]:

Σ :


ax− b = 0,
by − a = 0,
cx2 − y = 0,
cy2 − x = 0.

Choosing the graded reverse lexicographical ordering y ≺ x, we obtain the follow-
ing comprehensive Gröbner system.
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Table 1. Comprehensive Gröbner system of the parametric poly-
nomial ideal in Example 1.2.

i Zi Wi Gi
1 { } {a6 − b6, a3c− b3,

b3c− a3, ac2 − a, bc2 − b}
{1}

2 {a6 − b6, a3c− b3, b3c− a3,
ac2 − a, bc2 − b}

{b} {bx− acy, by − a}

3 {a, b} {c} {cx2 − y, cy2 − x}
4 {a, b, c} { } {x, y}

Regarding to the Table 1, for the specialization σ(1,1,1) for which a 7→ 1, b 7→ 1
and c 7→ 1,

σ(1,1,1)({bx− acy, by − a}) = {x− y, y − 1},
is a Gröbner basis of σ(1,1,1)(⟨Σ⟩).

In this paper, we study a polynomial system which is obtained from the prob-
lem of the calculation of the equilibria of an economical model [4]. Consider the
following parametric polynomial system, where A is a natural number greater than

1. Also, l1 ≥ 0, . . . , lA−1 ≥ 0, lA = 1−
∑A−1
a=1 , γ ∈ [0,+∞), β ∈ (0,+∞), α ∈ (0, 1)

and δ ∈ [0, 1] are the parameters of this system.
c−γ−1
a = β(1 + r)c−γ−1

a+1 , (a = 1, . . . , A− 1),
ca = ka−1(1 + r) + wla − ka, (a = 1, . . . , A, k0 = kA = 0),
r = αKα−1 − δ,
w = (1− α)Kα,

K =
∑A
a=0 ka.

(1)

Each solution of this system is called a steady-state of the assumed model. Some
of the equations of this system are not in the polynomial form. To change their
structure into the polynomial form, we can assume that γ = 0 and α = m/n,
where m,n are natural numbers and m < n. Now, we import an auxiliary variable
S such that Sn = K and so Kα−1 = Sm−n. Thus, we multiply the equation
r = αKα−1− δ by Sn−m. After these changes, we attain the following polynomial
system which is equivalent to system (1).

ΣA,α :=



ca+1 = β(1 + r)ca+1, (a = 1, . . . , A− 1),
ca = ka−1(1 + r) + wla − ka, (a = 1, . . . , A, k0 = kA = 0),
(r + δ)Sn−m = α,
w = (1− α)Sm,
Sn =

∑A
a=0 ka,

K = Sn.

(2)

In the sequel, we begin to present the properties of the parametric polynomial
ideal associated to system (2). Suppose that

IA,α ⊂ Q[β, δ, l1, . . . , lA][c1, . . . , cA, k0, . . . , kA,K, S,w, r],

is the parametric ideal generated by the equations of system (2).

153



M. Riahi, A. Basiri, S. Rahmany and F. Kübler

Definition 1.3. The set of triples {(Zi,Wi, Gi)}ℓi=1 in which for each i,
Zi,Wi ⊂ Q[β, δ, l1, . . . , lA] and Gi ⊂ Q[β, δ, l1, . . . , lA][x] is called a steady-state
system of the OLG model associated to ΣA,α (and is denoted by SSS(ΣA,α)). If
for each evaluation map σ : (β, δ, l1, . . . , lA) 7→ (λ1, λ2, l̄1, . . . , l̄A) there exists an
1 ≤ i ≤ ℓ in which for all p ∈ Zi (resp. q ∈ Wi), p(λ1, λ2, l̄1, . . . , l̄A) = 0 (resp.
q(λ1, λ2, l̄1, . . . , l̄A) ̸= 0), and σ(Gi) is a triangular polynomial system (Gröbner
basis) for σ(IA,α) whose solutions are the steady-states of σ(ΣA,α).

The following theorem states the existence of steady-state systems.

Theorem 1.4. For each value of A and α, ΣA,α possesses a steady-state
system.

Proof. Suppose that σ : (β, δ, l1, . . . , lA) 7→ (λ1, λ2, l̄1, . . . , l̄A) is an evalu-
ation map on the space of parameters. It is obvious that for each value of A
and α, the algebraic variety V(σ(IA,α)) contains the steady-states of σ(ΣA,α).
Now, assume that G is a comprehensive Gröbner system of IA,α) with respect to
compatible monomial ordering. Note that such a system exists by [6, Theorem
2.7]. From the definition of comprehensive Gröbner system, there exists a triple
(Z,W,G) ∈ G such that for all p ∈ Z (resp. q ∈ W ), p(λ1, λ2, l̄1, . . . , l̄A) = 0
(resp. q(λ1, λ2, l̄1, . . . , l̄A) ̸= 0), and σ(G) is a Gröbner basis such that V(σ(G)) =
V(σ(IA,α)). Therefore, V(σ(G)) contains the steady-states of σ(Σ) and so, G
coincides with a steady-state system of Σ. □

Remark 1.5. Regarding to the description of the model and Σ, the param-
eters can not vary all around the set of real numbers. This restriction causes to
omit some triples from the comprehensive Gröbner system described in the proof
of Theorem 1.4. Therefore, not only it is not sufficient just to compute a compre-
hensive Gröbner system, but also it is necessary to analyse the triples and verify
if they contain any real solution according to the restrictions on the parameters.

In regard to the above observations, the following algorithm demonstrates the
way of computing a steady-state system for ΣA,α.

Algorithm 1. SS-System

Require: A; the number of generations, and α = m
n .

Ensure: A SS-System for ΣA,α
G := a comprehensive Gröbner system for IA,α;
SS := {};
for (Z,W,G) ∈ G do
if there exists ω ∈ RA+2 such that ωβ > 0, ωδ ∈ [0, 1], and ωla ≥ 0 for all
a = 1, . . . , A then
SS := SS ∪ {G};

end if
end for
Return (SS).

The following example illustrates the behaviour of the above algorithm.
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Example 1.6. Let A = 2 and α = 1/2. Because of the large scale of the
polynomials, we state just two triples of the output of the SS-system algorithm
(here p = β(1 + r)).

If Z = {δ−1} andW = {L1, β, β+l2+1, β+l2+1, 4β2+8βl2+4l22+8β+8l2+4}
then

G = {(2β+2l2+2)S−βl1, (4β2+8βl2+4l22+8β+8l2+4)K−β2l21, (4β+4l2+
4)w−βl1, (4β2+8βl2+4l22+8β+8l2+4)c1−βl21l2−βl21, βrl1+βl1−β−l2−1, (4β2+
8βl2 +4l22 +8β+8l2 +4)k1− β2l21, (4β+4l2 +4)c2− βl1l2− βl1, pl1− β− l2− 1},

and if Z = {} and W = {δ − 1, L1, β, βδ − β + δ − 1} then
G = {(4βδ − 4β + 4δ − 4)S2 + (−2βδl1 + 2βl1 − 2β − 2l2 − 2)S + βl1, (4βδ −

4β+4δ− 4)K+(−2βδl1+2βl1− 2β− 2l2− 2)S+βl1, 2w−S, (−2δl1+2β+2l1+
2l2 + 2)S + (4βδ − 4β + 4δ − 4)c1 − βl1, (2βδ − 2β + 2δ − 2)S + βl1r + βl1 − β −
l2 − 1, (−2βδl1 + 2βl1 − 2β − 2l2 − 2)S + (4βδ − 4β + 4δ − 4)k1 + βl1, (2βδL1 −
2βl1 − 2βl2)S + (4β + 4)c2 − βl1, (2βδ − 2β + 2δ − 2)S + pl1 − β − l2 − 1}.

Regarding to these triples, one can substitute the values of parameters and
solve the obtained polynomial system to observe the steady-states.
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Abstract. Financial markets may face with high volatilities and instabili-

ties. In such circumstances, traders and managers use some concepts such as
value-at-risk (VaR) to handle the amount of risk in a financial firm. In this
paper, the improved versions of VaR known as Conditional VaR (CVaR) and
Entropic VaR (EVaR) are derived for the logistic distribution. Hence, closed

formulations for these measures are contributed.
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1. Introduction

It is famous that the value-at-risk (VaR) measure based on normal distribution,
and sometimes the Conditional VaR (CVaR) measure, tend to underestimate the
risk of loss, due to the heaviness of the tails of the real loss distribution, which are
typically fatter than the ones modeled in a Gaussian framework. One approach for
addressing this shortcoming is to substitute an alternative distribution that allows
for greater weight in the tails. This can also be improved more by considering much
tighter bounds for the risk measure to furnish reliable estimate for real financial
data.

The VaR is defined in what follows [7]:

VaRα(X) := inf{z ∈ R|FX(z) ≥ α},(1)

where α is the pre-determined confidence level, X is a random variable, and FX(·)
is for the cumulative distribution function (shorthanded as CDF). This is straight-
forward that (1) is employed to obtain the loss. In fact, the measure of VaR is
basically applied by banks at the portfolios to realize the occurrence and extent
ratio of possible losses, [5]. To be more precise recently, the oil sector has showed
un-stability in international oil prices, that have been more representative from
2004 and respond to different available factors. Accordingly, the VaR measure is
not useful in several circumstances and this restricts its applicability and useful-
ness.

The CVaR is in fact the average loss of the given distribution in the extreme
tail region and accordingly has enough superiority to be considered as an improve-
ment over the VaR measure. It leads to higher values for the risk in comparison
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to the VaR, [4, Chapter 15]. This measure of risk is defined by:

CVaRα(X) := E [X|X ≥ VaRα(X)] .(2)

(2) is derived from (1) for a portfolio and is used in a portfolio’s optimization for
effective risk management. The formula (2) is also called the lower CVaR until the
equality sign holds. As long as this inequality be strict, it is named as the upper
CVaR, [8]. Subsequently, noting that the CVaR’s application in comparison to
VaR leads to a more efficient procedure based on exposure of risk.

Another important risk measure with several interesting features is the en-
tropic VaR (EVaR). The EVaR is defined by [2]:

EVaRα(X) := inf︸︷︷︸
θ

{
θ log

(
MX(θ)

1− α

)}
,(3)

whereinMX(t) = E(e−tx). In this work, we denote the natural logarithm by log.
The tightest higher bound that we could obtain based on the Chernoff inequality
for the CVaR and VaR is the risk measure EVaR, [10].

In this work, we investigate closed forms of VaR/CVaR/EVaR under the lo-
gistic fat-tailed distribution, which can then be applied for controlling the risk of
stock movements. In fact, theoretical and simulation results confirm the applica-
bility of the logistic distribution in contrast to the Gaussian distribution for risk
management.

Noting that exhausting all the non–Gaussian models in modeling stock returns
is not our main goal, which is infeasible. In fact, our motivation is to adopt a
fat-tailed distribution, viz., the logistic, that is rich enough to accommodate the
features of financial data in terms of calculating the non-coherent VaR, coherent
CVaR as well as the coherent EVaR measures. Also recalling that the concept of
coherency was defined and discussed deeply at [1].

The rest of the present study is unfolded as comes next. In Section 2, the
logistic distribution is defined briefly. Next, in Section 3, the risk measures of
VaR/CVaR/EVaR are contributed in closed forms for this distribution. At last, a
summary of the work is given in Section 4.

2. Logistic Distribution

The best-fitted distribution for a financial data set gives us a procedure to express
the behavior of the underlying financial data. In fitting the economic data with
a distribution, basically more than one distribution would be of interest in the
matching process, [6]. In addition, to have a useful distribution supporting the
fat-tail behavior of the economic and financial data sets, one remedy is to rely on
fatter-tail distributions.

The logistic distribution with the parameters p and q shows a continuous
statistical distribution given over the set R of real numbers and parameterized by
a real number p (known as the “mean” of the distribution) and a positive real
number q (known as “scale parameter”). Overall, the probability density function
(PDF) of a logistic distribution is uni-modal with a single “peak” (i.e., a global
maximum), though its overall shape (the horizontal location of its maximum, its
spread, and its height) is determined by the values of p and q.
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Let us consider the random variable X to be distributed as

X ∼ logistic(p, q).(4)

The CDF for the logistic distribution can be obtained as follows [9]:

F (x) =
1

e−
x−p
q + 1

,(5)

while its PDF is given by:

f(x) =
e−

x−p
q

q
(
e−

x−p
q + 1

)2 .(6)

The most important difference between the logistic and the normal distribu-
tions lies in the tails and in the behavior of the failure rate function. The logistic
distribution has heavier tails in comparison to the normal distribution.

3. Risk Measures

The aim of this section is to contribute on closed formulations for the computation
of the coherent risk measures of CVaR and EVaR. Before doing so, the non-
coherent risk measure of VaR is furnished as follows. By considering (1) and using
(4), one is able to write down

VaRα(X) = inf{t ∈ R | p(X ≤ t) ≥ α}
= inf{t ∈ R | FX(t) ≥ α}

= inf

{
t ∈ R | 1

e−
x−p
q + 1

≥ α
}

= p− q log
(
1

α
− 1

)
, 0 < α < 1.(7)

The measure obtained in (7) is not convex and coherent. Now, we focus on CVaR
and EVaR in the following theoretics.

Theorem 3.1. Assuming that X ∈ Lp is a random variable showing the loss
for logistic(p, q) distribution. The measure of CVaR employing is given in a closed
form by (9).

Proof. The payoff random variable X belongs Lp spaces, where p ≥ 1 in
order to guarantee the existence of the expectation. Having (2) in mind, we obtain

CVaRα(X) = E [X|X ≥ VaRα(X)]

= E
[
X|X ≥ p− q log

(
1

α
− 1

)]
, 0 < α < 1,(8)

= p− 19q log(19) + 20q log(20), α = 95/100.(9)

Here we include the final results for the most common choice of the confidence level
95%. In fact, the computation of the condition expectation in (8) for the general
case is challenging and thus we restrict the final formula for this confidence level.
The CVaR’s application in comparison to VaR leads to an efficient procedure for
the risk exposure. The choice among CVaR and VaR is not so obvious sometimes
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for traders in market, but we basically employ CVaR as a double check procedure
to the hypotheses of VaR when managing the risk. This ends the proof. □

As an another instance, for the confidence level α = 99/100, we obtain

CVaR99%(X) = p+ 200q log(10)− 99q log(99).(10)

Theorem 3.2. Under the conditions of Theorem 3.1, the EVaR measure using
the logistic(p, q), is computed by (11).

Proof. Following the methodology of the proof Theorem 3.1 and employing
(3), one obtains

EVaRα(X) = inf︸︷︷︸
z

{
z log

(
MX(z)

1− α

)}
, 0 < α < 1,

= inf︸︷︷︸
z

z log
 ep/z

sinc(πq
z )

1− α




= inf︸︷︷︸
z

{
z log

(
− ep/z

(α− 1)sinc
(
πq
z

))}

= min︸︷︷︸
z

{
z log

(
− ep/z

(α− 1)sinc
(
πq
z

))}
= min︸︷︷︸

z

{φ(z, p, q, α)} .(11)

The result of the minimization (11) for any z, p, q > 0 gives the value of the EVaR
risk measure. The proof is complete. □

Remark 3.3. Noting that optimization with the EVaR is tractable in terms
of computation for a large class of quantitative risks, which are not effectively
computable for the VaR and CVaR, [3]. To clearly put on show how the new risk
measure EVaR for the logistic distribution gives upper bounds for the risk involved
in the problem, Figure 1 with α = 95% is furnished giving a picture of this fact.
Results confirm the point that:

EVaRα(X) ≥ CVaRα(X) ≥ VaRα(X).(12)

4. Concluding Remarks

A coherent tight bound for risk management is the EVaR, which is based on a
function minimization. Due to this importance and several shortcomings of VaR
and CVaR based on normal distributions, this work has discussed closed formulas
for the VaR/CVaR/EVaR measures using the fat-tailed logistic distribution. The
investigation was necessary because history has showed that in a short piece of
time thousands of dollars can be waisted due to failure in handling the financial
risks in market. To support the theoretical discussions given in this work, an
application can be pursued on time series in forecasting the prices/returns of some
stocks in a period of time under time series models.
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Figure 1. Applying the logistic distribution having p = 0.01,
q = 0.005 to contrast the VaR/CVaR/EVaR measures.
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1. Introduction and Preliminaries

Recently, a special algebra called EQ-algebra has been introduced by Novák.
These algebras are intended to become algebras of truth values for a higher-order
fuzzy logic (a fuzzy type theory, FTT). From the point of view of potential appli-
cation, it seems very interesting that, we can have non-commutativity without the
necessity to introduce, two kinds of implication. Filter theory plays an important
role in studying logical algebras. From a logic point of view, various filters have a
natural interpretation as various sets of provable formulas. Up to now, some types
of n-fold filters on BCK-algebra, BL-algebra and etc., are studied. The study
of fuzzy algebraic structures was started with the introduction of the concept of
fuzzy sub-groups in 1971 by Rosenfeld. Since then these ideas have been applied
to other algebraic structures such as semigroups, rings, ideals, modules and vector
spaces.

Now, in this note, we defined the concepts of fuzzy n-fold obstinate (pre)filter
and fuzzy maximal (pre)filter of EQ-algebras and discussed the properties of them.

Definition 1.1. [2] An EQ-algebra is an algebraic structure E = (E,∧,⊗,∼
, 1) of type (2, 2, 2, 0) such that, for all x, y, z, t ∈ E the following conditions hold:
(E1) ⟨E,∧, 1⟩ is a commutative idempotent monoid (i.e. ∧-semilattice with top
element 1),
(E2) ⟨E,⊗, 1⟩ is a commutative monoid and ⊗ is isotone w.r.t. “ ≤ ”, where
x ≤ y is defined as x ∧ y = x,
(E3) x ∼ x = 1, (reflexivity axiom)
(E4) ((x ∧ y) ∼ z)⊗ (t ∼ x) ≤ z ∼ (t ∧ y), (substitution axiom)
(E5) (x ∼ y)⊗ (z ∼ t) ≤ (x ∼ z) ∼ (y ∼ t), (congruence axiom)
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(E6) (x ∧ y ∧ z) ∼ x ≤ (x ∧ y) ∼ x, (monotonicity axiom)
(E7) x⊗ y ≤ x ∼ y. (boundedness axiom)

Definition 1.2. [6] Let E = (E,∧,⊗,∼, 1) be an EQ-algebra. Then E is
called

i) separated if x ∼ y = 1, then x = y, for all x, y ∈ E, (in other words
x ∼ y = 1 if and only if x = y),

ii) residuated if x ≤ y → z if and only if x⊗ y ≤ z, for all x, y, z ∈ E.

Definition 1.3. [6] Let E be an EQ-algebra. A nonempty subset F ⊆ E is
called a prefilter of E , if for all x, y ∈ E,
(F1) 1 ∈ F ,
(F2) If x, x→ y ∈ F , then y ∈ F .
A prefilter F is said to be a filter
(F3) if x→ y ∈ F implies (x⊗ z)→ (y ⊗ z) ∈ F , for all x, y, z ∈ E.
A proper (pre)filter F is called a prime (pre)filter of E if x→ y ∈ F or y → x ∈ F ,
for all x, y ∈ E.

Definition 1.4. [7] A (pre)filter F of an EQ-algebra E is called maximal if
and only if it is proper and no (pre)filter of E strictly contains F that is, for each
(pre)filter G of E , if F ⊊ G, then G = E.

Definition 1.5. [5] A prefilter F of an EQ-algebra E is called an obstinate
prefilter of E , if x, y /∈ F imply x→ y ∈ F and y → x ∈ F .
If F is a filter of E , then F is called an obstinate filter of E .

Definition 1.6. [3] Let E be an EQ-algebra. A nonempty subset F ⊆ E
such that 1 ∈ F is called

i) an n-fold prefilter of E , if for all x, y ∈ E, if xn, xn → y ∈ F , then y ∈ F ,
ii) an n-fold obstinate (pre)filter of E , if x, y /∈ F imply xn → y ∈ F and

yn → x ∈ F .

Note. An n-fold prefilter F is said to be an n-fold obstinate filter of E , if F
satisfies in (F3).

Definition 1.7. [8] Let E be a set. A fuzzy set µ in E is a function µ : E →
[0, 1].

Note. From now one, E = ⟨E,∧,⊗,∼, 1⟩ or E for short, is denoted an EQ-
algebra. Let µ be a fuzzy set in E . For all t ∈ [0, 1], the set µt = {x ∈ E |
µ(x) ≥ t} is called a level subset of µ. Let F be a nonempty subset, we denote
the characteristic function of F by χF . For converience, for any a, b ∈ [0, 1], we
denote max{a, b} and min{a, b} by a ∨ b and a ∧ b, respectively.

For any fuzzy sets µ and ν in E , we define µ ≤ ν if and only if for any x ∈ E,
µ(x) ≤ ν(x).

Definition 1.8. [7] Let µ be a fuzzy set in E . Then µ is called a fuzzy prefilter
of E if for all x, y ∈ E, µ(x) ≤ µ(1) and µ(x→ y) ∧ µ(x) ≤ µ(y).

A fuzzy prefilter µ is called a fuzzy filter of E if for all x, y, z ∈ E µ(x→ y) ≤
µ((x⊗ z)→ (y ⊗ z)).

Proposition 1.9. [7] Let µ be a fuzzy filter of E. Then for any x, y, z ∈ E,
the following conditions hold:
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i) µ(x⊗ y) = µ(x) ∧ µ(y).
ii) µ(x→ y) ∧ µ(y → z) ≤ µ(x→ z).
iii) If x ≤ y, then µ(x) ≤ µ(y), which means µ is order preserving.

Definition 1.10. [4] Let µ be a fuzzy set in E . Then µ is called a fuzzy n-fold
prefilter of E if for all x, y ∈ E, µ(x) ≤ µ(1) and µ(xn) ∧ µ(xn → y) ≤ µ(y).

A fuzzy n-fold prefilter µ of E is called a fuzzy n-fold filter of E if for all
x, y, z ∈ E, µ satisfies in

µ(x→ y) ≤ µ((x⊗ z)→ (y ⊗ z)).

Let µ be a fuzzy filter of E . For any x, y ∈ E, define a fuzzy relation ≡µ on
(good) E as follows:

x ≡µ y if and only if µ(x ∼ y) = µ(1).

Theorem 1.11. [4] The relation ≡µ is a congruence relation on E and E/µ =
(E/µ,⊗µ,∼µ,∧µ, [1]µ) is a separated (good) EQ-algebra with operations ⊗µ, ∼µ
and ∧µ on E/µ which are defined as follows:

[x]µ ⊗µ [y]µ = [x⊗ y]µ, [x]µ ∼µ [y]µ = [x ∼ y]µ and [x]µ ∧µ [y]µ = [x ∧ y]µ.

2. Fuzzy n-Fold Obstinate (Pre)Filter of EQ-Algebra

In this section, we introduce the notion of fuzzy n-fold obstinate (pre)filter and
fuzzy maximal (pre)filter of EQ-algebra and some related properties of them are
investigated. We show that every fuzzy maximal (pre)filter of E is normalized and
takes only the values {0, 1}.

Definition 2.1. Let µ be a fuzzy prefilter of E . Then µ is called a fuzzy n-fold
obstinate prefilter of E , if for all x, y ∈ E,

(1− µ(x)) ∧ (1− µ(y)) ≤ µ(xn → y) ∧ µ(yn → x).

A fuzzy n-fold obstinate prefilter of E is called a fuzzy n-fold obstinate filter
of E if for all x, y, z ∈ E, µ satisfies in µ(x→ y) ≤ µ((x⊗ z)→ (y ⊗ z)).

Example 2.2. Let E = {0, a, b, c, 1} be a chain such that 0 ≤ a ≤ b ≤ c ≤ 1.
Define the operations ∧,⊗ and ∼ on E as follows:

⊗ 0 a b c 1
0 0 0 0 0 0
a 0 0 0 0 a
b 0 0 0 0 b
c 0 0 0 0 c
1 0 a b c 1

∼ 0 a b c 1
0 1 a 0 0 0
a a 1 a a a
b 0 a 1 b b
c 0 a b 1 c
1 0 a b c 1

→ 0 a b c 1
0 1 1 1 1 1
a a 1 1 1 1
b 0 a 1 1 1
c 0 a b 1 1
1 0 a b c 1

where x ∧ y = min{x, y}. Then E = (E,∧,⊗,∼, 1) is an EQ-algebra. Define the
fuzzy set µ on E as follows:

µ(0) = 0.4, µ(a) = 0.4, µ(b) = 0.5, µ(c) = 0.6 and µ(1) = 0.8.

Then µ is a fuzzy n-fold obstinate prefilter of E , for all n ≥ 2. But it is not a fuzzy
1-fold obstinate prefilter of E because

0.5 = 0.5 ∧ 0.6 = (1− µ(a)) ∧ (1− µ(b)) ≰ µ(a→ b) ∧ µ(b→ a)

= µ(1) ∧ µ(a) = µ(a) = 0.4.
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Theorem 2.3. Let F be a non-empty subset of E. Then F is an n-fold
obstinate (pre)filter of E if and only if χF is a fuzzy n-fold obstinate (pre)filter of
E.

Proposition 2.4. Every fuzzy n-fold obstinate (pre)filter of E is a fuzzy n+1-
fold obstinate (pre)filter of E.

Proposition 2.5. Let µ and ν be two fuzzy filters of E such that µ ≤ ν. If µ
is a fuzzy n-fold obstinate filter of E, then ν is too.

By definition µ(1) is the largest value of µ. Sometimes we set µ(1) = 1.

Definition 2.6. Let E be an EQ-algebra. A fuzzy (pre)filter µ of E is called
normalized, if µ(1) = 1.

Definition 2.7. Let E be an EQ-algebra and µ be a fuzzy (pre)filter of E . The
normalization µ is a fuzzy subset µ̄ : E → [0, 1] given by µ̄(x) = µ(x) + 1− µ(1).

Lemma 2.8. µ̄ is a normalized fuzzy (pre)filter of E.

Corollary 2.9. Let µ be a fuzzy n-fold (pre)filter of E. Then µ̄ is a normal-
ized fuzzy n-fold (pre)filter of E.

Note. We denote the set of all normalized fuzzy (pre)filters of E by F(E) and
the set of all normalized fuzzy n-fold (pre)filters of E by Fn(E).

Proposition 2.10. Let E be an EQ-algebra and µ and ν be two fuzzy (pre)filters
of E. Then the following statements hold:

i) µ ≤ µ̄.
ii) If µ ∈ F(E), then µ̄ = µ.
iii) (F(E),≤) is a ∧-semilattice (χ{[0]} is the smallest element of F(E) and

1(x) = 1, for all x ∈ E is the largest element of F(E)).
iv) If µ̄(x) = 0, for some x ∈ E, then µ(x) = 0.
v) If µ and ν are two fuzzy (pre)filters of E such that µ̄ ∈ F(E) and µ̄ ≤ ν,

then ν = ν̄.

Definition 2.11. Let E be an EQ-algebra and µ be a fuzzy (pre)filter of E .
We called µ is a fuzzy maximal (pre)filter of E , if it is non-constant and µ̄ is a
maximal element of (F(E),≤).

Lemma 2.12. Let µ be non-constant. If µ is a maximal element of (F(E),≤),
then it takes only the values {0, 1}.

Theorem 2.13. Let E be an EQ-algebra. Then every fuzzy maximal (pre)filter
of E is normalized and takes only the values {0, 1}.

Theorem 2.14. Let E be an EQ-algebra with bottom element “0” and µ ∈
F(E). Then Eµ = {x ∈ E | µ(x) = µ(1)} is a maximal (pre)filter of E if and only
if µ is a maximal element of F(E).

Theorem 2.15. Let E be an EQ-algebra with bottom element “0” and µ be a
fuzzy (pre)filter of E. Then µ is a fuzzy n-fold obstinate (pre)filter of E if and only
if for any x ∈ E, there exists m ∈ N such that 1− µ(x) ≤ µ((¬xn)m).
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Theorem 2.16. Let E be an EQ-algebra with bottom element “0” and µ be
a fuzzy maximal (pre)filter of E. Then µ is a fuzzy n-fold obstinate (pre)filter of
E if and only if for any x ∈ E, µ(x) = µ(1) or there exists m ∈ N such that
µ((¬xn)m) = µ(1), which ¬x = x ∼ 0.

Theorem 2.17. Let E be a residuated EQ-algebra with bottom element “0”
and µ be a fuzzy (pre)filter of E. Then the following statements are equivalent:

i) Eµ is a maximal (pre)filter of E,
ii) for any x ∈ E, if µ(x) ̸= µ(1), then there exists n ∈ N such that µ(¬xn) =

µ(1), which ¬x = x ∼ 0.

Proposition 2.18. Let E be a good EQ-algebra. Then χ{1} is a fuzzy n-fold
obstinate filter of E if and only if every normalized fuzzy (pre)filter of E is a fuzzy
n-fold obstinate (pre)filter of E.

Theorem 2.19. Let E be a good EQ-algebra and µ be a normalized fuzzy
(pre)filter of E. Then µ is a fuzzy n-fold obstinate (pre)filter of E if and only if
every normalized fuzzy (pre)filter of quotient algebra E/µ is a fuzzy n-fold obstinate
(pre)filter of E/µ.
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Abstract. Decision making by the business managerial on framing strate-
gies to foster customer acquisition is a challenging task. The aim of this paper
is to introduce a new method of Multi-Strategy Decision-Making (MSDM)

integrated with neutrosophic soft relational maps to determine the significant
and feasible strategies of customer acquisition and their inter impacts. The
proposed method comprises of two-stage processes and it is validated with
twenty strategies, five factors associated with customer acquisition and expert

’s opinion based on multivalued neutrosophic soft sets.

Keywords: Multi-Strategy, Decision-Making, Neutrosophic soft sets,
Relational maps.
AMS Mathematical Subject Classification [2010]: 94Dxx,
90B50.

1. Introduction

Decision theory is characterized by various Multi-Criteria Decision making (MCDM)
(otherwise called as Multi-Objective or Multi-Attribute or Multi-Dimension
Decision-Making) methods such as Analytical Hierarchy Process, ELECTRE, CO-
PRAS, PROMTHEE, TOPSIS, SAW. MCDM methods are used in selection of
alternatives subjected to criteria satisfaction. MCDM methods are extended to
Fuzzy MCDM to handle uncertainty in decision making. The criterion – alter-
native association is represented as fuzzy values in fuzzy MCDM. Wang et al.
developed Fuzzy MCDM method for sustainable supplier selection and evaluation.
Peng et al. [10], Saini et al. [12] developed intuitionistic MCDM (IFMCDM)
approaches with intuitionistic representation comprising of membership and non-
membership values. Neutrosophic sets introduced by Smarandache [13] comprises
of truth , indeterminacy and falsity values and it has been extensively used in
MCDM. Athar [5], Abdel-Basset [1, 2], Nada et al. [9], Garg et al. [6] devel-
oped neutrosophic MCDM models with neutrosophic representations of criterion
alternative association. Another kind of sets that also play a key role in decision
making is Soft sets introduced by Molodtsov [8], which was later extended to fuzzy
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soft sets by Maji [7]. Dey et al. [3] presented the applications of multi-fuzzy soft
sets in decision-making. Tripathy et al. [14] described the key role of intuitionistic
fuzzy soft sets in group decision making. Faruk Karaaslan [4] elicited the implica-
tions of neutrosophic soft sets in decision making. Abu and Omar [11] extended
neutrosophic soft sets to Q-neutrosophic soft sets and these sets are applied in
comprehensive decision-making. In these neutrosophic soft MCDM models, the
optimal ranking of the alternatives are determined. But these model do not cater
to determine the impact of exercising the alternatives.

In this paper the new decision making approach based on MCDM is developed
with the replacement of alternatives by strategies to make decisions and the crite-
ria by the objectives to be fulfilled. The proposed method comprises of two-stage
processes. The first stage ranks the proposed alternatives based on criteria sat-
isfaction rate with the representation of neutrosophic soft sets and in the second
stage the chosen alternatives are associated with the principles of decision making
using neutrosophic soft relational maps. The integration of soft sets in relational
maps is an innovative initiative of this research work. The proposed two-stage
decision making process is a ground-breaking endeavor and it is validated by ap-
plying to decision making on customer acquisition strategies. Though researchers
have explored strategically decision- making in various perspectives, the mathe-
matical approach of strategy selection has not been explored so far to the best of
our knowledge and this research work is an opening to it. The content of the paper
is organized as follows: the methodology is presented in Section 2, the application
of the proposed approach is validated in Section 3, the results are discussed in
Section 4, the last section concludes the work.

2. Materials and Methods

This section presents the significance and need of MSDM and the algorithmic
approach of determining optimal solution.

2.1. Multi-Strategy Decision-Making. In the approach of MSDM, the
primary aim is to rank the strategies. In general, all the productions sectors
construct their goals and work towards accomplishing the same. The managerial
formulate strategies to achieve the goals, but the major challenge is selection and
implementation of feasible strategies to yield optimum benefits. The decision-
making environment does not involve only selection of alternatives with respect to
criteria satisfaction, rather it involves the other dimension of choosing the right
optimizing strategies. Strategical decision making is another dominating phenom-
enon and it has to be focused and this is how the approach of MSDM has evolved.
In this new approach the method of finding the optimal strategy is a two-step
process. The first step ranks the strategies and the second step associates their
inter relationship with the principles of decision making. The steps are as follows:

..
Characterization of decision-making problem

..
Selection of objectives of the firm
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..
Formulation of strategies from expert’s outlook

..
Construction of initial decision-making soft matrix

..
Computation of the cumulative satisfaction score

..
Ranking of the strategies

..

Relational map modeling of the strategies with the core domain of
decision-making

..
Determination of inter relational impacts

3. Application of the Proposed MSDM Approach

This section applies the proposed two stage processes of MSDM to the decision
making on customer acquisition strategies based on expert’s opinion presented as
below.

S1 Selection of Advertising medium to propagate the product,
S2 Designing user friendly products,
S3 Customizing the product’s utility to the needs of the buyers,
S4 Attending to the diverse needs of the customers,
S5 Developing multi-faceted products reflecting the ethos of the customers,
S6 Scaling the cost of the product to customer’s budget,
S7 Periodic Propagation of the attributes of the product,
S8 Product outlook modification,
S9 Creating smart products,
S10 Developing innovative kind of products suiting the dynamic needs of

the consumers,
S11 Create an ambiance to purchase product by providing offers,
S12 Communicating the attributes of the product to the customers,
S13 On line engagement with the customers,
S14 Establishing Trade mark of the product,
S15 Provision of various kinds of payment portals,
S16 Enrichment of the quality of the product using modern technology,
S17 Strengthening the consistency and reliability of the product,
S18 Designing products with values adding to consumer’s image,
S19 Periodical review of product sales and marketing,
S20 Integrating eco-friendly characteristics with the products.

In the perspective of soft sets, let U = {S1, S2, . . . , S20} andA = {A1, A2, . . . , A5}
be the set of purchasing behavior influencing factors, where A1 = Psychological,
A2 = Personal, A3 = Product, A4 = Social and A5 = Cultural.
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A multivalued neutrosophic soft mapping G : A −→ P (U) is represented as
follows:

G(A1) = {
⟨(0.9, 0.1, 0.2), (0.8, 0.3, 0.2), (0.9, 0.1, 0.2)⟩

S1

,
⟨(0.6, 0.3, 0.3), (0.6, 0.1, 0.3), (0.6, 0.3, 0.3)⟩

S2

,

⟨(0.8, 0.3, 0.5), (0.9, 0.3, 0.5), (0.8, 0.3, 0.5)⟩
S3

,
⟨(0.6, 0.2, 0.3), (0.6, 0.2, 0.3), (0.6, 0.2, 0.3)⟩

S4

,

⟨(0.7, 0.5, 0.2), (0.6, 0.4, 0.2), (.07, 0.5, 0.2)⟩
S5

,
⟨(0.9, 0.1, 0.1), (0.9, 0.1, 0.1), (0.9, 0.1, 0.1)⟩

S6

,

⟨(0.8, 0.3, 0.5), (0.8, 0.2, 0.5), (0.8, 0.3, 0.5)⟩
S7

,
⟨(0.6, 0.4, 0.4), (0.6, 0.4, 0.3), (0.6, 0.4, 0.4)⟩

S8

,

⟨(0.7, 0.5, 0.2), (0.6, 0.1, 0.2), (0.7, 0.5, 0.2)⟩
S9

,
⟨(0.6, 0.4, 0.3), (0.6, 0.4, 0.3), (0.6, 0.4, 0.3)⟩

S10

,

⟨(0.9, 0.1, 0.1), (0.9, 0.1, 0.1), (0.9, 0.1, 0.1)⟩
S11

,
⟨(0.9, 0.1, 0.2), (0.9, 0.1, 0.1), (0.9, 0.1, 0.2)⟩

S12

,

⟨(0.8, 0.3, 0.5), (0.8, 0.3, 0.5), (0.8, 0.3, 0.5)⟩
S13

,
⟨(0.9, 0.1, 0.2), (0.9, 0.1, 0.2), (0.9, 0.1, 0.2)⟩

S14

,

⟨(0.8, 0.3, 0.5), (0.8, 0.2, 0.4), (0.8, 0.3, 0.5)⟩
S15

,
⟨(0.6, 0.4, 0.3), (0.6, 0.5, 0.3), (0.6, 0.4, 0.3)⟩

S16

,

⟨(0.8, 0.3, 0.5), (0.8, 0.2, 0.5), (0.8, 0.3, 0.5)⟩
S17

,
⟨(0.8, 0.3, 0.5), (0.8, 0.2, 0.5), (0.8, 0.3, 0.5)⟩

S18

,

⟨(0.6, 0.4, 0.3), (0.6, 0.4, 0.4), (0.6, 0.4, .3)⟩
S19

,
⟨(0.7, 0.5, 0.2), (0.7, 0.5, 0.1), (0.7, 0.5, 0.2)⟩

S20

},

G(A2) = {
⟨(0.7, 0.5, 0.2), (0.6, 0.4, 0.2)), (0.7, 0.5, 0.2)⟩

S1

,
⟨(0.7, 0.5, 0.2), (0.9, 0.1, 0.3), (0.9, 0.1, 0.2)⟩

S2

,

⟨(0.8, 0.2, 0.4), (0.8, 0.2, 0.3), (0.8, 0.2, 0.4)⟩
S3

,
⟨(0.9, 0.1, 0.2), (0.9, 0.3, 0.2), (0.9, 0.1, 0.2)⟩

S4

,

⟨(0.8, 0.2, 0.4), (0.7, 0.2, 0.4), (0.8, 0.2, 0.4)⟩
S5

,
⟨(0.6, 0.4, 0.3), (0.6, 0.4, 0.4), (0.6, 0.4, 0.3)⟩

S6

,

⟨(0.6, 0.4, 0.3), (0.6, 0.3, 0.3), (0.6, 0.4, 0.3)⟩
S7

,
⟨(0.6, 0.4, 0.3), (0.6, 0.2, 0.3), (0.6, 0.4, 0.3)⟩

S8

,

⟨(0.8, 0.2, 0.4), (0.7, 0.2, 0.4), (0.8, 0.2, 0.4)⟩
S9

,
⟨(0.9, 0.2, 0.3), (0.9, 0.2, 0.3), (0.9, 0.2, 0.3)⟩

S10

,

⟨(0.8, 0.2, 0.4), (0.8, 0.2, 0.4), (0.8, 0.2, 0.4)⟩
S11

,
⟨(0.6, 0.4, 0.3), (0.6, 0.4, 0.3), (0.6, 0.4, 0.3)⟩

S12

,

⟨(0.9, 0.1, 0.1), (0.9, 0.2, 0.1), (0.9, 0.1, 0.1)⟩
S13

,
⟨(08, 0.2, 0.4), (0.7, 0.2, 0.4), (0.8, 0.2, 0.4)⟩

S14

,

⟨(0.9, 0.1, 0.2), (0.8, 0.1, 0.2)(0.9, 0.1, 0.2)⟩
S15

,
⟨(0.9, 0.1, 0.1), (0.9, 0.1, 0.2), (0.9, 0.1, 0.1)⟩

S16

,

⟨(0.6, 0.4, 0.3), (0.6, 0.4, 0.2), (0.6, 0.4, 0.3)⟩
S17

,
⟨(0.9, 0.1, 0.1), (0.9, 0.1, 0.3), (0.9, 0.1, 0.1)⟩

S18

,

⟨(0.9, 0.1, 0.1), (0.9, 0.1, 0.1)⟩, (0.9, 0.1, 0.1)⟩
S19

,
⟨(0.8, 0.2, 0.4), (0.8, 0.1, 0.3), (0.8, 0.2, 0.4)⟩

S20

},

G(A3) = {
⟨(0.8, 0.3, 0.5), (0.8, 0.1, 0.3), (0.8, 0.3, 0.5)⟩

S1

,
⟨(0.8, 0.2, 0.4), (0.7, 0.2, 0.4), (0.8, 0.2, 0.4)⟩

S2

,

⟨(0.5, 0.4, 0.6), (0.6, 0.4, 0.3), (0.5, 0.4, 0.6)⟩
S3

,
⟨(0.8, 0.2, 0.4), (0.7, 0.5, 0.3), (0.8, 0.2, 0.4)⟩

S4

,

⟨(0.9, 0.2, 0.3), (0.7, 0.5, 0.3), (0.9, 0.2, 0.3)⟩
S5

,
⟨(0.7, 0.5, 0.2), (0.9, 0.3, 0.2), (0.7, 0.5, 0.2)⟩

S6

,

⟨(0.6, 0.4, 0.3), (0.6, 0.3, 0.3), (0.6, 0.4, 0.3)⟩
S7

,
⟨(0.7, 0.5, 0.2), (0.8, 0.5, 0.2), (0.7, 0.5, 0.2)⟩

S8

,

⟨(0.9, 0.2, 0.3), (0.8, 0.1, 0.4), (0.9, 0.2, 0.3)⟩
S9

,
⟨(0.8, 0.2, 0.4), (0.7, 0.3, 0.2), (0.8, 0.2, 0.4)⟩

S10

,

⟨(0.8, 0.2, 0.4), (0.8, 0.5, 0.2), (0.8, 0.2, 0.4)⟩
S11

,
⟨(0.6, 0.4, 0.3), (0.4, 0.5, 0.2), (0.7, 0.5, 0.2)⟩

S12

,
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⟨(0.9, 0.1, 0.2), (0.9, 0.1, 0.3), (0.7, 0.5, 0.2)⟩
S13

,
⟨(0.9, 0.1, 0.2), (0.9, 0.1, 0.3), (0.7, 0.5, 0.2)⟩

S14

,

⟨(0.6, 0.4, 0.3), (0.6, 0.4, 0.3), (0.7, 0.5, 0.2)⟩
S15

,
⟨(0.9, 0.2, 0.3), (0.7, 0.5, 0.1), (0.7, 0.5, 0.2)⟩

S16

,

⟨(0.9, 0.1, 0.2), (0.7, 0.5, 0.1), (0.7, 0.5, 0.2)⟩
S17

,
⟨(0.6, 0.4, 0.3), (0.7, 0.5, 0.1), (0.7, 0.5, 0.2)⟩

S18

,

⟨(0.7, 0.5, 0.2), (0.9, 0.2, 0.2), (0.9, 0.2, 0.3)⟩
S19

,
⟨(0.9, 0.1, 0.1), (0.6, 0.4, 0.4), (0.6, 0.4, 0.3)⟩

S20

},

G(A4) = {
⟨(0.6, 0.4, 0.3), (0.5, 0.2, 0.3), (0.6, 0.4, 0.3)⟩

S1

,
⟨(0.9, 0.1, 0.1), (0.9, 0.1, 0.1), (0.9, 0.1, 0.1)⟩

S2

,

⟨(0.7, 0.5, 0.2), (0.7, 0.4, 0.2), (0.7, 0.5, 0.2)⟩
S3

,
⟨(0.7, 0.5, 0.2), (0.7, 0.5, 0.3), (0.7, 0.5, 0.2)⟩

S4

,

⟨(0.7, 0.5, 0.2), (0.7, 0.5, 0.3), (0.7, 0.5, 0.2)⟩
S5

,
⟨(0.9, 0.1, 0.2), (0.9, 0.3, 0.2), (0.9, 0.1, 0.2)⟩

S6

,

⟨(0.5, 0.4, 0.6), (0.5, 0.4, 0.7), (0.5, 0.4, 0.6)⟩
S7

,
⟨(0.7, 0.5, 0.2), (0.8, 0.5, 0.2), (0.7, 0.5, 0.2)⟩

S8

,

⟨(0.8, 0.2, 0.4), (0.8, 0.1, 0.4), (0.8, 0.2, 0.4)⟩
S9

,
⟨(0.7, 0.5, 0.2), (0.7, 0.3, 0.2), (0.7, 0.5, 0.2)⟩

S10

,

⟨(0.7, 0.5, 0.2), (0.8, 0.5, 0.2), (0.7, 0.5, 0.2)⟩
S11

,
⟨(0.7, 0.5, 0.2), (0.4, 0.5, 0.2), (0.7, 0.5, 0.2)⟩

S12

,

⟨(0.9, 0.1, 0.2), (0.9, 0.1, 0.3), (0.9, 0.1, 0.2)⟩
S13

,
⟨(0.9, 0.4, 0.3), (0.7, 0.2, 0.3), (0.6, 0.4, 0.3)⟩

S14

,

⟨(0.7, 0.5, 0.2), (0.6, 0.4, 0.3), (0.7, 0.5, 0.2)⟩
S15

,
⟨(0.7, 0.5, 0.2), (0.7, 0.5, 0.1), (0.9, 0.2, 0.3)⟩

S16

,

⟨(0.7, 0.5, 0.2), (0.7, 0.5, 0.1), (0.9, 0.1, 0.2)⟩
S17

,
⟨(0.7, 0.5, 0.2), (0.7, 0.5, 0.4), (0.6, 0.4, 0.3)⟩

S18

,

⟨(0.9, 0.2, 0.3), (0.9, 0.2, 0.2), (0.9, 0.2, 0.3)⟩
S19

,
⟨(0.6, 0.2, 0.3), (0.9, 0.2, 0.1), (0.9, 0.2, 0.3)⟩

S20

}

and

G(A5) = {
⟨(0.9, 0.2, 0.3), (0.9, 0.1, 0.2), (0.9, 0.2, 0.3)⟩

S1

,
⟨(0.7, 0.5, 0.2), (0.8, 0.5, 0.2), (0.7, 0.5, 0.2)⟩

S2

,

⟨(0.8, 0.2, 0.4), (0.7, 0.2, 0.4), (0.8, 0.2, 0.4)⟩
S3

,
⟨(0.9, 0.2, 0.3), (0.9, 0.2, 0.4), (0.9, 0.2, 0.3)⟩

S4

,

⟨(0.8, 0.2, 0.4), (0.8, 0.2, 0.5), (0.8, 0.2, 0.4)⟩
S5

,
⟨(0.7, 0.5, 0.2), (0.8, 0.5, 0.2), (0.7, 0.5, 0.2)⟩

S6

,

⟨(0.9, 0.2, 0.3), (0.9, 0.2, 0.1), (0.9, 0.2, 0.3)⟩
S7

,
⟨(0.8, 0.2, 0.4), (0.8, 0.2, 0.4), (0.8, 0.2, 0.4)⟩

S8

,

⟨(0.9, 0.1, 0.1), (0.9, 0.2, 0.1), (0.9, 0.1, 0.1)⟩
S9

,
⟨(0.9, 0.2, 0.3), (0.8, 0.2, 0.3), (0.9, 0.2, 0.3)⟩

S10

,

⟨(0.8, 0.2, 0.4), (0.8, 02, 0.4), (0.8, 0.2, 0.4)⟩
S11

,
⟨(0.8, 0.2, 0.4), (0.7, 0.2, 0.4), (0.8, 0.2, 0.4)⟩

S12

,

⟨(0.7, 0.5, 0.2), (0.8, 0.3, 0.2), (0.7, 0.5, 0.2)⟩
S13

,
⟨(0.9, 0.1, 0.1), (0.9, 0.2, 0.1), (0.9, 0.1, 0.1)⟩

S14

,

⟨(0.7, 0.5, 0.2), (0.7, 0.4, 0.2), (0.7, 0.5, 0.2)⟩
S15

,
⟨(0.8, 0.2, 0.4), (0.8, 0.2, 0.3), (0.8, 0.2, 0.4)⟩

S16

,

⟨(0.9, 0.2, 0.3), (0.8, 0.2, 0.3), (0.9, 0.2, 0.3)⟩
S17

,
⟨(0.9, 0.2, 0.3), (0.9, 0.2, 0.2), (0.9, 0.2, 0.3)⟩

S18

,

⟨(0.8, 0.2, 0.4), (0.8, 0.2, 0.3), (0.8, 0.2, 0.4)⟩
S19

,
⟨(0.9, 0.2, 0.3), (0.8, 0.1, 0.3), (0.9, 0.2, 0.3)⟩

S20

}.

The score values of each of the strategies with respect to the respective asso-
ciation with the factors are determined by using the algorithm was discussed in
[5] (See Figure 1). The following factors are considered as the core factors for the
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Figure 1. Ranking of the Factors.

next step.
CS1 Developing multi-faceted products reflecting the ethos of the customers,
CS2 Scaling the cost of the product to customer’s budget,
CS3 Enrichment of the quality of the product using modern technology,
CS4 Strengthening the consistency and reliability of the product,
CS5 Designing products with values adding to consumer’s image,
CS6 Periodical review of product sales and marketing.

These factors are related to the various management systems of the business.
The relational impacts are represented linguistic neutrosophic sets and are quan-
tified using neutrosophic triangular fuzzy number as presented in Table 1.

Table 1. Quantification of Linguistic Variable.

Linguistic Variable Neutrosophic Triangular Number Crisp Value

Very Low (VL) ((0,0.10,0.15,0.20),0.6,0.2,0.3) 0.06

Low (L) ((0.15,0.2,0.25,0.3),0.6,0.1,0.1) 0.14

Medium (M) ((0.3,0.35,0.4,0.5),0.7,0.1,0.2) 0.23

High (H) ((0.5,0.6,0.7,0.8),0.8,0.2,0.1) 0.41

Very High (VH) ((0.8,0.9,0.95,1),0.9,0.1,0.1) 0.62

Let U = {CS1, CS2, . . . , CS6} and M = {M1,M2,M3,M4} be the set of
management systems of business, where

M1 = Product Quality Management,

M2 = Customer Loyalty Management,

M3 = Customer Relationship Management,

M4 = Marketing Management.

A single valued neutrosophic soft mapping H : M −→ P (U) is represented as
follows:

H(M1) = { V H
CS1

,
L

CS2
,
V H

CS3
,
H

CS4
,
M

CS5
,
H

CS6
},
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Table 2. Fixed points of the vectors.

Initial Vector Fixed Point

X = (100000) X∗M = (0.620.410.410.14)(1110) := X1
X1∗MT = (1.440.691.441.651.470.87) = (100110) := Y
Y ∗M = (1.261.651.650.78)(1110) := X2
X2∗MT = (1.440.691.441.651.470.87) = (100110) := Y 1
(1110)(100110)

X = (010000) X∗M = (0.140.140.410.23)(0011) := X1

X1∗MT = (0.550.640.641.030.850.85) = (010111) := Y
Y ∗M = (1.191.611.881.49)(0110) := X2

X∗
2MT = (0.820.550.821.241.240.46) = (111110) := Y1

Y ∗
1 M = (2.022.22.471.24)(0110) := X3
X∗

3MT = (0.820.550.821.241.240.46) = (111110) := Y2

(0110)(111110)

X = (001000) X∗M = (0.620.410.410.23)(1110) := X1

X∗
1MT = (1.440.691.441.651.470.87) = (100110) := Y

Y ∗M = (1.261.651.650.78)(1110) := X2

X∗
2MT = (1.440.691.441.651.470.87) = (100110) := Y 1

(1110)(100110)

X = (000100) X∗M = (0.410.620.620.41)(1111) := X1

X∗
1MT = (1.580.921.672.061.71.49) = (000110) := Y

Y ∗M = (0.641.241.240.64)(1111) := X2

X∗
2MT = (1.580.921.672.061.71.49) = (000110) := Y1

(1111)(000110)

X = (000010) X∗M = (0.230.620.620.23)(1111) := X1

X∗
1MT = (1.580.921.672.061.71.49) = (000110) := Y

Y ∗M = (0.641.241.240.64)(1111) := X2

X∗
2MT = (1.580.921.672.061.71.49) = (000110) := Y1

(1111)(000110)

X = (000001) X∗M = (0.410.230.230.62)(1001) := X1

X∗
1MT = (0.760.370.850.820.461.03) = (001001) := Y

Y ∗M = (1.030.640.640.85)(1001) := X2

X∗
2MT = (0.760.370.850.820.461.03) = (001001) := Y1

(1001)(001001)

H(M2) = { H

CS1
,
L

CS2
,
H

CS3
,
V H

CS4
,
V H

CS5
,
M

CS6
},

H(M3) = { H

CS1
,
H

CS2
,
H

CS3
,
V H

CS4
,
V H

CS5
,
M

CS6
},

H(M4) = { L

CS1
,
M

CS2
,
M

CS3
,
H

CS4
,
M

CS5
,
V H

CS6
}.

The relational impacts are determined by using the procedure discussed in
[15] (See Table 2).

4. Results and Discussions

The multivalued neutrosophic soft representation takes in the opinion of three ex-
perts into consideration. The twenty strategies taken for study are confined to six
strategies based on the final scores of the association rate with the factors. The
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six core factors are related with the principles of business management in various
dimensions. Each of the core factors is kept in on position. The associational
impacts are analyzed and the fixed points are determined. If the core factor CS1
is kept in on position, the limit point (1110)(100110) is obtained. The factor CS1
is highly associated with CS4, CS5 and M1, M2, M3. By repeating the same mech-
anism, the associational impacts between the other core factors are determined.
This approach of Multi-Strategy Decision-Making with neutrosophic soft sets rep-
resentations facilitate the decision-making process and it eases the procedure of
minimizing the number of strategies. The decision makers evolve many strategies,
but implementing all the strategies is not possible, it is quite mandatory to explore
the core strategies and to detect its relation with other decision-making principles.
To make the process much comprehensive, MSDM approach is constructed in this
research work.

5. Conclusion

This paper introduces the approach of Multi-Strategy Decision-Making with two
stage process of decision-making. The proposed approach is validated with the
decision-making environment of enhancing the customer acquisition strategies.
The multivalued neutrosophic soft set representations in the first stage results
in confining the number of strategies and the neutrosophic soft relational maps
in the second stage is used to determine the relational impacts. This approach
can be extended with other kinds of representation. This MSDM approach can be
applied to any kind of decision-making environment.
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MLIPD: A Machine Learning Approach to Identify Party
and Date Hub in PPI Network
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Abstract. It has been claimed that protein interaction networks are scale
free that contain a few hubs with ability to bind multiple proteins. Hubs are
classified as party and date hubs. Party hubs generally bind different proteins
in specific module simultaneously, while date hubs interact with multiple pro-

teins in different modules at different times and locations. Generally, they
have been divided into two classes based on the average Pearson Correlation
Coefficient (avPCC) of expression over all partners or their functions. In

this study, we propose a more appropriate method to identify party and date
hubs based on their topological properties of network. First, we calculate
some topological properties for each vertex of network. Then, using support
vector machine approach, we train a model on the entire training dataset to

identify party and date hubs. Finally, we evaluate our method on reference
hubs based on the avPCC on network. We show that the combination of topo-
logical properties can improve the performance of each topological property
approach.

Keywords: Date hub, Party hub, PPI network, Support Vector
Machine.
AMS Mathematical Subject Classification [2010]: 94C15.

1. Introduction

Proteins are identified as the main agent of biological processes that can determine
the phenotype of organisms. Some proteins are functional isolated form and some
ones interact with other proteins or other molecules. These interactions between
the proteins are often represented in the form of Protein-Protein Interaction (PPI)
network [1, 7]. Since some proteins interact with multiple proteins and others
interact with only a few, the PPI network has a wide range of degrees. The
highly connected proteins in PPI network are referred as hubs. There are some
studies that reveal the functional and structural characterization of hubs in PPI
network [3, 6]. In the recent pandemic, Covid-19 (coronavirus disease), the role
of hub proteins in virus-host interaction network have been highlighted to study
pathogenesis of infection [8]. Prasad et al have analyzed the human PPI network
and targeted hub proteins to find candidate drugs for Covid-19 [10].

In 2004, Han et al. have expressed that hub proteins which interact with most
of their partners simultaneously are designated as party hubs and those that bind
their different partners at different times or locations are date hubs [5]. Briefly,
they have divided the highly connected proteins into two classes based on the
average Pearson Correlation Coefficient (avPCC) of expression over all partners.
They have studied the role of two types of hubs in molecular organization in a

∗Speaker
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cell. They have also shown that party and date hubs play an important role in
organizing modules. Recently, some topological properties of two types of hub
proteins in the PPI network are presented [2, 9].

In this study, we first present MLMLIPD algorithm (Machine Learning ap-
proach), a computational method based on a combination of topological proper-
ties of PPI network to classify party and date hubs. First, we transform the PPI
network from the co-expression gene network. For each vertex, the topological
properties of PPI network are calculated. We train a model on the entire training
dataset based on SVM (Support Vector Machine) method and make predictions on
the test dataset to classify party and date hubs. Then, we evaluate each topological
property and their combination with respect to precision, recall and F-measure.
Results show that the combination of these properties performs better than each
existing property on PPI network.

2. Method

A PPI network G = ⟨V,E⟩ is a set of vertices V and a set of undirected edges
E between the vertices. Generally, a vertex v of PPI network represents a given
protein and each edge uv between two vertices u and v represents the connection
between two proteins. A vertex u is neighbor of another vertex v, if uv is an edge
of G. The set of all vertices that are the neighbors of v is the neighborhood of v
and it is denoted by N(v). The number of vertices of N(v) is called the degree of
v and denoted by d(v).

A sequence u = u0, u1, lcdots, un = v of distinct vertices of non-empty network
G is a path between two vertices u and v, if uiui+1 for each 0 ≤ i ≤ n is an edge
of G. The number of edges of a path is the length of the path. The shortest path
between two vertices u and v is defined as a path with the minimum length. It is
denoted by d(u, v).

2.1. Representative Topological Properties. The Clustering Coefficient
(CC) for each vertex v of G =< V,E > is defended as following formula:

CC(v) =
2|E(H)|

d(v)(d(v)− 1)
,

where H = N(v) and |E(H)| is the number of {uw ∈ E;u,w ∈ N(v)}.
The Closeness centrality (Cl) measure for each vertex v of network

G =< V,E > is defined by:

Cl(v) =
|V | − 1∑
u∈V d(u, v)

.

Another centrality measure of each vertex v on network G =< V,E > is
Sub-graph Centrality (SC). The sub-graph centrality for each vertex is defined as
following formula:

SC(v) =
∞∑
k=1

δk(v),

where δk(v) is the number of path with length k that pass through v.
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Finally, The Mean Degree Neighbor (MDN) for each vertex is calculated as
following formula:

MDN(v) =

∑
u∈N(v) d(u)

|N(v)|
.

2.2. MLIPD Algorithm. In this work, we propose a new algorithm named
MLIPD (Machine Learning approach to Identify Party and Date hubs) from input
(gene expression data). In the first step of MLIPD algorithm, using CLR algorithm
[4], the the co-expression gene network is constructed from gene expression dataset.
Then, we transform the PPI network from the co-expression gene network. In the
second procedure, the PPI network is collectively viewed as vertex-labeled graph,
where a vertex labeling is the function of vertices to the set of topological property
values. In the second step, we actually combine topological properties to find a
model to identify party and date hubs. We train a linear Support Vector Machine
(SVM) model on training examples and make prediction on test dataset.

2.3. Performance Evaluation Measures. To evaluate the performance of
our method, we use some evaluation measures. These measures are based on the
relation between the number of hubs correctly predicted positive (Tp), the number
of hubs correctly predicted negative (Tn), the number of hubs incorrectly predicted
positive (Fp), and the number of hubs incorrectly predicted negative (Fn). The
Precision (Pre = Tp/Tp+Fp) and recall (Re = Tp/Tp+Fn) are two evaluation
measures. Another measure which can be used to evaluate the performance of a
method is F-measure as the harmonic mean of precision and recall.

F −measure = 2PreRe

Pre+Re
.

3. Result

3.1. Dataset. In this work, we use a collection of high-throughput protein
interaction data of Saccharomyces cerevisiae [4]. It contains yeast cells which
grown aerobically on galactose medium. CLR algorithm identifies 45869 regular
interactions between 4445 genes. We consider ten percentages of high-degree ver-
tices as hubs. We select the avPCC cutoff at the valley between the two peaks as
threshold to separate date and party hubs. Ones with relatively high avPCCs are
chosen as party hubs and the other ones are defined as date hubs. This yields 465
hubs that contain 127 party and 338 date hubs. In this study, we choose randomly
200 different training and test datasets on the each of two datasets by using of
randperm function in the MATLAB to evaluate methods.

3.2. Evaluation of Topological Properties. To justify using some topo-
logical properties of PPI network, we analyze the performance of each topological
property with respect to predict two types of hubs. To find suitable threshold for
each property, we suppose that A and B be the set of party and date hubs in PPI
network respectively and Sψ be the set of score values of hubs for each property,
ψ . For each threshold value, α, we define:

(1) Sψ<α: The set of hub vertices that their score values (Sψ) is less than α.
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(2) Sψ≥α: The set of hub vertices that their score values (Sψ) is more than
α.

Now, for each threshold value and for each property we define the Fψα measure
as following formula:

Fψα =
max{|A ∩ Sψ<α|, |A ∩ S

ψ
≥α|}.max{|B ∩ Sψ<α|, |B ∩ S

ψ
≥α|}

|Sψ<α||S
ψ
≥α|

,

where | · | is the number of each subset.
Then, by varying the threshold value (α) on each topological property, we cal-

culate the best threshold value corresponding to maximum number of Fψα measure.
The results of the best thresholds are given in Table 1 on dataset. The relatively
F-measure values justify all selected properties to identify party and date hubs.

Table 1. Precision and recall values for date and party hubs
using the best threshold values for each topological properties.

Threshold Tp Tn Fp Fn Pre Re F-measure Classes

SC 1.70E+32 337 107 20 1 0.94 0.99 0.97 Date
107 337 1 20 0.99 0.84 0.91 Party

MDN 61.06 337 105 23 1 0.9 0.99 0.96 Date
105 337 1 23 0.99 0.85 0.89 Party

CC 0.52 325 110 17 13 0.95 0.96 0.95 Date
110 325 13 17 0.89 0.86 0.88 Party

Cl 0.27 328 113 14 10 0.95 0.97 0.96 Date
113 328 10 14 0.91 0.8 0.90 Party

3.3. Evaluating the Combination of Topological Properties. To evalu-
ate the performance of our method, we compare the party and date hubs predicted
by MLIPD, SC, MDN and Cl with the party and date hubs which obtained from
avPCC definition as real party and date hubs. In this work, we train a model on
the entire training dataset and make predictions on the test dataset. We also ob-
tain the best threshold value for each property corresponding to maximum number
of Fψα measure on training sets. In Table 2, we show the means and variances of F-
measure values which obtained by our method and each property on 200 different
testing sets on dataset. Table 2 shows that almost all methods have similar perfor-
mance to identify date hubs, however MLIPD algorithm performs better compare
to other methods with respect to identify party hubs.To investigate the difference
in behavior of methods corresponding to different training datasets, we study the
variances of F-measure values which obtained from all methods on 200 different
testing sets on dataset. Our results indicate that the variance values of MLIPD are
6.90E − 05 and 8.1E − 04 on dataset related to date and party hubs respectively
(as shown Table 2). The relatively small values of variance (in MLIPD algorithm)
indicate that the algorithm is independent of the selected training datasets. So,
MLIPD algorithm perform superior performance compare to other methods on
almost all testing sets.
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Table 2. The mean and variance of F-measure values on 200
different testing sets.

MLIPD SC MDN CC Cl Classes

Mean 0.97 0.86 0.93 0.90 0.92 Date
0.92 0.73 0.75 0.66 0.75 Party

Variance 6.9E-5 0.06 0.006 0.007 0.007 Date
8.01E-4 0.12 0.12 0.13 0.12 Party

4. Conclusion

In the first part of this work, we have presented the short preliminaries of graph
theory and mentioned some topological properties of each vertex in PPI network.
Then, we have proposed the MLIPD algorithm to identify party and date hubs
based on combination these topological properties. We have trained a linear sup-
port vector machine model on training sets and made prediction on testing set.

In the second part of this work, we have studied the impact of each topological
property to identify party and date hubs. The results on testing sets show that
the MLIPD algorithm can progressively improve the performance of each property
to identify party and date hubs based on common evaluating parameters (Tp, Tn,
Fp, Fn and F-measure). Results indicate that MLIPD algorithm agrees well with
two hub classes obtained by the average Pearson Correlation Coefficient between
hub and each of respective partners for mRNA expression, and F-measure values
can be increased considerably in comparison with each property.
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Abstract. The tensor based classifiers are used for classification of any data
with multiple dimensions, such as images, videos, fMRI images and so on.
The Higher-Order Singular Value Decomposition (HOSVD) is an essential

tool for such a classifier. Although the HOSVD considers the factors of each
dimension of the data separately, it needs more memory and has a higher
complexity compared to the ordinary Singular Value Decomposition (SVD).
In this paper, we consider the problem of face recognition and compare the

performance of SVD and HOSVD classifiers in this field. It is observed that
HOSVD classifier can not dominate the ordinary SVD classifier for face recog-
nition problem.

Keywords: Multidimensional data, Sub-space classification, Tensor
decomposition.
AMS Mathematical Subject Classification [2010]: 15-XX,
15A69.

1. Introduction

Classification based on SVD [1, 3] is classification method used for sparse signals,
which are well characterized and classified by a few of the first singular components
of the images of the same class. The ordinary SVD [8] can only be used for a matrix
of samples. To use SVD for multidimensional data sets such as image, video, fMRI
etc. they should be vectorized into rows of the sample matrix.

It seems that vectorizing these tensors might cause information loss about
the adjacent components of the tensors. The HOSVD [4] is a generalization of
the SVD method for multidimensional tensors, without vectorizing it into rows of
a matrix. Using HOSVD, the SVD classification techniques are extended to the
tensor based classification methods [2]. This method is used for image processing
[6], face recognition [5] and handwritten classification [7].
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Although the HOSVD decompose the data in all dimensions and considers the
information of the adjacent components of the tensors, it has a higher complexity
and memory consumption compared with the ordinary SVD. In this paper, we
compare the performance of the SVD and HOSVD classifiers in the problem of
face recognition. We observe that the HOSVD classifier can not dominate the SVD
classifier for the face recognition problem using two benchmark face recognition
data sets.

The rest of the paper is organized as follows: in Section 2 classification based
on SVD and HOSVD algorithms is explained. Section 3 presents the experimental
results and concluding remarks.

2. Classification Based On SVD and HOSVD

2.1. SVD Classifier. The main idea behind the SVD classifier is the mod-
eling of the variation within each class using orthogonal basis vectors obtained by
SVD decomposition.

Theorem 2.1. Every matrix B ∈ RI×J can be decomposed as product of

B = Σ× U × V T ,

where U ∈ RI×I and V ∈ RJ×J are orthogonal matrices and Σ is an (I × J)
diagonal matrix with non-negative entries, ordered in the following way: σ1 ≥
σ2 ≥ · · · ≥ σJ ≥ 0.

The SVD can also be written as an expansion of the matrix:

B =

J∑
i=1

σi × ui × vti =
J∑
i=1

αi × ui,

where αi = σi × vti , uis and vis are column vectors of U and V respectively. This
is usually called the outer product form.

To classify image date using SVD, let’s vectorize the image of each class with
dimension I × J . Stacking all the columns of each vectorized image above each
other gives a matrix. Suppose Bi ∈ RM×Ni with M = I × J be the matrix
consisting of all the training images of class i (1, . . . ,K).

The idea of SVD classification is to model the variation within the set of
training (and test) classes of one kind using an orthogonal basis of the subspace.
Therefore, it should be computed how well an unknown sample can be represented
in some different bases. This can be done by computing the residual vector in least
squares problems of the type:

min
(αi

1,...,α
i
N )

∥∥∥∥∥∥z −
N∑
j=1

αij × uij

∥∥∥∥∥∥ , i = 1, . . . ,K,

where z represents an unknown sample and uij represents the singular images of

class i (i = 1, . . . ,K). This problem can be written in the form
{
minαi

∥∥z − U iNαi∥∥},
where U iN = (ui1, . . . , u

i
N ), i = 1, . . . ,K. Since the columns of U iN are orthogonal,

188



FACE RECOGNITION USING ORDINARY AND HIGHER-ORDER SVD

the solution to this problem is given by αi = (U iN )T z, and the new sample is
classified in the class with the minimum value of

Ri =
∥∥∥(IN − U iNU iTN )z

∥∥∥ , i = 1, . . . ,K.

2.2. HOSVD Classifier. An imprecise definition of a Tensor is An object
with N indices, where N is the order of the Tensor. Vectors and Matrices are
tensors of order 1 and 2, respectively. For example, a tensor of order 3 is denoted
by A ∈ RI×J×K , where I , J and K are positive integers.

One of the important definitions widely used in the tensors, is the n-mode
tensor-matrix multiplication, which is defined as follows.

Definition 2.2. Let A ∈ RI1×I2×···×IN and B ∈ RJ×In . The n-mode tensor-
matrix product of A and B is denoted A×n B, and is defined by

(A×n B)(i1, . . . , in−1, j, in+1, . . . , iN ) =

In∑
in=1

A(i1, . . . , iN )B(j, in).

The HOSVD is defined for example for a third order tensor as follows. The
definition for other orders are similar.

Theorem 2.3. A third order tensor A ∈ RI×J×K could be expressed as product

A = A×1 U ×2 V ×3 W,

with following properties:

1) U ∈ RI×I ,V ∈ RJ×J and W ∈ RK×K are orthogonal matrices.
2) A is a real tensor of the same dimensions as A which satisfies:

(i) The all-orthogonality property: any two different slices fixed in the
same mode are orthogonal.

(ii) The ordering property: norms of slices along every mode are ordered,
for instance, for the first mode we have

∥A(1, :, :)∥ ≥ ∥A(2, :, :)∥ ≥ · · · ≥ 0.

Another way to reconstruct a third order tensor can be achieved:

A =
K∑
ν=1

Aν ×3 ων ,(1)

where Aν = A(:, :, ν) ×1 U ×2 V , and wν is the νth column of W . In this form,
every matrix in A is a unique linear combination of the same basis matrices Aν .

Below, we will deal with image classification based on HOSVD. For the image
data, the train sample of size Ni the I×J pixel images in class i (i = 1, . . . ,K) can
be considered as a third order tensor Ai ∈ RI×J×Ni . From (1) the orthogonal basis
matrices for class i (i = 1, . . . ,K) are constructed. Suppose we want to classify
an unknown image D with ∥D∥ = 1. For this purpose, the following minimization
problem should be solved.

min
(αi

1,...,α
i
N )

∥∥∥∥∥ D −
N∑
ν=1

αiν ×Aiν

∥∥∥∥∥ , (i = 1, . . . ,K),
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where αiνs are the unknown coefficients and the bases Aiv(i = 1, . . . ,K) are derived
from HOSVD decomposition of Ai. Because of Orthonormality of Aiν , the solution
is given by α̂iν = ⟨D,Aiν⟩. Therefore, an unknown imageD belongs to class i, where
has the smallest Ri, i = 1, . . . ,K, obtained by

Ri =

∥∥∥∥∥ D −
N∑
ν=1

α̂iν ×Aiν

∥∥∥∥∥ =

⟨
D −

N∑
ν=1

α̂iν ×Aiν , D −
N∑
ν=1

α̂iν ×Aiν

⟩

= ⟨D,D⟩ −
N∑
ν=1

⟨
D,Aiν

⟩2
= 1−

N∑
ν=1

⟨
D,Aiν

⟩2
.

3. Experimental Results

In order to compare the performance of SVD-classifier with HOSVD-classifier, 2
benchmark face recognition datasets (ORL and YALE) were used. The ORL face
database contains 400 face images of 40 people (10 samples of each person). These
images are different in gesture and posture such as: smiling or non-smiling, open
or closed eyes and also facial details like: with and without glasses were taken with
tolerance for some side movement and rotation of the face up to 20 degrees.

The YALE face dataset contains 165 grayscale images of 15 individuals. There
are 11 images per subject, one per different facial expression or illumination:
center-light, with glasses, happy, leftlight, without glasses, normal, right- light,
sad, sleepy, surprised, and winking.

Figure 1. Some example images from ORL and YALE dataset.

The two algorithms were compared with 4 different schemes of train-test splint-
ing (40%, 50%, 60% and 70% as the train set). Figures 2 and 3 show experimental
results on the ORL and Yale, respectively. As it can be seen from the figures, the
precision of two methods are equal for all four different schemes. We also noticed
that the misclassified samples for SVD and HOSVD classifiers are the same. While
the HOSVD has a higher complexity and execution time compared to the ordinary
SVD, the HOSVD is not preferred for the classification of less complex data sets.
Also, it is observed in the experiments that the increment of basis vectors has no
effect on the precision of the methods.
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Figure 2. Comparing SVD with HOSVD on the ORL dataset.

Figure 3. Comparing SVD with HOSVD on the YALE dataset.

References

1. C. Clark and A. F. Clark, Spectral identification by singular value decomposition, Int. J.
Remote Sensing 19 (12) (1998) 2317–2329.

2. B. Cyganek, Embedding of the extended euclidean distance into pattern recognition with

higher-order singular value decomposition of prototype tensors, IFIP International Confer-
ence on Computer Information Systems and Industrial Management (2012) pp. 180–190.
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Abstract. Graph burning models the spread of contagion(fire) in a graph
in discrete time steps. The burning number of a graph G, bn(G) is the

minimum time needed to burn a graph G. Determining the burning number
of a graph is NP-complete. In this paper, we develop first heuristics to solve
the problem in general (connected) graphs. In order to test the performance
of our algorithms, we applied them on some graph classes with known burning

number and known benchmarks for NP-hard problems in graph theory. We
also improved the upper bound for burning number on general graphs in
terms of their distance to cluster. Then we generated a data set of 2000
random graphs with known distance to cluster and tested our heuristics on

them.
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1. Introduction

Burning number of a graph is a new concept that measures the speed of spreading
a contagion (fire) in a graph [2]. Given an undirected unweighted graph, the fire
spreads in the graph in synchronous rounds as follows: in round one, a fire starts
at a vertex called an activator. In each following round two events happen:

(1) The fire spreads to all neighbors of vertices that are on fire.
(2) Fire starts at a new activator that is an unburned vertex.

The process continues until all vertices of the graph are on fire. At this time we say
that the burning process is complete [5]. A burning schedule specifies a burning
sequence of vertices, where the ith vertex in the sequence is the activator in round
i. The burning number bn(G) is the minimum length of a burning sequence.

In burning number Problem the input is a simple graph G of order n and an
integer k ≥ 2. The question is whether bn(G) ≤ k? In other words, does G contain
a burning sequence (x1, x2, . . . , xk)?

As the first result, some of the properties of this problem including charac-
terizations and bounds was presented in [2, 9]. Bonato et al. [2] proved that
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the burning number of any connected graph with n vertices is at most 2
√
n − 1

and conjectured that it is always at most ⌈
√
n⌉. It is proved that this prob-

lem is NP-complete even when restricted to simple graphs [1]. They developed a
polynomial-time approximation algorithm with approximation factor 3 for general
graphs [1]. Bonato and Lidbetter [4] developed a 3/2-approximation algorithm for
path forests (disjoint union of paths). There is another approximation algorithm
with an approximation ratio of 2 for trees.

In a recent study Kamali et al. [5] considered connected n-vertex graphs with
minimum degree δ. They developed an algorithm that burns any such graph in at

most
√

24n
δ+1 rounds. In particular, for graphs with δ ∈ θ(n), they proved that all

vertices are burned in a constant number of rounds. More interestingly, even when
δ is a constant that is independent of n, their algorithm answers the graph-burning
conjecture in the affirmative by burning the graph in at most

√
n rounds.

Šimon et al. [10] developed some heuristics for graph burning based on some
centrality measures. They tested their heuristics on limited number of networks.

In this paper, we develop new heuristic algorithms for solving graph burning
problem. As mentioned before, most of the studies on this problem concern limited
classes of graphs. Since the problem is modeling the spread of contagion in a
network, it is essential to develop algorithms for solving the problem in general
graphs. We developed 6 heuristics for burning a graph. These heuristics differ in
selecting the first activator and also the order of selecting the following activators.

Except for approximation algorithms [4, 6, 10], and algorithm 1 in [3] there
are no official algorithms for this problem, so to test the performance of our al-
gorithm, we used some theoretical results: we generated a random class of theta
graphs and a random class of graphs with known distance to cluster and report
the result of applying our algorithms on these classes. We compared our results
with exact values and bounds reported in former studies. We also applied our
algorithms on various graphs in known data sets: DIMACS and BHOSLIB. These
data sets contain graphs with various sizes and structures.

This paper is organized as follows: in Section 2 we present some basic defini-
tions and our heuristics. In Section 3 we present the result of our experimental
study on different data sets, and in Section 4 we state conclusions and future
works.

2. Algorithms

In this section, we present 6 heuristics for solving graph burning problem. The
output in each algorithm is a burning sequence for the input graph G. First, we
review some basic definitions and then we present our heuristics.

2.1. Basic Definitions. For a graph G = (V,E), let n and m to denote the
number of vertices and edges, respectively. For a vertex v ∈ V , N(v) denotes the
set of vertices adjacent to v and N [v] = N(v) ∪ {v} is the closed neighborhood
of v. Given an integer k, Nk[v] is the number of vertices with distance at most
k of a vertex v. For a vertex v in a graph G, the eccentricity of v is defined as
max{d(u, v)|u ∈ V (G)}. The radius of G is the minimum eccentricity over the set
of all vertices in G. The diameter of G is the maximum eccentricity over the set of
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all vertices in G. For a subset X ⊂ V (G), the graph G[X] denotes the subgraph
of G induced by X.

2.2. Heuristics. In the proposed algorithms we have two steps: the first step
is to select the first candidate for burning. It seems essential since this vertex will
burn vertices in distance bn(G) of the graph. So, we need to select a vertex with
a large set of vertices in Nbn(G)[v]. In the second step, we select the rest of the
activators one by one.

Given a burning sequence S = (x1, x2, . . . , xbn(G)) of a graph G, for each
vertex v, there is a vertex xi in S such that v is burned by a fire that is started in
xi, i.e. d(v, xi) < d(v, xj) for all j ̸= i. we call xi the activator of v.

We develop different heuristics based on different strategies for the first and
second steps.

(1) We choose the first activator from the center of the graph. The farthest
vertex to this vertex is in distance rad(G) of it. So, it seems that this
vertex has a big kth neighborhood. We used this in step one of heuristics
Ctr-Half dist. and Ctr-Far dist..

(2) In each time step k, for each unburned vertex v, we can calculate that
in how many time steps this vertex will burn if we do not add any other
activator. We call this time-to-burn of v and denote it by tk(v). Let
tk = max{tk(v) : v ∈ V }. Hence, tk + k is an upper bound for the
burning number. We can select the next activator in two ways:
(a) The next activator is a vertex v with tk(v) = tk/2. In this way the

vertices with greater time-to-burn will burn in shorter time, using
this new activator. (Heuristics Ctr-Half dist. and Rnd-Half dist.)

(b) The next activator is a vertex with max -1 time-to-burn. (Heuristics
Ctr-Far duist and Rnd-Far dist.)

(3) In heuristics Rnd-Half dist. and Rnd-Far dist. we select the first activator
in random to see the effect of selecting the first activator in our heuristics.

Table 1 summarizes the strategies in four heuristics.

Table 1. Summary of first four heuristics.

Heuristics First Activator Next Activator
Ctr-Half dist. Center 1/2 time-to-burn
Ctr-Far dist. Center max time-to-burn
Rnd-Half dist. Random 1/2 time-to-burn
Rnd-Far dist. Random max time-to-burn

We developed two other heuristics with a different idea: burning a path. The
main idea is finding the diameter of the graph and the path with length diam(G)
and then burning the vertices of this path with the same order as burning a path in√
diam(G) steps. Since computing the diameter of a graph is of large complexity,

we use two approaches to find a good approximation of that. In heuristic DFS-
path we select a random vertex and perform a DFS algorithm to find a path.
In heuristic D-BFS-path we use the algorithm by Birmele et al. to approximate
the diameter. This algorithm uses BFS twice, the first BFS starts from a random
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vertex and the second one starts from one of the leaves of previous BFS. This gives
a 2-approximation of the diameter of the graph. There is no guarantee that all
vertices of the graph burn using only vertices of these paths. So, after burning the
vertices of the path, if there is still an unburned vertex, we select them randomly
as activators.

3. Experimental Study

We implemented algorithms that were introduced and explained earlier in Section
2 using Python 3. To model our graphs in a proper data structure and apply
fundamental graph algorithms and measures, we used the well-known NetworkX
package introduced by Hagberg et al.

3.1. Datasets. As mentioned before, there is no algorithm for burning gen-
eral graphs. So, in order to evaluate our heuristics we use two types of datasets:

(1) Classic datasets that are commonly used in some NP-hard problems in
graph theory such as clique number, independence set, dominating num-
ber, etc.

(2) Random graphs in some classes with the exact value or a good bound on
their burning number computed.

3.2. DIMACS, BHOSLIB. We applied our 6 heuristics on all graphs in
DIMACS and BHOSLIB. From 78 graphs in DIMACS, all heuristics computed a
burning sequence of length 3 for 71 graphs. Roshanbin [9] proved that for a G
be a graph with n vertices bn(G) = 2 if and only if n ≥ 2 and G has maximum
degree n− 1 or n− 2. The results on BHOSLIB graphs are more interesting. All
heuristics compute 3 for all graphs and this is optimal.

3.3. θ−Graphs. There are tight bounds on the burning number of θ−graphs
that are proved by Liu and et al. [8]. They showed that the burning number of
order n = q2 + r with 1 ≤ r ≤ 2q + r is either q or q + 1. We compared our
results with these bounds. In %81.7 of graphs, we computed the same value as the
proved bounds. The average difference between our best results and upper bounds
is 0.6 and standard deviation 1.2309. Table 2 shows the comparison of different
heuristics.

Table 2. Comparison of different heuristics on theta graphs.

Heuristic Success Rate
Ctr-Far 16.9%
Rnd-Far 7.7%
DFS-path 73.8%
D-BFS-path 1.6%
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3.4. Graphs with Fixed Distance to Cluster. Kare et al. [7] computed
an upper bound for graphs in terms of their distance to cluster, which is 3d + 3.
We improve this bound in the following theorem.

Theorem 3.1. Let G be a graph and A be a set of vertices such that G[V (G)\A]
is a cluster graph. Then bn(G) ≤ bn(G[A]) + 2.

Proof. A burning sequence of A burns all vertices except possibly vertices
of complete graphs that are adjacent to ihe last vertex of the burning sequence.
These complete graphs burn in at most 2 rounds. So bn(G) ≤ bn(G[A]) + 2. □

An immediate conclusion from Theorem 3.1 is that bn(G) ≤ d + 2 for each
graph with distance to cluster d. We generated 2000 random graphs as described is
Subsection 3.1 and applied our heuristics on these graphs and compared the result
with ⌈

√
d⌉+ 2. The results show that in %98 of graphs the results meet bounds.

We also compared all heuristics. Heuristics Ctr-Half dist, Rnd-Half dist and Rnd-
Far dist find better solutions among our 6 heuristics. The winning heuristics are
the ones that select the first activator in different ways and the following ones
according to far dist. strategy.

4. Conclusion and Future Work

In this paper, we developed the first heuristics for graph burning problem. To study
the performance of our heuristics, we applied them on two types of datasets: (1)
Known benchmarks for NP-hard problems in graph theory. We selected DIMACS
and BHOSLIB. Our heuristics computed the optimal solution in 71 graphs out of
78 graphs in DIMACS, and all the 36 graphs in BHOSLIB. (2) Randomly generated
graphs in classes with a known burning number, such as 2000 θ−graphs and 2000
random graphs with known distance to cluster. We computed the correct burning
number in %81 of theta graphs and %98 of graphs with given distance to cluster.

Since there are very few studies (just one paper) on algorithmic approaches to
solve the burning number, the results here can be used as bench marks. Finally,
there is a huge body of research on the spread of influence in social networks.
There are measures called centrality measures to select seeds (activators) in a
social network. It is interesting to develop algorithms for burning graph using
these measures.
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Simultaneous Hard Thresholding Algorithms for Multiple
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Abstract. Given Y ∈ Rm×k and a sensing matrix A ∈ Rm×N with m ≪
N , the multiple measurement vectors (MMV) problem aims to recover row-
sparse matrices X ∈ RN×k of an underdetermined linear system AX =
Y . In this work, we introduce two iterative algorithms, Simultaneous Null
Space Tuning with Hard Thresholding with FeedBack (SNST+HT+FB) and

SNST+HT with stretching for jointly sparse vectors recovery in MMV model.
These algorithms are based on the null space tuning with hard thresholding
techniques in single measurement vector (SMV) model of compressive sensing.
Finally, some numerical results are presented to demonstrate the advantages

of the algorithms.

Keywords: Compressive Sensing, Sparse recovery, Null Space
Tuning, Hard Thresholding Algorithm, Multiple Measurment Vectors.
AMS Mathematical Subject Classification [2010]: 65F50,
65F10, 15A29.

1. Introduction

Compressive sensing (CS), also known as compressive sampling, has received con-
siderable research of interest in various applications due to its superior capability
to recovery a sparse signal from a much smaller number of measurements than its
original dimension. In the popular, CS is referred to as a single measurement vector
(SMV) model. Mathematically speaking, given a measurement matrix A ∈ Rm×N

with m ≪ N , and given a measurement vector y = Ax ∈ Rm associated with an
s-sparse vector x ∈ RN (a vector that has at most s nonzero entries), we want
to access this vector in a numerically tractable way. A natural extension of this
problem is the multiple measurement vectors (MMV) model. In the MMV model,
signals are represented as matrices and are assumed to have the same sparsity
structure. The main aim of MMV is to find row-sparse matrices X ∈ RN×k of an
underdetermined linear system AX = Y , where A ∈ Rm×N and Y ∈ Rm×k are
given. The MMV model was initially motivated by a neuromagnetic inverse prob-
lem that arises in Magnetoen-cephalography (MEG), a brain imaging modality
[2]. It is assumed that MEG signal is a mixture of activities at a small num-
ber of possible activation regions in the brain. MMV model has also been found
in array processing, nonparametric spectrum analysis of time series, equalization
of sparse communication channel, linear inverse problem, DNA microarrays and
source location in sensor networks and etc. for more details see [1, 5, 7, 9, 10]
and references therein.
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For solving CS problems, there are several classes of algorithms that have been
used in applications, such as l1 minimization algorithms, greedy algorithms (for ex-
ample matching pursuit (MP) and orthogonal matching pursuit (OMP)), Iterative
thresholding/shrinkage algorithms and combinatorial algorithms (for more details
see [3]). Greedy pursuit algorithms can be much faster than ℓ1-based methods
and are often applicable to very large sparse recovery problems. Iterative thresh-
olding approaches offer another fast alternative, which in addition, share the near
optimal recovery guarantees offered by ℓ1-based approaches.

Li et al. in [8], proposed iterative null space tuning algorithms with hard
thresholding (for example NST+HT+FB and NST+stretchedHT) to find sparse
solutions, aiming at faster convergence rate and greater recovery capacity for
SMV model. In this paper, we propose natural extensions of these algorithms,
which we call Simultaneous null space tuning with hard thresholding with feedback
(SNST+HT+FB), SNST+HT with stretching (SNST+stretchedHT) Algorithms
and present the theoretical convergence studies of these algorithms. Finally, some
numerical results are presented to demonstrate the advantages of the algorithms.

2. Main Results

2.1. Row-Sparse Recovery. Let us suppose that several sparse vectors
X1, . . . ,Xk ∈ RN are to be recovered from Y1 = AX1, . . . ,Yk = AXk ∈ Rm,
with the additional assumption that X1, . . . ,Xk are jointly sparse, in other words
they are all supported on a set of small cardinality. Intuitively, we foresee an
achieve in computational complexity by recovering X1, . . . ,Xk all at the same
time rather than one by one. For now, we reformulate the problem by defining the
N × k matrices

X =
(
X1| · · · |Xk

)
=


X1

X2

...
XN

 , Y =
(
Y1| · · · |Yk

)
,

where Xi stands for the ith row of X and Xj stands for the jth column of X ∈
RN×k. The joint sparsity assumption just says that X is s-row-sparse, i.e., its
row-support

supp(X) := {i : Xi ̸= 0},
has cardinality at most s.

2.2. SNST+HT+FB and NST+stretchedHT. In this section we propose
new algorithms that are designed to recovery of s-row-sparse matrices X from
Y = AX. These algorithms are natural extension of the NST+HT+FB and
NST+stretchedHT Algorithms which were introduced in [8]. We named these
algorithms SNST+HT+FB and SNST+stretchedHT and are implemented as fol-
lows:

Algorithm 1. SNST+HT+FB Algorithm

Input: A, Y, s, ϵ1, ϵ2;
Output: X;
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Initial: P = I − A∗(AA∗)−1A, X[0] = A∗(AA∗)−1Y, k = 0, U [−1] = 0, U [0] =
Ts(X [0]),

While (∥AU [k]−Y ∥F

∥Y ∥F
> ϵ1 and

∥U [k]
S −U [k−1]

S ∥F

∥U [k]
S ∥F

> ϵ2) k = k + 1,

U [k] = Ts(X [k]) + (A∗
S[k]

AS[k]
)−1A∗

S[k]
ASc

[k]
X

[k]
Sc
[k]

(set S[k] = indices of

s largest ∥(Xi)[k]∥2),
X [k+1] = X [k] +P(U [k] −X [k]).
End While

Algorithm 2. SNST+stretchedHT Algorithm

Input: A, Y, s, ϵ1, ϵ2;
Output: X;
Initial: P = I − A∗(AA∗)−1A, X[0] = A∗(AA∗)−1Y, k = 0, U [−1] = 0, U [0] =

Ts(X [0])

While (∥AU [k]−Y ∥F

∥Y ∥F
> ϵ1 and

∥U [k]
S −U [k−1]

S ∥F

∥U [k]
S ∥F

> ϵ2),

k = k + 1,

Θk = ∥Y ∥F /∥AS[k]
X

[k]
S[k]
∥F (set S[k] = indices of s largest ∥(Xi)[k]∥2),

U [k] = ΘkTs(X [k]),
X [k+1] = X [k] +P(U [k] −X [k]).
End while

Here P = I − A∗(AA∗)−1A is the orthogonal projection onto kerA and X[0] is
always set as the least squares solution, i.e., X[0] = A∗(AA∗)−1B and ∥ ·∥F stands
for Frobenius norm.

2.3. Convergence Analysis. To state the convergence results, we first re-
call the definition of restricted isometry property (RIP) and preconditioned re-
stricted isometry property (P-RIP), see [6].

Definition 2.1. For an m×N measurement matrix A, the s-restricted isom-
etry constant δs of A is the smallest quantity such that

(1− δs)∥x∥22 ≤ ∥Ax∥22 ≤ (1 + δs)∥x∥22,

holds for all s-sparse signals x. Equivalently, it is given by

δs = max
card(S)≤s

∥A∗
SAS − I∥2.

If δs is small for reasonably large s, then matrix A is said to satisfy the s-restricted
isometry property with the s-restricted isometry constant δs.

Definition 2.2. For an m × N measurement matrix A, the preconditioned
s-restricted isometry constant γs of A is the smallest quantity such that

(1− γs)∥x∥22 ≤ ∥(AA∗)−
1
2Ax∥22 ≤ (1 + γs)∥x∥22,

holds for all s-sparse signals x. Equivalently, it is given by

γs = max
card(S)=s

∥A∗
S(AA

∗)−1AS − I∥2.
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By using the above definitions we can prove the following Theorem, which
guarantees the convergence of the SNST-HT-FB Algorithm.

Theorem 2.3. Suppose that X [∗] is a real s-row-sparse solution of AX = Y.
If the P-RIP and RIP constants of A satisfy δ2s+

√
2γ3s < 1, then U [k] in SNST-

HT-FB satisfies

∥U [k] −X [∗]∥F ≤ ρk∥U [0] −X [∗]∥F ,

where ρ =
√
2γ3s

1−δ2s .

Same as the SMV case, with requirements over the restricted isometry con-
stants of A, both procedures (SNST+HT+FB and NST+stretchedHT) reduce the
error in each iteration and are guaranteed to converge to limits with error bounds
depending on the tail of the real solution. Similar to the single case, although
SNST+HT+FB has a pursuit spirit seen in various algorithms such as HTP [4],
the feedback mechanism plays a significant role particularly for large scale prob-
lems and has led to the superiority of this method compared with others.

3. Experimental Results

In this section, we present numerical experiments of the recovering matrices at
once via SNST+HT+FB and SNST+stretchedHT versus recovering their columns
one by one via NST+HT+FB and NST+stretchedHT Algorithms. In Figure 1,
X ∈ RN×k is generated by randomly selecting s rows with zero mean Gaussian
random entries of unit variance and letting the remaining rows to be zeros and the
measurement matrix A ∈ Rm×N is a Gaussian matrix with Gaussian independent
and identically distribution (i.i.d.) entries of zero mean and variance 1

N . The
measurement signal is given by Y = AX. Reconstruction performance is quantified
by the relative error, which is defined by

relative error =
∥Xrec −X∥F
∥X∥F

,

where Xrec is the reconstructed signal matrix and X is the original one. In part
(a) of Figure 1 we compare NST+HT+FB and SNST+HT+FB Algorithms and
in the part (b), we compare NST+stretchedHT and SNST+stretchedHT Algo-
rithms. The experiments illustrate how the relative error of each algorithm changes
along the nonzero rows s. We set N = 500,m = 200 and k = 5. Let s (spar-
sity level) changes from 20 to 60 and for execution-time comparison, we tested k
runs of NST+HT+FB and NST+stretchedHT and 1 run of SNST+HT+FB and
SNST+stretchedHT methods for some problems. For each sparsity value s, the
methods are tested for 100 trials. The execution time is recorded for every trial
and the averages time are then calculated. Therefore, simple numerical experi-
ment of Figure 1, confirms that one run of SNST+HT methods is faster than k
runs of NST+HT ones, moreover accuracy of SNST+HT methods is better than
another ones.
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Figure 1. (a) Plots of ∥x−x0∥/∥x0∥ as a function for NST+HT+FB
and SNST+HT+FB. SNST+HT+FB does have the advantage at re-
covering Gaussian sparse vectors over that of NST+HT+FB. (b)
Plots of ∥X − X0∥/∥X0∥ as a function for NST+stretchedHT and
SNST+stretchedHT. SNST+stretchedHT does have the advantage at
recovering Gaussian sparse matrix with Gaussian matrix over that of
NST-HT.
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Abstract. In this study, after introducing a fourth order spacial numerical
method, we demonstrate that this scheme guaranteed unconditional stability
(under L2 norm). Also, the presented method is second order in time and

fourth order in space. Comparative results show that this method is accurate
than the other existing methods in the literature.

Keywords: Fourth order spacial numerical method, Unconditional
stability.
AMS Mathematical Subject Classification [2010]: 65Nxx,
65N06.

1. Introduction

High order numerical methods for unsteady nonlinear parabolic partial differen-
tial equations can be divided into two classes, say, wide methods and compact
methods [3]. Wide fourth order numerical methods are obtained by discretiz-
ing the governing equations with fourth order central differences. In steady-state
problems and the Navier-Stokes equations, many authors introduced various such
schemes. For example, a two-level linearized compact ADI scheme was proposed
for solving two-dimensional nonlinear reaction-diffusion equations by Wu, et al.
[5]. The computational cost of their method is reduced by the use of the Newton
linearized method and the ADI method. Karaa and Zhang discussed a high order
ADI method for solving linear unsteady convection diffusion problems [4]. The
order of their scheme is four in space and two in time.

In our analysis, we have applied both discrete perturbation stability analysis
and discrete Fourier stability analysis using the discrete L2 norm. The decay or
growth of the amplification factor indicates whether or not the numerical method
is stable. This paper is organized as follows. In Section 2, the formulation of the
new method for initial boundary value linear parabolic differential equations is
presented. In Section 3, its stability and error estimates with discrete L2 norm is
also investigated. Also, in this Section, for unsteady nonlinear parabolic PDEs, as
the classical ADI method cannot be applied directly, we first suggest some suitable
modifications of that method and then generalize the method of Section 2 for the
nonlinear case to maintain the second order of accuracy in time and fourth in the
space. The stability analysis of the method for the nonlinear case is also addressed
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in that section. In Section 4, some numerical examples are given to illustrate the
performance of the presented method.

2. Strategy of the Numerical Method

In this study, we consider the following unsteady nonlinear parabolic partial dif-
ferential equations

Ut = µ (Uxx + Uyy) + φ, 0 < x, y < 1, 0 < t ≤ T,(1)

in which

U(x, y, 0) = U0(x, y), 0 < x, y < 1,(2)

is its initial condition and

U(x, y, t) = g(x, y, t), 0 < x, y < 1, t ∈ ∂∆,(3)

is its Dirichlet boundary condition with boundary ∂∆ of ∆ and it is assumed that
the functions U0, g and the source term φ(x, y, t, U) are sufficiently smooth. Also,
we suppose that the diffusion parameter µ is a positive constant. The general form
of the source term φ can be nonlinear in terms of the U . Applying the classical
Peaceman-Rachford ADI method for Eq. (1) with φ = 0 [2] takes:

u∗i,j − uni,j
k/2

= µ
(
(uxx)

∗
i,j + (uyy)

n
i,j

)
,
un+1
i,j − u∗i,j
k/2

= µ
(
(uxx)

∗
i,j + (uyy)

n+1
i,j

)
,(4)

uni,j = u(xi, yj , tn), u
∗
i,j = u(xi, yj , tn+1/2), xi = ih, yj = jh, tn = nk,(5)

where u as the approximation of U .
For obtaining higher order approximations of uxx and uyy we use central finite

difference approximations, which are of fourth order. Furthermore, it should be
mentioned that we need the values of the second order derivatives of u on the
boundaries in order to solve for uxx and uyy. Obviously, for nonperiodic case some
additional relations corresponding to the nodes near the boundary are required.
For example, a second order accurate scheme can be written as follows:

(uxx)
n
0,j =

1

h2
(2u0,j − 5u1,j + 4u2,j − u3,j),

whereas a third order accurate scheme can be written as

(uxx)
n
0,j + (uxx)

n
1,j =

1

h2
(13u0,j − 27u1,j + 15u2,j − u3,j).

For other boundaries, one can do similarly.

3. Stability Analysis of Compact ADI Method for Linear Problem

Let α = U − u be the discretization error, then

U∗ − Un

k
=
µ

2
((Uxx)

∗ + (Uyy)
n) + en1 ,

Un+1 − Un

k
= µ(Uxx)

∗ +
µ

2
((Uyy)

n+1 + (Uyy)
n) + en2 ,

en1 = O(k) +O(h4),

en2 = O(k2) +O(h4).
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Consequently,

α∗ − αn

k
=

µ

2
((αxx)

∗ + (αyy)
n) + en1 ,(6)

αn+1 − αn

k
= µ(αxx)

∗ +
µ

2
((αyy)

n+1 + (αyy)
n) + en2 .

Lemma 3.1. At each point (xi, yj) ∈ ∆, for ζ ′ and ζ0 satisfying

ζ ′ − ζ0
k

=
µ

2
((ζ ′)xx + (ζ0)yy) + e,(7)

then ζ ′ =

{
1−r Yq

1− 1
3
Yq

1+r
Xp

1− 1
3
Xp

}
ζ0 +

k

1+r
Xp

1− 1
3
Xp

e, where Xp = sin2(πph2 ), Yp = sin2(πqh2 ),

r = 2µk
h2 .

Proof. Let

ζ ′ =
∑N−1
p,q=1 c

′
p,q sin(πpx) sin(πqy), ζ0 =

∑N−1
p,q=1 c

0
p,q sin(πpx) sin(πqy),

e =
∑N−1
p,q=1 ep,q sin(πpx) sin(πqy),

where N = 1
h , p, q = 1, . . . , N. From operating δ2x and δ2y on w, as a symbol for

either ζ ′ or ζ0, one obtains

δ2xw
n = − 4

h2
sin2(

πph

2
)wn, δ2yw

n = − 4

h2
sin2(

πqh

2
)wn.

Now by substituting the obtained relations into (7) the desired result follows. □

Lemma 3.2. Let ζ0 and ζ ′ satisfy Lemma 3.1. At each point (xi, yj) ∈ ∆ for
ζ1, ζ0 and ζ ′ satisfying

ζ1 − ζ0
k

= µ(ζ ′)xx +
µ

2
((ζ1)yy + (ζ0)yy) + e,

with ζ1 = ζ0 = ζ ′ = 0 on the boundary ∂∆, we have

∥ζ1∥ ⩽ ∥ζ0∥+ ∥e∥k,
where

∥ζ∥ =

h2 ∑
(x,y)∈∆

ζ2i,j

1/2

.

Proof. Using Lemma 3.1 and its notations prove the result. □

Theorem 3.3. Let the solution U of (1), with φ = 0 and initial and boundary
conditions (2), (3) are sufficiently differentiable. Then the solution u of (4), (5)
converges in the L2 norm, to U with O(h4 + k2) discretization error.

Proof. Using Eq. (6) and then applying Lemma 3.2 to αn, αn+1 gives the
following inequality for error

∥αn+1∥ ⩽ ∥αn∥+ ∥en∥k, n = 0, 1, 2, . . . .

This verifies the stability of the compact method and also shows that the dis-
cretization error is of the fourth order in space and two in time. □
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Therefore, for Eq. (1) with nonlinear term φ (with respect to U) this new
method includes the following algorithmic steps:

Algorithm 1. The new compact ADI time second order scheme: “Comp-ADI”

1. With a solution at time level tn solve the following equations for ũ∗(
1 + h2

12 δ
2
y

)
(uyy)

n
ij = δ2yu

n
ij ,

ũ∗
i,j−u

n
i,j

k/2 = µ((ũxx)
∗
i,j + (uyy)

n
i,j) + φ(xi, yj , tn+1/2, u

n).

2. Evaluate φ1 and φ2 through

ψ̃n = φ(xi, yj , tn+1/2, ũ
∗
i,j),

φ1 = φ2 := ψ̃n.
3. From ψ̃n obtain un+1

i,j from the following equations
u∗
i,j−u

n
i,j

k/2 = µ((uxx)
∗
i,j + (uyy)

n
i,j) + φ1,

un+1
i,j −u∗

i,j

k/2 = µ((uxx)
∗
i,j + (uyy)

n+1
i,j ) + φ2.

Remark 3.4. As we have already mentioned the before, Mitchell-Fairweather
scheme has temporal order 2 and spatial order 4, only for linear PDEs and can
be improved by our approach to preserve its orders for nonlinear PDEs as well.
When is applied to nonlinear problems, its order of accuracy in time decreases to
one, while it’s joint application with our Algorithm 1 guarantees its second order
of accuracy in time for nonlinear problems and actually its performance is similar
to our improved method presented here.

4. Numerical Examples

In this section, the computational orders of the presented method with compar-
ative methods that is denoted by C-order is calculated with log e1−log e2

log∆1−log∆2
, where

e1 and e2 are errors corresponding to grids with spatial or temporal step size ∆1

and ∆2, respectively. It should be mentioned again that in the following numer-
ical examples, the Douglas scheme [1] will be denoted by “DougS”, the modified
Mitchell-Fairweather will be denoted by “MF-App1” and also, the presented com-
pact method will be denoted by “Comp-ADI” which is of order two in time and
four in the space.

Example 4.1. In this example the nonlinear Fitzhugh-Nagumo equation with
the third degree nonlinear term is solved. This equation arises in population
genetics and model the transmission of nerve impulses. Nonlinear term of this
equation is φ = −U(1 − U)(a − U) and a = 1/4. In Fitzhugh-Nagumo equation
the value of µ is 1. The exact solution of this equation is

U(x, y, t) = 1/(1 + exp(−1

4
t+

1

2
(x+ y))), 0 ⩽ x, y ⩽ 1, t ∈ [0, T ).

The initial and boundary conditions are obtained by imposing the exact solution.
In this example we consider h = 1

8 and simulation runs for t ≤ 0.625.

The simulation results are illustrated in Figure 1 shows that the rate of conver-
gence of “Comp-ADI” is better than that of “DougS”. For instance with k = 0.008
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at t = 0.625, the L2 error of the solution by “Comp-ADI” is 8.434× 10−7 whereas
that of “DougS” is 6.219× 10−4 and “MF-App1” is 4.005× 10−5.
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Figure 1. L2 Error of DougS, MF-App1, and Comp-ADI.

5. Conclusion

A new compact scheme based on the ADI method with unconditional stability
has been proposed for solving nonlinear 2D unsteady parabolic differential equa-
tions. The order of the presented method is two in time and four in the space.
Another property of the presented method is that reduces the computational cost,
significantly, because of have strictly diagonally dominant coefficient matrices.
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1. Introduction

Consider the following block three-by-three system of linear equations

Ax ≡

 A BT 0
−B 0 −CT
0 C 0

 x
y
z

 =

 f
−g
h

 ≡ b,(1)

where A ∈ Rn×n, B ∈ Rm×n and C ∈ Rl×m. Here, f ∈ Rn, g ∈ Rm and
h ∈ Rl. In this case, the coefficient matrix of the system (1) is of order n × n,
where n = n +m + l. Linear system of the form (1) arises from many practical
scientific and engineering applications, e.g., the discrete finite element methods
for solving time-dependent Maxwell equation with discontinuous coefficient [1],
the least squares problems [10] and so on.

Recently Liang and Zhang in [7] established the alternating positive semi-
definite splitting (APSS) method for solving the system of linear equations (1) as
follows. Consider the decomposition A = A1 +A2, where

A1 =

 A BT 0
−B 0 0
0 0 0

 , A2 =

 0 0 0
0 0 −CT
0 C 0

 .(2)

∗Speaker

213



D. Khojasteh Salkuyeh, H. Aslani and Z. Liang

Let α > 0. Then the following splittings for the matrix A can be stated

A = (αI +A1)− (αI − A2) = (αI +A2)− (αI − A1),

where I is the identity matrix of order n. Now, using these splittings the APSS
method can be written as{

(αI +A1)x
(k+ 1

2 ) = (αI − A2)x
(k) + b,

(αI +A2)x
(k+1) = (αI − A1)x

(k+ 1
2 ) + b,

where x(0) ∈ Rn is an initial guess. By eliminating x(k+ 1
2 ), the iteration scheme

can be rewritten as the stationary form

x(k+1) = Tαx(k) + f ,

with Tα = (αI + A2)
−1(αI − A1)(αI + A1)

−1(αI − A2), and f = 2α(αI +
A2)

−1(αI+A1)
−1b. It is easy to see that if we define Pα = 1

2α (αI+A1)(αI+A2)

and Qα = 1
2α (αI − A1)(αI − A2), then A = Pα −Qα and Tα = P−1

α Qα.

2. Convergence of the APSS Iteration Method

When the (2,2)-block of A is symmetric positive definite (SPD), convergence of
the method was presented in [7]. In this paper, we prove the convergence of the
method when this block is equal to zero. To do so we first state the next lemma.

Lemma 2.1. Let A be SPD and the matrices B and C be of full row rank.
Then ρ(Tα) ≤ 1, where ρ(.) denotes the spectral radius of the matrix.

Proof. Using the Kelloge’s lemma (See [8]), it can be easily proved. □

From Lemma 2.1, for the convergence of the APSS iteration method it is
enough to prove that ρ(Tα) = 1 never happens. To do so we state the following
lemma.

Lemma 2.2. Let A be SPD and matrices B and C be of full row rank. Then
the following are equivalent:

i) The matrix

Gα =

 A BT + 1
α2B

TCTC 0
−B 0 −CT
0 C 0

 ,

does not have any purely imaginary eigenvalue.
ii) ρ(Tα) < 1.

Proof. Similar to the proof of [3, Lemma 2], let λ be an eigenvalue of Tα.
Then, obviousely λ = 1 − µ, where µ is an eigenvalue of the matrix P−1

α A. Let
(µ,x) be an eigenpair of P−1

α A. Then, we have Ax = µPαx which is equivalent
to Ax = µ

2α (A1A2 + αA+ α2I)x, or(
1− 1

2
µ

)
Ax =

µα

2
(I + 1

α2
A1A2)x.(3)
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Direct computation reveals that

Hα := I + 1

α2
A1A2 =

I 0 − 1
α2B

TCT

0 I 0
0 0 I

 ,

which is obviously nonsingular. Since, both the matricesA andHα are nonsingular
we deduce that µ ̸= 0 and µ ̸= 2. Then, from (3) we have H−1

α Ax = µα
2−µx. This

shows that θ := µα
2−µ , is an eigenvalue of

H−1
α A =

 A BT + 1
α2B

TCTC 0
−B 0 −CT
0 C 0

 = Gα.(4)

Now, we see that µ = 2θ
α+θ , and as a result λ = 1 − µ = 1 − 2θ

α+θ = α−θ
α+θ . Hence,

from Lemma 2.1 we get |λ| =
∣∣∣α−θα+θ

∣∣∣ ≤ 1, and |λ| = 1 if and only if |θ − α| = |θ + α|
which is itself equivalent to (ℜ(θ)−α)2 +ℑ(θ)2 = (ℜ(θ)+α)2 +ℑ(θ)2. The latter
equation is equivalent to ℜ(θ) = 0. Therefore, ρ(Tα) = 1 if and only if Gα has at
least one purely imaginary eigenvalue. □

Theorem 2.3. Let A be SPD and matrices B and C be of full row rank. Then,
the APSS iteration method unconditionally converges to the solution of (1) i.e.,
ρ(Tα) < 1, for all α > 0.

Proof. According to Lemma 2.2, all we need is to prove that the matrix Gα
defined in (4) has no purely imaginary eigenvalue. Let (θ,x) be an eigenpair of the
matrix Gα with ∥x∥2 = 1. Clearly, the matrix Gα is nonsingular, therefore θ ̸= 0.
Letting x = (u; v; p), it follows from Gαx = θx that

Au+BT (I +
1

α2
CTC)v = θu,(5)

−Bu− CT p = θv,

Cv = θp.

It is easy to see that the vectors u, v and p can not be zero. Hereafter, we assume
that u ̸= 0, v ̸= 0 and p ̸= 0. From Gαx = θx and ∥x∥2 = 1, we get θ = x∗Gαx.
Hence,

ℜ(θ) =
1

2
x∗(Gα + GT

α )x =
1

2

(
u∗ v∗ p∗

) 2A 1
α2B

TCTC 0
1
α2C

TCB 0 0
0 0 0

uv
p


= u∗Au+

1

2α2

(
u∗BTCTCv + v∗CTCBu

)
.(6)

On the other hand, from Eq. (5) we deduce u∗Au + u∗BT (I + 1
α2C

TC)v =
θu∗u, and taking the conjugate of both sides, the latter equation gives u∗Au +
v∗(I + 1

α2C
TC)Bu = θ̄u∗u.

From the last two equations we get

u∗Au+
1

2
(u∗BT v + v∗Bu) +

1

2α2

(
u∗BTCTCv + v∗CTCBu

)
= ℜ(θ)u∗u.(7)
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From Eqs. (6) and (7) we obtain ℜ(θ) + 1
2 (u

∗BT v + v∗Bu) = ℜ(θ)u∗u. Now, by
contradiction we assume that ℜ(θ) = 0. In this case, from the above equation we
deduce that

u∗BT v + v∗Bu = 0.(8)

On the other hand, by easy manipulations we have

ℜ(θ) = u∗Au− 1

2α2

(
2ℜ(θ)∥Bu∥22 + θ2u∗BT v + θ̄2v∗Bu

)
.

Now, if ℜ(θ) = 0, then θ = iξ, where ξ ̸= 0. Therefore, from the above
equation we see that

0 = u∗Au+
ξ2

2α2

(
u∗BT v + v∗Bu

)
= u∗Au, (From Eq. (8)),

which is a contraction, since u ̸= 0 and A is SPD. Therefore, the proof is completed.
□

3. Numerical Experiments

We present some numerical results to show the efficiency of the induced precon-
ditioner. We first apply a symmetric diagonal scaling for the matrix A. To
do so, we replace the coefficient matrix A by the matrix D− 1

2AD− 1
2 , where

D = diag(∥A1∥2, . . . , ∥An∥2) in which Aj is the jth column of the matrix A.
The right-hand side vector of the system is set b = Ae, where e is a vector of all
ones. We use the flexible version of the GMRES(50) [9], FGMRES(50), for solving
the systems. The iteration is started from a zero vector and terminated as soon
as the residual 2-norm is reduced by a factor of 10−6. The maximum number of
iterations is set to be 20000.

For the APSS preconditioner the subsystems are solved using the conjugate
gradient (CG) method. The CG method is started from a zero vector and the iter-
ation is stopped as soon as the residual 2-norm is reduced by a factor of 10−3. The
maximum number of CG iterations is set to be 200. We compare the numerical
results of the APSS preconditioner,Mα = (αI +A1)(αI +A2), in which A1 and
A2 were defined in (2) with PD which is presented in [6]. We report the number
of iteration (denoted as “IT”) and the elapsed CPU time in second (denoted as
“CPU”). The value of Rk defined by Rk = ∥b−Ax(k)∥2/∥b∥2, is also reported
where x(k) is the computed solution at iteration k. Finally, “NA” (for Not Applica-
ble) means that the coefficient matrix does not satisfy the assumptions of Theorem
2.3. All runs are implemented in MATLAB R2017, equipped with a Laptop with
1.80 GHz central processing unit (Intel(R) Core(TM) i7-4500), 6 GB memory and
Windows 7 operating system.

We consider the problem (See [5])

min
x∈Rn,y∈Rl

1

2
xTAx+ rTx+ qT y s.t. : Bx+ CT y = b,(9)

where r ∈ Rn and q ∈ Rl. To solve the above problem we define the Lagrange
function

L(x, y, λ) =
1

2
xTAx+ rTx+ qT y + λT (Bx+ CT y − b),
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Table 1. Numerical results.

Precond.

MOSARQP1 Liswet12

I
IT 115 77
CPU 0.32 0.82
RES 8.9e-07 9.9e-07

Mα

α 0.05 0.5
IT 6 21
CPU 0.03 0.22
RES 5.2e-7 9.0e-7

PD

IT NA 38
CPU - 1.28
RES - 9.1e-7

where the vector λ ∈ Rm is the Lagrange multiplier. Then the Karush-Kuhn-
Tucker necessary conditions of (9) are as following (See [2])

∇xL(x, y, λ) = 0, ∇yL(x, y, λ) = 0 and ∇λL(x, y, λ) = 0.

These equations give a three-by-three saddle point of the form (1). In this
example, we have chosen the matrices A, B and C from the CUTEr collection [4].
Numerical results are presented in Table 1. As seen,Mα is superior to the other
examined preconditioners.
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1. Introduction

One of the most important of partial differential equations is called telegraph equa-
tion which by counting the effects of finite velocity to standard heat or mass trans-
port equation, peresents a mixed diffusion and wave propagation model [3].The
general one-dimensional telegraph equation is defined as following that should be
equipped by suitable initial and boundary conditions

utt(x, t) + αut(x, t) + βu(x, t) = uxx(x, t) + f(x, t), x ∈ Ω ⊂ R, t ∈ [0, T ],(1)

where α and β are known constant. To date, due to the special importance of the
telegraph equation in applications [5, 7], numerous numerical methods have been
employed to numerically solve this equation [1, 2, 4, 6].

In this paper we present an HDG method for solving the telegraph equa-
tion numerically. The partitioning xL = x− 1

2
< x 1

2
< · · · < xN− 1

2
= xR will

be considered for the domain Ω = [xL, xR] and Th := {Kj} displays the finite
collection of disjoint elements which Kj = [xj− 1

2
, xj+ 1

2
] represents the j-th ele-

ment for j = 0, . . . , N − 1. Also, we define the collection of boundaries of ele-
ments as ∂Th = {x+− 1

2

, x±1
2

, . . . , x±
N− 3

2

, x−
N− 1

2

}. The concept of jump is defined as

[[vn]] = v+n+ + v−n− and [[vn]] = vn for interior faces (ε0h) and boundary faces
(εbh), respectively. Here v+ and v− on face e represent respectively v(e+) and
v(e−). Also we define the set of all of faces as εh = ε∂h ∪ ε0h. It is noteworthy that,
n−
j+ 1

2

= +1 and n+
j− 1

2

= −1 are outward unit normal vectors for any Kj . Consider

∗Speaker

219



Sh. Baharlouei and R. Mokhtari

Pk(K) be the set of polynomials of degree at most k on the element K ∈ Th. W k
h

and Mk
h are called discontinuous finite element space and skeleton space (or trace

space), respectively and defined by

W k
h =

{
w ∈ L2(Ω) : w |K∈ Pk(K), ∀K ∈ Th

}
,

Mk
h = {µ ∈ L2(εh) : µ |e∈ Pk(e), ∀e ∈ εh}.

Moreover, according to boundary conditions, and displaying the L2 projection
into the skeleton space by Π, we can define the following useful subspace of Mk

h

Mk,u
h (l) := {µ ∈Mk

h : µ(x) = Πl(x), x ∈ Γu},

where Γu is the set of boundary faces which boundary data are specified on u. By
considering (w1, w2)K =

∫
K
w1(x)w2(x)dx and < µ1, µ2 >∂K= µ−

1,j+ 1
2

µ−
2,j+ 1

2

+

µ+
1,j− 1

2

µ+
2,j− 1

2

as an inner product and inner product on the boundaries of ele-

ments respectively, we have (w1, w2)Th
=
∑
K∈Th

(w1, w2)K and < µ1, µ2 >∂Th
=∑

K∈Th
< µ1, µ2 >∂K , where w1, w2 are defined on Th, and µ1, µ2 are defined on

∂Th.

2. Accomplishment of the HDG Method

The first step of the HDGmethod is obtaining the first-order system of equations of
(1). By defining p = ux and v = ut, the set of first-order equations corresponding
to (1) are as follows

vt + αut + βu− px = f, p− ux = 0, v− ut = 0.(2)

In corresponding weak form of (2), we intend to find u, p, v ∈W k
h such that

(vt, w1)Kj + α(ut, w1)Kj + β(u,w1)Kj + (p, w1x)Kj+ < −̂pn, w1 >∂Kj = (f, w1)Kj ,

(p, w2)Kj + (u,w2x)Kj− < û,w2n >∂Kj = 0,(3)

(v, w3)Kj − (ut, w3)Kj = 0,

where w1, w2, w3 ∈ W k
h are test functions and numerical flux −̂p is defined as

−̂p = −p+τ(u− û)n. Here τ is stabilization parameter and û ∈Mk,0
h (bu) is called

numerical trace, where bu denote the value of the boundary data on u. In detailed
numerical trace û is defined as

û =

{
bu, ∂Kj ∩ Γu,

λ, ∂Kj \ Γu,

where λ ∈ Mk,0
h (0). Unlike the local unknowns u and p, û is a global unknown.

By enforcing conservation of the numerical flux (or trace) on the element edges,
one extra global equation is obtained which helps us to find the global unknown.
Hence we have {

pn = bp, e ∈ Γp,

[[−̂pn]] = 0, e ∈ εi,
(4)

where Γp denotes the set of faces which boundary data are specified on p. There-
fore, by using backward Euler method for time discretization and imposing the
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definitions of numerical flux −̂p and numerical trace û, (3) and (4) change to

1

∆t
(v, w1)Th

+ (
α

∆t
+ β)(u,w1)Th

− (px, w1)Th

+ < τu,w1 >∂Th
− < τλ,w1 >∂Th

= l1(w1),

(p, w2)Th
+ (u,w2x)Th

− < λ,w2n >∂Th
= l2(w2),

(v, w3)Th
− 1

∆t
(u,w3)Th

= l3(w3),

< −pn, µ >∂Th
+ < τu, µ >∂Th\ε∂h

− < λ, µ >∂Th\ε∂h
= l4(µ),

where µ ∈Mk,0
k (0) and

l1(w1) = (f, w1)Th
+ < τbu, w1 >Γu

+
1

∆t
(vn−1, w1)Th

+
α

∆t
(un−1, w1)Th

,

l2(w2) = < bu, w2n >Γu
, l3(w3) =

1

∆t
(un−1, w3)Th

, l4(µ) = − < bu, µ >Γp
.

3. Main Results

In the sequal, during a theorem stability of the proposed HDG method for (1) will
be checked.

Theorem 3.1. If τ > 0 then the proposed HDG method is stable provided that
(1) is equipped with periodic boundary conditions.

Proof. Setting w1 = u and w2 = p in the two first equations of (3) and
summing together, we have∫

Kj

vtu dx+
α

2

∂

∂t
∥u∥2Kj

+

∫
Kj

p2 dx+ β

∫
Kj

u2 dx+ΘKj = 0,(5)

where

ΘKj
=

∫
Kj

(up)xdx+ < −̂pn, u >∂Kj
− < û, pn >∂Kh

,

=
(
(−̂p)−

j+ 1
2

− (−p)−
j+ 1

2

)
u−
j+ 1

2

+
(
(−p)+

j− 1
2

− (−̂p)+
j− 1

2

)
u+
j− 1

2

+ ûj+ 1
2
(−p)−

j+ 1
2

− ûj− 1
2
(−p)+

j− 1
2

.

On the other hand from the last equation of (3), and substituting w3 = −ut and
w3 = v, respectively we have

−
∫
Kj

vut dx+

∫
Kj

u2t dx = 0,

∫
Kj

v2 dx−
∫
Kj

utv dx = 0.(6)

Now by summing equations of (6) together, we get∫
Kj

(uv)t dx =

∫
Kj

u2t dx+

∫
Kj

v2.(7)

Again, by summing (7) and the first equation of (6) we have∫
Kj

vtu dx =

∫
Kj

(vu)t dx−
∫
Kj

vut dx =

∫
Kj

v2.(8)

221



Sh. Baharlouei and R. Mokhtari

So, by using (8) in (5) we gain∫
Kj

vtu dx +
α

2

∂

∂t
∥u∥2Kj

+

∫
Kj

p2 dx+ β

∫
Kj

u2 dx+ΘKj(9)

=

∫
Kj

v2 +
α

2

∂

∂t
∥u∥2Kj

+

∫
Kj

p2 dx+ β

∫
Kj

u2 dx+ΘKj = 0.

Now by summing over all elements, (9) leads to∫
Th

v2 +
α

2

∂

∂t
∥u∥2Th

+

∫
Th

p2 dx+ β

∫
Th

u2 dx+Θ = 0,

where Θ =
∑
Kj∈Th

ΘKj . As we know
∫
Th
v2,
∫
Th
p2 dx,

∫
Th
u2 dx ≥ 0. The aim is

to prove that Θ ≥ 0. For this purpose, let us rewrite numerical flux −̂p as below

−̂p−j+ 1
2

= −p−
j+ 1

2

+ τ−
j+ 1

2

(
u−
j+ 1

2

− ûj+ 1
2

)
,(10)

−̂p+j− 1
2

= −p+
1,j− 1

2

− τ+
j− 1

2

(
u+
j− 1

2

− ûj− 1
2

)
.

By substituting (−p)−
j+ 1

2

and (−p)+
j− 1

2

from (10) into ΘKj
, doing some manipula-

tions, we get

ΘKj = τ−
j+ 1

2

((u−
j+ 1

2

)2 − ûj+ 1
2
u−
j+ 1

2

) + τ+
j− 1

2

((u+
j− 1

2

)2 − ûj− 1
2
u+
j− 1

2

)

+ τ−
j+ 1

2

((ûj+ 1
2
)2 − ûj+ 1

2
u−
j+ 1

2

) + τ+
j− 1

2

((ûj− 1
2
)2 − ûj− 1

2
u+
j− 1

2

)

− (−̂p)−
j+ 1

2

ûj+ 1
2
− (−̂p)+

j− 1
2

ûj− 1
2
.

Now by summing over all elements, applying the conservation condition, and im-
posing periodic boundary conditions, we get

Θ =
∑

Kj∈Th

ΘKj
=
∑
j

τ−
j+ 1

2

(
u−
j+ 1

2

− ûj+ 1
2

)2
+ τ+

j− 1
2

(
u+
j− 1

2

− ûj− 1
2

)2
,

which is nonnegative, for all τ∓
j± 1

2

> 0, or simply τ > 0. Hence 1
2
∂
∂t∥u∥

2
Th
≤ 0 and

the method is stable. □

Corollary 3.2. The proposed HDG method is stable if τ > 0 and (1) is
equipped with the boundary conditions u(xL, .) = u(xR, .) = 0.

Example 3.3. Consider (1) with α = β = 1 and Ω = [0, 4]. Clearly f
and the initial and boundary conditions can be extracted by the exact solution
u(x, t) = exp(x − t) [2]. In Table 1 the L2 error norm of u and its derivative
are given for polynomials of degree k = 1, 2, 3 and τ = 10. As we expected u
and its first temporal and spatial derivatives converge with order k + 1 (optimal
convergence).

Example 3.4. In this example, consider (1) with periodic boundary conditions
and analytical solution u(x, t) = exp(−t) sin(x) in Ω = [−π, π] [2]. Here f(x, t) =
(2−α+β) exp(−t) sin(x), u(x, 0) = sin(x), and ut(x, 0) = − sin(x). In Figure 1 the
numerical solution and L2 error norms are shown for α = 6, β = 2 and polynomial
of degree two with τ = 20. All the results are satisfactory as it turns out.
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Table 1. L2 error norms and corresponding numerical orders
of accuracy of the associated numerical solution for Example 3.3
with τ = 10 at time T = 1.

Number of elements ∥u− u∥Ω order ∥v − v∥Ω order ∥p− p∥Ω order
k = 1 10 2.8941 E-1 1.1944 7.0167 E-1

20 7.5230 E-2 1.94 3.1782 E-1 1.91 2.2838 E-1 1.62
40 1.8971 E-2 1.99 8.1407 E-2 1.96 6.6768 E-2 1.77
80 4.7456 E-3 2.00 2.0649 E-2 1.98 1.8111 E-2 1.88

k = 2 10 2.4691 E-1 1.1698 3.3611 E-1
20 3.5212 E-2 2.81 1.5886 E-1 2.88 6.3588 E-2 2.40
40 4.5100 E-3 2.96 2.0469 E-2 2.96 9.1500 E-3 2.80
80 5.6575 E-4 2.99 2.5892 E-3 2.98 1.2042 E-3 2.93

k = 3 10 2.4690 E-1 1.1696 3.3501 E-1
20 1.7841 E-2 3.80 8.0586 E-2 3.86 3.3870 E-2 3.31
40 1.1309 E-3 3.98 5.1658 E-3 3.96 2.3798 E-3 3.83
80 7.0749 E-5 4.00 3.2502 E-4 3.99 1.5298 E-4 3.96
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Figure 1. Approximate solution and L2 error norms for Exam-
ple 3.4 with τ = 20 at time T = 2.
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Abstract. In this paper, a spectral collocation approach based on the sixth-
kind Chebyshev polynomials (SKCPs) is constructed to solve a time-fractional
stochastic diffusion equation (TFSDE). This method is applied to convert the
solution of TFSDE to the solution of a system of nonlinear algebraic equa-

tions (NAEqs). Moreover, the convergence analysis of this suggested method
is established. A numerical example is implemented to validate the efficiency
of the proposed approach.
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1. Introduction

In this paper, we consider the following time-fractional stochastic diffusion equa-
tion

∂αt u+ η∆u = F(x, t, u) +G(t, u)Ḃ, in Ω× (0, T),(1)

with the initial and boundary conditions

u(x, 0) = u0(x), in Ω,(2)

u(x, t) = ρ(x, t), in ∂Ω× (0, T),(3)

where L, T ∈ R+, Ω := [0, L] and η is a positive constant. Also, F ∈ C1(Ω ×
(0, T)× R) and G ∈ C1((0, T)× R) satisfy the Lipschitz condition with respect to

u and Ḃ(t) := dB(t)
dt denotes a time white noise [1]. Moreover, u0(x) and ρ(x, t)

are the continuous functions and the operator ∂αt [·] denotes the Caputo fractional
derivative of order α defined as [2]:

∂αt u(x, t) =
1

Γ(1− α)

∫ t

0

(t− s)−α ∂u
∂s

(x, s)ds, α ∈ (0, 1),

where Γ(·) shows the Gamma function.

∗Speaker
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2. The Shifted SKCPs and their Properties

Definition 2.1. The shifted SKCPs on [0, T] are defined by [3]:

ψj(t) =

j∑
l=0

θl,j(t/T)
l,

where

θl,j =


22l−j

(2l+1)!

∑ j
2

i=⌊ l+1
2 ⌋

(−1)
j
2+1+i(1 + 2i+ l)!

(2i− l)!
, j even,

22l−j+1

(2l+1)!(j+1)

∑ j−1
2

i=⌊ l
2 ⌋

(−1)
j+1
2 +l+i(1 + i)(l + 2i+ 2)!

(2i− l + 1)!
, j odd.

The set of basis functions {ψj(t)}j∈N∪{0} generates a set of orthogonal func-

tions associated with the weight function ϖ(t) = (2 t
T
− 1)2

√
1
T

(
t− t2

T

)
on the

interval [0, T].

Theorem 2.2. [4] Let k(x, t) ∈ L2
w

(
Ω × [0, T]

)
with the weight function

w(x, t) = ϖ(x)ϖ(t) satisfies the expansion k(x, t) =
∞∑
i=0

∞∑
j=0

ki,jψi(x)ψj(t). Sup-

pose
∥∥∥∂6k(x,t)
∂x3∂t3

∥∥∥
2
≤ c̄ for a positive constant c̄. Also, if

kn,m(x, t) =
n∑
i=0

m∑
j=0

ki,jψi(x)ψj(t),

be an estimation of k(x, t), then we have

|k(x, t)− kn,m(x, t)| < c̄

2n+m
,

∣∣∣kxx(x, t)− ∂2kn,m
∂x2

(x, t)
∣∣∣ < κ

n3

2n+m−8
,

where κ is a positive constant.

3. Description of the Collocation Approach

To find a numerical solution of Eq. (1), assume

u(x, t) ≃ un,m(x, t) =
n∑
i=0

m∑
j=0

ci,jψi(x)ψj(t) = Ψ(x)TCΨ̃(t),(4)

where Ψ(x) = [ψ0(x), . . . , ψn(x)]
T and Ψ̃(t) = [ψ0(t), . . . , ψm(t)]T. Also C :=[

ci,j

]
(n+1)×(m+1)

, i = 0, 1, . . . , n, j = 0, 1, . . . ,m, is an (n+1)× (m+1) unknown

coefficients matrix that must be determined. From Eqs. (1) and (4)

R(x, t) ≜ Ψ(x)TCΨα(t) + ηΨxx(x)
TCΨ̃(t)

−F
(
x, t,Ψ(x)TCΨ̃(t)

)
−G

(
t,Ψ(x)TCΨ̃(t)

)
Ḃ(t) ≃ 0,(5)
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where Ψα(t) is the Caputo fractional derivative of Ψ̃(t) and is obtained by

Ψα(t) : = [0, ϱα1 (t), . . . , ϱ
α
m(t)]

T
,

where ϱαj (t) =
j∑
l=1

θl,jΓ(l+1)
TlΓ(l+1−α) t

l−α and Θxx(x) = [ d
2

dx2ψ0(x), . . . ,
d2

dx2ψn(x)]
T. Ac-

cording to the initial and boundary conditions (2)-(3) and Eq. (4)

Φ(x) ≜ Ψ(x)TCΨ̃(0)− u0(x) ≃ 0,(6)

Π1(t) ≜ Ψ(0)TCΨ̃(t)− ρ(0, t) ≃ 0, Π2(t) ≜ Ψ(L)TCΨ̃(t)− ρ(L, t) ≃ 0.(7)

Let x0 = 0, xn = L, {xi; i = 1, . . . , n− 1} are the roots of ψn−1(x) and
{tj ; j = 1, . . . ,m} are the roots of ψm(t). By evaluating Eqs. (5)-(7) at collocation
points (xi, tj), a system of (n+ 1)× (m+ 1) NAEqs can be extracted as follows:

R(xi, tj) = 0, i = 1, . . . , n− 1, j = 1, . . . ,m,

Πr(tj) = 0, r = 1, 2, j = 1, . . . ,m,

Λ(xi) = 0, i = 0, . . . , n.

(8)

Thus, the relation (8), including (n+1)×(m+1) NAEqs, can provide the unknown
coefficients ci,j , i = 0, 1, . . . , n and j = 0, 1, . . . ,m.

4. Convergence Analysis

In this section, error estimate of the proposed method have been discussed. Here
we consider the norm

∥u∥∞ = E[ sup
(x,t)∈Ω×[0,T]

|u(x, t)|],

where E[.] is the mathematical expectation.

Theorem 4.1. Suppose un,m(x, t) be the numerical solution of (1)-(3) ob-
tained by the procedure presented in Section 3, u(x, t) is the exact solution of
(1)-(3) and Rn,m(x, t) is the residual error. Then, ∥Rn,m(x, t)∥∞ tends to zero,
when n→∞ and m→∞.

Proof. Suppose un,m(x, t), for (x, t) ∈ Ω × [0, T], is satisfied in the below
equation

∂αt un,m(x, t) + η∆un,m(x, t) = F(x, t, un,m(x, t)) +G(t, un,m(x, t))Ḃ(t) +Rn,m(x, t),(9)

where Rn,m(x, t) is the residual function. From Eqs. (1) and (9)

∥Rn,m(x, t)∥∞ ≤
∥∥∥∂αt (u(x, t)− un,m(x, t)

)∥∥∥
∞

+ η
∥∥∥∆(u(x, t)− un,m(x, t)

)∥∥∥
∞

+
∥∥∥F(x, t, u(x, t))− F(x, t, un,m(x, t))

∥∥∥
∞

+ ∥Ḃ(t)∥∞
∥∥∥G(t, u(x, t))−G(t, un,m(x, t))

∥∥∥
∞
.

By using Theorem 2.2 and [5, Theorem 3], we have∥∥∥∂αt (u(x, t)− un,m(x, t)
)∥∥∥

∞
<

κ1T
1−αm

Γ(1− α)2n+m−2
,(10)
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where κ1 is a positive constant. Also, from Theorem 2.2∥∥∥∆(u(x, t)− un,m(x, t)
)∥∥∥

∞
= sup

(x,t)∈Ω×[0,T]

∣∣∣uxx(x, t)−
∂2un,m

∂x2
(x, t)

∣∣∣(11)

<
κ2n

3

2n+m−8
,

where κ2 is a positive constant. The functions F and G satisfy the Lipschitz
condition with respect to u, hence, by applying Theorem 2.2, we obtain∥∥∥F(x, t, u(x, t))− F(x, t, un,m(x, t))

∥∥∥
∞

≤ ϕF∥u(x, t)− un,m(x, t)∥∞ < ϕF
κ3

2n+m
,(12) ∥∥∥G(t, u(x, t))−G(t, un,m(x, t))

∥∥∥
∞

≤ ϕG∥u(x, t)− un,m(x, t)∥∞ < ϕG
κ4

2n+m
,(13)

where ϕF, ϕG, κ3 and κ4 are positive real constants. Let φ = ∥Ḃ(t)∥∞, then,
from the relations (10)-(13), it can be concluded that

∥Rn,m(x, t)∥∞ <
κ1T

1−αm

Γ(1− α)2n+m−2
+ η

κ2n
3

2n+m−8
+ ϕF

κ3
2n+m

+ φϕG
κ4

2n+m
.

Therefore, we can see that ∥Rn,m(x, t)∥∞ tends to zero, when n,m→∞. □

5. Numerical Test Example

In this section, we investigate our proposed approach for solving TFSDE. We
evaluate the numerical solution u(x, t) along p discretized Brownian paths. The
arithmetic mean over these paths is considered as the approximate solution. Con-
sider the Eqs. (1)-(3) with ∂αt u+ 2∆u = eu + u2Ḃ + f(x, t), where

f(x, t) =
10Γ(5)

Γ(5− α)
t4−α sin(πx)−20π2t4 sin(πx)−e10t

4 sin(πx)−100t8 sin2(πx)Ḃ(t).

With these assumptions, the exact solution is u(x, t) = 10 t4 sin(πx). Figure 1
shows the exact and numerical solution of u(x, t) along p = 50 discretized Brownian
paths and Figure 2 shows the numerical solution of u(x, T) at T = 1 along p = 50
paths, when α = 0.75, n = m = 8. Figure 3 displays absolute error and contour
plot of u(x, t), when p = 100 and n = m = 9, 12.
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Figure 1. The exact and numerical solution of u(x, t) with α =
0.75 and p = 50.
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Figure 2. The numerical solution of u(x, T) along p = 50 differ-
ent discretized Brownian paths (Blue) and their arithmetic mean
(Red).
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Figure 3. The absolute error and contour plot with n = 9 (up)
and n = 12 (down).

References

1. B. Oksendal, Stochastic Differential Equations, Springer-Verlag Berlin Heidelberg, Berlin,
1998.

2. I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
3. W. M. Abd-Elhameed and Y. H. Youssri, Sixth-kind Chebyshev spectral approach for solving

fractional differential equations, J. Nonlinear Sci. Numer. Simul. 20 (2) (2019) 191–203.
4. A. Babaei, H. Jafari and S. Banihashemi, Numerical solution of variable order fractional non-

linear quadratic integro-differential equations based on the sixth-kind Chebyshev collocation
method, J. Comput. Appl. Math. 377 (2020) 112908.

5. A. Babaei, H. Jafari and S. Banihashemi, A collocation approach for solving time-fractional
stochastic heat equation driven by an additive noise, Symmetry 12 (6) (2020) 904.

229



A. Babaei, H. Jafari and S. Banihashemi

E-mail: babaei@umz.ac.ir
E-mail: jafari@umz.ac.ir
E-mail: s.banihashemi@stu.umz.ac.ir

230

mailto:babaei@umz.ac.ir
mailto:jafari@umz.ac.ir
mailto:s.banihashemi@stu.umz.ac.ir


The 51st Annual Iranian Mathematics Conference University of Kashan, 15–20 February 2021

Numerical Solutions of Time-Fractional Allen-Cahn
Equation with Sinc Collocation Method

Ali Barati∗

Islam abad Faculty of Engineering, Razi University, Kermanshah, Iran

Abstract. This article deals with the numerical solution of time fractional
Allen-Cahn equation with Caputo derivative. The time fractional derivative
is discretized by applying finite forward difference method, then the semi-

discrete scheme is approximated by using the Sinc collocation method. Nu-
merical experiments demonstrate the accuracy and efficiency of the algorithm.

Keywords: Time fractional derivative, Allen-Cahn equation, Sinc
collocation method.
AMS Mathematical Subject Classification [2010]: 26A33,
65N06, 65N35.

1. Introduction

We study time-fractional Allen-Cahn equation as follows, that appears in mathe-
matical modeling of phase separation in alloys of iron [7]:

∂αu

∂tα
− ∂2u

∂x2
+ u3 − u = f(x, t), (x, t) ∈ Ω = [a, b]× [0, T ],(1)

u(a, t) = g1(t), u(b, t) = g2(t), u(x, 0) = u0(x),

where f(x, t), g1(t), g2(t) and u0(x) are continuous functions. Also, the fractional

derivative ∂αu
∂tα is Caputo fractional derivative defined by

∂αu

∂tα
=

1

Γ(1− α)

∫ t

0

∂u(x, s)

∂s

ds

(t− s)α
, α ∈ (0, 1].

Allen-Cahn equation is considered as a model problem that is used in various
fields such as quantum mechanics, the elasticity, plasma physics, mathematical
biology, gas dynamics and others as well. In recent years, many researchers have
investigated Allen-Cahn equation [1, 2, 6, 7, 8]. In this paper, we discrete the time
fractional derivative (1) by a finite difference scheme, then we estimate solution of
semi-discrete scheme by using the Sinc collocation method.

2. Description of Method

Now, we introduce time discretization and Sinc collocation in the following sub-
sections.
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2.1. Time Discrete Scheme. We first discrete the time fractional derivative
by finite difference approximation. Suppose tm = m∆t, m = 0, 1, . . . ,M , where
∆t = T/M is the time step. The time fractional derivative ∂αu

∂tα at tm+1 is estimated
by

∂αu(x, tm+1)

∂tα
=

1

Γ(1− α)

∫ tm+1

0

∂u(x, s)

∂s

ds

(tm+1 − s)α

=
1

Γ(1− α)

k=m∑
k=0

∫ tk+1

tk

∂u(x, s)

∂s

ds

(tm+1 − s)α

=
1

Γ(1− α)

k=m∑
k=0

u(x, tk+1)− u(x, tk)
∆t

∫ tk+1

tk

ds

(tm+1 − s)α
+R

(1)
∆t .(2)

Also, the truncation error R
(1)
∆t is bounded as R

(1)
∆t ≤ C(∆t)(2−α), where C is a

constant [4].
By calculating the integral in (2) we have:

∂αu(x, tm+1)

∂tα
=

(∆t)−α

Γ(2− α)

k=m∑
k=0

λm−k

(
u(x, tk+1)− u(x, tk)

)
+R

(1)
∆t

=
(∆t)−α

Γ(2− α)

k=m∑
k=0

λk(u(x, tm−k+1)− u(x, tm−k)) +R
(1)
∆t ,(3)

where λk = (k + 1)(1−α) − k(1−α).
Now, by replacing Eq. (3) into Eq. (1), we can arrive the following relation:

(∆t)−α

Γ(2− α)

k=m∑
k=0

λk

(
u(x, tm−k+1)− u(x, tm−k)

)
− ∂2u

∂x2
(x, tm+1)(4)

+ u3(x, tm+1)− u(x, tm+1) = f(x, tm+1) +R
(2)
∆t .

Suppose um be the numerical estimation to u(x, tm) and fm+1 = f(x, tm+1).

Ignoring the error term R
(2)
∆t in (4), the semi-discrete scheme can be constructed

as follows:

(1− µ)um+1 − µum+1
xx + µ(um+1)3 = τm, m = 0, 1, . . . ,M − 1,(5)

u0 = u0(x), u
m+1(a) = g1(tm+1), u

m+1(b) = g2(tm+1),

where µ = (∆t)αΓ(2− α) and τm = µfm+1 + um −
∑k=m
k=1 λk

(
um−k+1 − um−k).

2.2. Sinc Function. The Sinc function, which was developed by Stenger [5],
is defined on −∞ < x <∞ by

Sinc(x) =

{
sin(πx)
πx , x ̸= 0,

1, x = 0.

S(j, h)(x) = Sinc(
x− jh
h

), j = 0,±1,±2, . . . .
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Let f(x) is defined on the real line, the Whittaker cardinal expansion of f for
h > 0 is determined as follows:

f(x) ≈
N∑

j=−N

fjS(j, h)(x), fj = f(xj), xj = jh, h =
√
πd/σN, 0 < σ ≤ 1, d ≤ π

2
,

where N is suitably chosen and σ depends on the asymptotic behaviour of f . The
approximation of f(x) by Sinc function on [a, b] is as follows:

f(x) ≈
N∑

j=−N

fjSj(x), Sj(x) = S(j, h)(x) ◦ ϕ(x), ϕ(x) = ln(
x− a
b− x

),

The interpolation points xj are then given by

xj =
a+ bejh

1 + ejh
, j = 0,±1,±2, . . . .

Also, the n-th derivative of the function f can be represented as

f (n)(x) ≈
N∑

j=−N

fj
dn

dxn
[Sj(x)].

Setting

di

dϕi
[Sj(x)] = S

(i)
j (x), 0 ≤ i ≤ 2,(6)

and noting that

d

dx
[Sj(x)] = S

(1)
j (x)ϕ

′
(x),

d2

dx2
[Sj(x)] = S

(2)
j (x)[ϕ

′
(x)]2 + S

(1)
j (x)ϕ

′′
(x),(7)

and

δ
(l)
jr = hl

dl

dϕl
[Sj(x)]x=xr , l = 0, 1, 2, r = −N,−N + 1, . . . , N.(8)

Consider (5) with the given boundary condition. Suppose û = um+1, τ̂ = τm,
we have:

(1− µ)û− µûxx + µ(û)3 = τ̂ .(9)

Now, we use the Sinc collocation method for solving (9). For this end, we take the
approximate solution of (9) as:

û(x) ≈
N∑

j=−N
ĉjSj(x),(10)

The unknown coefficients ĉj in relation (10) are obtained by collocation method
with Sinc functions. Also, this approximation is then used to approximate the
second derivative in the points of xr, r = −N,−N + 1, . . . , N . Thus, by using
relations (6)-(8) we get the discrete nonlinear equations as:

(1− µ)ĉr − µ


N∑

j=−N
ĉj

(
δ
(2)
jr

h2
[ϕ

′
(xr)]

2 +
δ
(1)
jr

h
ϕ

′′
(xr)

)+ µ(cr)
3 = τ̂(xr),(11)

r = −N,−N + 1, . . . , N.
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Table 1. Comparison of L∞ errors of Example 3.1 for different
values α with ∆t = 0.001, t = 1 and n = 100.

α [6] [3] Our results
0.2 - 4.49e-06 1.13e-07
0.7 9.24e-04 4.98e-06 1.29e-06
0.9 7.42e-04 1.42e-05 7.54e-06

Figure 1. The graphs of approximate solutions of Example 3.1
for n = 36 with (a) α = 0.7 (b) α = 0.9 on 0 ≤ x, t ≤ 1.

The nonlinear system (11) includes 2N +1 equations and 2N +1 unknowns which
can be solved by means of Newton’s method. Finally we can attain an approximate
solution û(x) of (9) from (10).

3. Numerical Experiments

Now, we provide one test example to illustrate the efficiency of the method on (1).
Select σ = 1 and d = π

2 which yield h = π√
2N
, the maximum absolute errors are

calculated on uniform points

U = {z0, z1, . . . , zn}, zp = (b− a) p
n
, p = 0, 1, . . . , n.

Example 3.1. Consider the time fractional Allen-Cahn equation

∂αu

∂tα
+
∂2u

∂x2
+ u3 − u = f(x, t), (x, t) ∈ Ω = [0, 1]× [0, 1],

where

f(x, t) = (α+ 1)(x− 1)xtΓ(1 + α)− (x2 − x)3t3+3α − (x2 − x+ 2)3t1+α.

The initial and boundary conditions can be achieved from the exact solution (x2−
x)t1+α. The maximum absolute errors for this example are given in Table 1 and
compare with results in [3, 6] for various values of α, the computational results are
presented for ∆t = 0.001, t = 1 and n = 100. These results state the performance
and accuracy of the method. Also, for this example the approximate solutions for
different values of α are drawn in Figure 1.
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Abstract. In financial markets, a lot of traded options are multi-asset op-
tions. A European exchange option gives the holder the right to exchange two
assets at expiration time. This paper is considered the numerical solution of
two dimensional Black-Scholes partial differential equation (PDE) for evalu-

ating the European exchange options. We use a hybrid method based on the
finite difference method and Laguerre approximation method. It is shown
that the two dimensional Black-Scholes PDE is reduced to a nonsingular up-
per triangular linear system. The numerical results demonstrate efficiency

and capability of the proposed method.
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Black-Scholes PDE, Laguerre polynomials, Finite difference scheme.
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1. Introduction

Multi-asset options are a group of options whose pay-off depends on more than one
underlying asset. The multi-asset options have European and American types, as
far as the time of exercising is concerned. Under the Blak-Sholes assumptions [1],
each of the underlying asset prices S1 and S2 follow a geometric Brownian motion
as

dS1 = µ1S1dt+ σ1S1dz,
dS2 = µ2S2dt+ σ2S2dw,
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where µ1 and µ2 are the expected instantaneous rates of return of the two assets,
σ1 and σ2 are the corresponding instantaneous volatilities, and dz and dw are
two correlated Winer processes. Under the Black-Scholes environments [2, 3], the
option price u(S1, S2, t) satisfy

∂u

∂t
+

1

2
σ2
1S

2
1

∂2u

∂S2
1

+ σ1σ2ρS1S2
∂2u

∂S1∂S2
(1)

+
1

2
σ2
2S

2
2

∂2u

∂S2
2

+ rS1
∂u

∂S1
+ rS2

∂u

∂S2
− ru = 0,

where constants ρ and r are the asset correlation and risk-free interest rate, re-
spectively.

A typical example of two asset options is the exchange option that was in-
troduced by Margrabe [4]. This option gives the holder the right to exchange
asset S2 for S1 at expiration time t = T. The pay-off form an exchange option is
u(S1, S2, T ) = max{S1 − S2, 0}.

This paper is considered the numerical solution of two dimensional Black-
Scholes Eq. (1) for evaluating the European exchange option

2. The European Exchange Option Pricing

In orther to obtain the numerical solution of two dimensional Black-Scholes PDE
(1) for evaluating the European exchange option, we use a hybrid method based
on the theta finite difference method and function approximation scheme using the
Laguerre polynomials. In practice, we truncate the infinite domain [0,∞)× [0,∞)
to a finite domain [0, S1,max] × [0, S2,max]. For evaluating the exchange options,
the boundary conditions of the Black-Scholes PDE (1) are as the following:

u(0, S2, t) = 0,
u(S1, 0, t) = S1,
u(S1,max, S2, t) = S1,max − S2,
u(S1, S2,max, t) = 0.

Without loss of generality, for a given sufficiently large number E, we assume that
S1,max = S2,max = E. For two-dimensional Black-Scholes Eq. (1), we can write

∂u(x, y, τ)

∂τ
= Du(x, y, τ),(2)

where τ = T − t and D is an operator as

D =
1

2

∂2

∂x2
+ σ1σ2ρ

∂2

∂x∂y
+

1

2
σ2
2

∂2

∂y2
+ (

1

2
σ2
1 − r)

∂

∂x
+ (

1

2
σ2
2 − r)

∂

∂y
− r.(3)

Also the European exchange pay-off function can be considered as the initial con-
dition of (2) as

u(x, y, 0) = E max{e−x − e−y, 0},
and for the boundary conditions, we have

u(x, y, τ) = 0, as x→∞,
u(x, y, τ) = Ee−x, as y →∞,
u(0, y, τ) = E − Ee−y,
u(x, 0, τ) = 0.

(4)
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We partition the interval [0, T ] into J subintervals of equal length ∆τ = T/J .
We set τ = j∆τ , and define uj(x, y) = u(x, y, τ), for j = 0, 1, . . . , J . For a given
arbitrary natural number M, we approximate uj(x, y) by the truncated Laguerre
series as

uj = LT (x)CjL(y),

where Cj is unknown coefficients matrix and L(.) is an M -vector contain the
Laguerre basis functions. Using the theta finite difference method and differential
operator matrix of Laguerre polynomials, the Eq. (2) yield

A1C
j+1 + Cj+1A2 +A3C

j+1P = A4C
j + CjA5 +A6C

jP,(5)

where

A1 = (1 + θ∆τr)I − 1

2
θ∆τσ2

1(P
2)T + θ∆τ(r − 1

2
σ2
1)P

T ,

A2 = −1

2
θ∆τσ2

2P
2 + θ∆τ(r − 1

2
σ2
2)P,

A3 = −θ∆τσ1σ2ρPT ,

A4 = (1− (1− θ)∆τr)I + 1

2
(1− θ)∆τσ2

1(P
2)T − (1− θ)∆τ(r − 1

2
σ2
1)P

T ,

A5 =
1

2
(1− θ)∆τσ2

2P
2 − (1− θ)∆τ(r − 1

2
σ2
2)P,

A6 = (1− θ)∆τσ1σ2ρPT ,

and I = I(M+1)×(M+1) is the identity matrix. The matrix Eq. (5) can be write as
[5]

Avj+1 = Bvj , j = 0, 1, . . . , J − 1,(6)

A = I
⊗

A1 +AT2
⊗

I + PT
⊗

A3,(7)

B = I
⊗

A4 +AT5
⊗

I + PT
⊗

A6,(8)

where
⊗

is the Kronecker product, vj = vec(Cj), and vec(Cj) is defined a column
vector obtained by stacking the column vectors of Cj on top of one another.

Lemma 2.1. Let the matrices A and B is defined as (7) and (8). Then, A and
B are upper triangular matrices with diagonal entries 1+θr∆τ and 1−(1−θ)r∆τ ,
respectively.

Proof. Consider the matrices Ai, i = 1, . . . , 6 as (5). The matrices A1 and A4

are upper triangular matrices with diagonal entries 1 + θr∆τ and 1− (1− θ)r∆τ ,
respectively. Also, It can be easily seen that AT2

⊗
I, PT

⊗
A3, A

T
5

⊗
I and

PT
⊗
A6 are upper triangular matrices with zero diagonal entries. Hence, the

matrices A and B are upper triangular matrices with diagonal entries 1 + θr∆τ
and 1− (1− θ)r∆τ , respectively. □

Corollary 2.2. The upper triangular linear system Avj+1 = Bvj in (6) has
a unique solution.
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Figure 1. The exact European exchange option values (a) and
approximate values by the proposed method (b) for example 2.3.

Proof. By Lemma 2.1, the coefficient matrixA is an upper triangular matrix
with non-zeroe entries 1 + θr∆τ . Hence, the matrix A is a nonsingular matrix,
and the result holds. □

Also, for the boundary conditions (4), we have

Evj+1 = Gvj , j = 0, 1, . . . , J − 1,(9)

where

E =


I
⊗
L(xmax)

T

L(ymax)
⊗
I

I
⊗
L(0)T

L(0)
⊗
I


(4M+4)×(M+1)2

, G =


g1

g2

g3

g4

 ,

gi = (gi(0), gi(1), . . . , gi(M))T and

g1(m) = 0,
g2(m) = E

∫∞
0
Lm(x)e−2xdx,

g3(m) = Eδm,0 − E
∫∞
0
Lm(y)e−2ydy,

g4(m) = 0,

for m = 0, 1, . . .M , where δm,n is the Kronecker delta function. Equations (6) and
(9) yield

Avj+1 = Bvj , j = 0, 1, . . . , J − 1,

where

A =

(
A
E

)
, B =

(
B
G

)
.

Hence, the European exchange option values is obtained from the above overde-
termined linear system.

Example 2.3. Consider the two dimensional Black-Scholes PDE (1) to eval-
uate the European exchange option. Let σ1 = 0.2, σ2 = 0.2, ρ = 0.1, r = 0.1
and T = 1/2. We use the proposed method for θ = 1/2, M = 100 and J = 100.
Figure 1 shows the exact [4] and approximate European exchange options. Also,
the absolute error is shown in Figure 2. Moreover, we fix one of the underlying
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Figure 2. The absolute error for comparison between the exact
and approximate European exchange options using the proposed
method with M = 100 and J = 100.

Figure 3. The absolute error for the European exchange option
using the proposed method for S1 = 5, S2 ∈ [0, 15] (A) and S1 =
26, S2 ∈ [0, 15] (B) for θ = 1/2, M = 100 and J = 100.

Figure 4. The absolute error for the European exchange option
using the proposed method for S1 = 5, S2 ∈ [0, 15] (A) and S1 =
26, S2 ∈ [0, 15] (B) for θ = 1/2, M = 100 and J = 100.

asset prices equal to S = 5, 26. Figures 3 and 4 show the absolute errors by the
proposed method for another asset price in interval [0, 15].
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Abstract. We present a method based on integrated RBF (IRBF)-finite

difference (FD) for numerical solution of two-dimensional sinh-Gordon equa-
tion. An example is solved by applying IRBF-FD method to campare it
with radial basis functions (RBFs) collocation based on Kansa’s approach,
RBF-pseudospectral (RBF-PS) technique and moving least squares (MLS)

method. The aim of this paper is to show that IRBF-FD method is more
accurate than other meshless methods.
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1. Introduction

Nonlinear phenomena, that appear in many areas of scientific fields such as solid
state physics, plasma physics, fluid dynamics, mathematical biology and chemi-
cal kinetics, can be modeled by partial differential equations. A broad class of
analytical and numerical solution methods were used to handle these problems.
The search of exact solution for the nonlinear partial differential equations is very
difficult. Therefore, numerical methods are useful for solving nonlinear partial
differential equations.

In this paper, we investigate nonlinear sinh-Gordon equation in the following
form [5]:

∂2u(x, y, t)

∂t2
− ∂2u(x, y, t)

∂x2
− ∂2u(x, y, t)

∂y2
(1)

+ sinh(u(x, y, t)) = f(x, y, t), (x, y) ∈ Ω, t ∈ (0, T ),

with initial and boundary conditions

u(x, y, 0) = g1(x, y), ut(x, y, 0) = g2(x, y), (x, y) ∈ Ω,

u(x, y, t) = h(t), (x, y) on ∂Ω, t ∈ (0, T ).
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1.1. Overview of Integrated RBF. For solving partial differential equa-
tions (PDEs), there are many numerical methods such as finite difference method
(FDM), finite volume method (FVM) and finite element method (FEM) usually
utilize the low-order polynomial to approximate the derivatives in PDEs. There-
fore, these methods are low-order methods. In order to have acceptable accuracy,
for the low-order methods, they must apply a large number of grid nodes. Lately,
meshless methods received a lot of attention. The author of [3] depicts mesh-
free methods are better than FDM for solving PDE problems especially in more
spatial dimensions. One of the local meshless collocation methods is RBFs finite
difference (RBFs-FD) method. About the IRBF technique, Mai Duy has done
some research. In [2] May Duy and Trang Cong presented an efficient indirect
RBFN-based method for solving some PDEs. The study of the performance of
the RBF-FD method when the unknown function is approximated by IRBF is
interesting. In this paper, to solve the governing equation the RBF-FD method
with IRBF, IRBF-FD for short, is expressed and validated by solving an example.

2. Integrated RBF Based on Finite Difference (IRBF-FD) Method

Let N be the number of collocation points {xi}Ni=1 on the region Ω and n be the
number of closest neighbor nodes to form the associated local-support area Ωi
for every point xi ∈ Ω, and Ωi

∩
Ωj = ∅ when i ̸= j. Similar to RBF-FD, we

seek in IRBF-FD an approximation to linear operator at any node that involves
a linear combination of the values of function over the stencil local domain. For
example, operator L(u(x)) evaluated at xj is approximated by a linear weighted
combination of the function values of u at the points of Xj ,

Lu(xj) ≈
n∑
k=1

w
(j)
k u(x

(j)
k ),(2)

where Xj = {x(j)1 , x
(j)
2 , . . . , x

(j)
n } ⊂ X is a subset containing xj and w

(j)
k are differ-

entiation weights for the point xj , which are unknown.

To calculate w
(j)
k , the local integrated radial basis function interpolation is

used, assuming that, for every points xj ∈ Ω, the function u(xj) can be approx-
imated by the IRBFs on the corresponding local domain Ωi, (assuming that the
highest-order derivative in the PDE is two).

∂2u(xj)

∂x2
≈

n∑
k=1

λ
(j)
k ψ[x](∥xj − x

(j)
k ∥2),(3)

∂u(xj)

∂x
≈

n∑
k=1

λ
(j)
k

∫
ψ[x](∥xj − x

(j)
k ∥2)dx+ c

(j)
1 (y)(4)

=
n∑
k=1

λ
(j)
k φ[x](∥xj − x

(j)
k ∥2) + c

(j)
1 (y),

u(xj) ≈
n∑
k=1

λ
(j)
k

∫ ∫
ψ[x](∥xj − x

(j)
k ∥2)dxdx+ xc

(j)
1 (y) + c

(j)
2 (y)
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=
n∑
k=1

λ
(j)
k ϕ[x](∥xj − x

(j)
k ∥2) + xc

(j)
1 (y) + c

(j)
2 (y).

∂2u(xj)

∂y2
≈

n∑
k=1

λ
(j)
k ψ[y](∥xj − x

(j)
k ∥2),(5)

∂u(xj)

∂y
≈

n∑
k=1

λ
(j)
k

∫
ψ[y](∥xj − x

(j)
k ∥2)dy + c

(j)
1 (x)(6)

=
n∑
k=1

λ
(j)
k φ[y](∥xj − x

(j)
k ∥2) + c

(j)
1 (x),

u(xj) ≈
n∑
k=1

λ
(j)
k

∫ ∫
ψ[y](∥xj − x

(j)
k ∥2)dydy + yc

(j)
1 (x) + c

(j)
2 (x),

=

n∑
k=1

λ
(j)
k ϕ[y](∥xj − x

(j)
k ∥2) + yc

(j)
1 (x) + c

(j)
2 (x),

where ψ(∥xj − x
(j)
k ∥2) is Matern function. Acting operator L in Eq. (3) gives

Lu(xj) ≈
n∑
k=1

λ
(j)
k L

[
ϕ(∥xj − x

(j)
k ∥2) + xc

(j)
1 + c

(j)
2

]
.

Combining (2)-(5), we achieved the following linear system of n algebraic equa-
tions, ∑ n

k=1

[
ϕ(∥x(j)k − x

(j)
k′ ∥2) + x

(j)
k c

(j)
1 + c

(j)
2

]
w

(j)
k(7)

= L
[
ϕ(∥xj − x

(j)
k ∥2) + xc

(j)
1 + c

(j)
2

]
, k′ = 1, 2, . . . , n.

Solving (7) gives w
(j)
k , and substituting it into (2) leads to the approximation of

Lu(x) at the points of Xj . In this paper, we employ an algorithm to achieve an
optimal shape parameter that has been introduced via Sarra [4]. In Algorithm
(8), Φ is the interpolation matrix, σmax and σmin are the largest and lowest sin-
gular values of SVD decomposition, respectively, cIncrement =

1
m in which m is

the number of points in the considered domain and Kmin = 110 and Kmin = 1e+6.

K = 0;

while K < Kmin,K > Kmax do

Produce interpolation matrix Φ;

[U, S, V ] = svd(Φ);

if K < Kmin then(8)

ϵ = ϵ− cIncrement;
else

ϵ = ϵ+ cIncrement;

end

end
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3. Time Discrete Scheme

For discretization of time variable, we need some preliminary. We define tn =
kτ, k = 0, 1, . . . , N, where τ = T

N is the step size of time variable. We investigate
Eq. (1) in points (x, y, tn) then we have the following discrete form.

un+1 − 2un + un−1

τ2
− ∂un+1(x, y)

∂x2
− ∂un+1(x, y)

∂y2
(9)

+ sinh(un(x, y)) = fn+1(x, y).

Simplifying Eq. (9) gives

un+1 − τ2un+1
xx − τ2un+1

yy = 2un − un−1 − τ2 sinh(un) + τ2fn+1, n ≥ 1,(10)

u1 − τ2u1xx − τ2u1yy = 2u0 − u−1 − τ2 sinh(u0) + τ2f1,(11)

where u−1 is obtained by

u1 − u−1

2τ
=
∂u(x, y, t)

∂t
|t=0 = g2(x, y), u−1 = u1 − 2τg2(x, y).

4. Implementing IRBF-FD Method for the Main Problem

According to IRBF-FD that explained in Section 2, the second- and first-order
derivatives of function u(x, y) at every node (i, j) of rectangular grid bring

∂2u

∂x2

∣∣∣∣∣
(i,j)

≈
∑

k∈{i−1,i,i+1}

wxx(k,j)u(k,j),(12)

∂2u

∂y2

∣∣∣∣∣
(i,j)

≈
∑

k∈{j−1,j,j+1}

wyy(k,j)u(k,j).

Assembling relations (12) at all grid point the approximation derivatives of func-
tion u arrives at

uxx ≈ Uxx = wxxU, uyy ≈ Uyy = wyyU.(13)

Substituting Eq. (13) into Eqs. (10) and (11) will result the following algebraic
system.

(I − τ2(wxx +wyy))Un+1 = 2Un − Un−1 − τ2 sinh(Un) + τ2fn+1, n ≥ 1,

(2I − τ2(wxx +wyy))U1 = 2U0 + 2τg2 − τ2 sinh(U0) + τ2f1,

where I is identity matrix.

5. Numerical Result

Example 5.1. We consider Eq. (1) with the following exact solution form:

u(x, y, t) = sin(t)(sech2(−x− y + r) + sech2(x+ y + r)),

where the initial and boundary conditions can be obtained from the above solution.
This example is solved by IRBF-FD and we compare it with results of [1]. Table 1
shows obtained maximum errors by the proposed and other meshless methods with
τ = 0.01 for various values of h. As can be seen via Table 1, the obtained results
by IRBF-FD method are more accurate than the obtained results for methods of
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[1]. Figure 1 depicts surface numerical solution false-colored by the absolute error
graph with h = 1/5, τ = 0.01 and r = 2 on [−5, 5]2.

Table 1. Comparison between maximum error of present
method and the methods of article [1] at final time T = 1 for
Example 5.1.

Article [1]
h IRBF − FD RBF −Kansa RBF − PS MLS
1
5 1.1225× 10−3 2.5885× 10−3 2.5885× 10−3 2.7839× 10−3

1
10 1.6938× 10−4 6.6647× 10−4 6.6647× 10−4 2.0984× 10−4

1
15 5.3670× 10−5 2.3284× 10−4 2.3284× 10−4 5.3085× 10−5

1
20 4.1191× 10−5 8.5026× 10−4 8.7058× 10−5 4.1188× 10−5

1
25 3.3312× 10−5 4.3493× 10−5 4.3093× 10−5 3.5431× 10−5

Figure 1. Graph of surface approximation solution false-colored
at final time T = 5 for Example 5.1.
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Nonlinear Volterra-Fredholm Integral Equation

Asiyeh Ebrahimzadeh∗

Department of Mathematics Education, Farhangian University, Tehran, Iran

Abstract. The current paper deals with elaborating a numerical framework

for estimating the optimal control and state of nonlinear Volterra-Fredholm
integral equation (VFIE) by using the CAS wavelet bases. Wavelet bases
have various resolution capability for approximating of different functions.

The properties of CAS wavelet together with numerical integration and col-
location method are utilized to discretize the continuous optimal control prob-
lem (OCP) to large-scale finite-dimensional nonlinear programming (NLP)
problem. Also, the exact optimal control and state functions of OCP gov-

erned by VFIE can be approximated by series solutions based on CAS wavelet.
The reduced problem is solved by existing well-developed algorithm in Math-
ematica software. Numerical experiments are reported to demonstrate the
applicability and efficiency of the propounded technique.

Keywords: CAS wavelet, Volterra-Fredholm integral equation,
Collocation method.
AMS Mathematical Subject Classification [2010]: 49M25,
90C30.

1. Introduction

In the current essay, we concentrate on the following OCP. Determine the real
valued state-control function pair (x∗ (t) , u∗ (t)) , t ∈ [0, 1] , that minimizes the
cost functional

J =

∫ 1

0

x2 (t) + u2 (t) + f (t)x (t) + g (t)u (t) dt,(1)

subject to the dynamic constraint

x (t) = y (t) + λ1

∫ t

0

k1 (t, s, x (s) , u (s)) ds+ λ2

∫ 1

0

k2 (t, s, x (s) , u (s)) ds.(2)

It is assumed that x, u and y are continuous real valued functions in L2[0, 1].
The functions k1, k2, f and g are continuously differentiable with respect to their
arguments. λ1 and λ2 are real valued constants. The time interval is assumed to be
[0, 1] for clarity of representation. Note that the time interval can be transformed
from [0, 1] to [t0, tf ] via an affine transformation. In the literature, developing the
computational techniques for solving OCPs especially for systems with integral
equations is a subject of interest. It can be considered as a momentous research
topic in many fields of the applied science and engineering. For instance, the
proposed methods for solution of OCPs for systems governed by integral equations
have been investigated in many studies such as [1, 4] and the references therein.
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The outline of this paper is organized as follows: In Section 2, the proposed
method is used to approximate the solution of the OCP, as a result, a NLP is
obtained. In Section 3, we report our computational results and demonstrate the
accuracy of the proposed numerical scheme by presenting numerical examples.
Section 4 ends this paper with a concise conclusion.

2. Proposed Method

Recently, Yousefi and Banifatemi in [7] have introduced the CAS wavelets which
are specified by

ψnm(t) =
{

2
k
2CASm(2kt− n), t ∈ [ n

2k
, n+1

2k
),

0, otherwise,

where

CASm(t) = cos (2mπt) + sin (2mπt),

in which n = 0, 1, . . . , 2k−1, k ∈ N ∪{0} and m ∈ Z. The function approximation
with this basis and its integration operational matrix is given in [7]. In this section,
we apply CAS wavelet for discretization of the OCP. Let N = 2k(2M + 1) be the
number of basis functions. The nodal point arrangement for the CAS wavelet
collocation method is

ti =
2i− 1

2k+1(2M + 1)
, i = 1, . . . , N.(3)

To construct approximation for considered OCP by using CAS wavelets, we assume
that

x(t) =
2k−1∑
i=0

M∑
j=−M

xijψij(t) = XTψ(t),(4)

and

u(t) =

2k−1∑
i=0

M∑
j=−M

uijψij(t) = UTψ(t),(5)

where C and ψ(t) are (2k(2M + 1))× 1 vectors given by

C = [C0(−M), C0(−M+1), . . . , C0M , C1(−M), . . . ,

C1(M), . . . , C(2k−1)(−M), . . . , C(2k−1)(M)]
T ,

and

ψ = [ψ0(−M), ψ0(−M+1), . . . , ψ0(M), ψ1(−M), . . . ,(6)

ψ1(M), . . . , ψ(2k−1)(−M), . . . , ψ(2k−1)(M)]
T .

By substituting (4) and (5) in system (2), we gain

x(t) = y(t) + λ1

∫ t

0

k1(t, s, x(s), u(s))ds(7)

+ λ2

∫ 1

0

k2(t, s, x(s), u(s))ds, 0 ≤ t ≤ 1.
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We now collocate (7) at nodal points given in (3)

x(ti) = y(ti) + λ1

∫ ti

0

k1(ti, s, x(s), u(s))ds(8)

+ λ2

∫ 1

0

k2(ti, s, x(s), u(s))ds.

For using Gauss-Legendre (GL) quadrature in (8), N intervals [0, ti] and the
interval [0, 1] are transferred to the interval [−1, 1] by means of transformation
s = ti

2 (τ + 1) and s = 1
2 (τ + 1), so we gain

x(ti) = y(ti) + λ1(
ti
2
)

∫ 1

−1

k1

(
ti,
ti
2
(τ + 1), x(

ti
2
(τ + 1)), u(

ti
2
(τ + 1))

)
dτ(9)

+
λ2

2

∫ 1

−1

k2

(
ti,
τ + 1

2
, x(

τ + 1

2
), u(

τ + 1

2
)

)
dτ.

By applying Gauss-Legendre (GL) quadrature for approximating the integral
involved in (9), we obtain

x(ti) = y(ti) + λ1(
ti
2
)

N1∑
j=1

wjk1

(
ti,
ti
2
(τj + 1), x(

ti
2
(τj + 1)), u(

ti
2
(τj + 1))

)

+
λ2
2

N1∑
j=1

wjk2

(
ti,
τj + 1

2
, x(

τj + 1

2
), u(

τj + 1

2
)

)
,

where τjs are the GL nodes, zeros of Legendre polynomial LN1(t) [3], in the
interval [−1, 1], and wjs are the corresponding weights. While explicit formulas
for quadrature nodes are not known, the weights can be expressed in closed form
as wj =

2
(1+τ2

j )(L
′
N1+1(τj))

2
, j = 1, . . . , N1. We utilize the following approximation

methodology to discretize the performance index in (1). Firstly, the real valued
functions f(t) and g(t) are approximated

g(t) = GTψ(t), f(t) = FTψ(t),(10)

whereG = [g0(−M), g0(−M+1), . . . , g(2k−1)M ], F = [f0(−M), f0(−M+1), . . . , f(2k−1)M ]
and ψ(t) is defined in (6). By substituting (10) in (1), we get

J =

∫ 1

0

XTψ(t)ψT (t)X + UTψ(t)ψT (t)(11)

+ FTψ(t)ψT (t)X +GTψ(t)ψT (t)Udt.

We obtain from
∫ 1

0
ψ(t)ψT (t)dt = I,

J(X,U) = XTX + UTU + FTX +GTU.(12)

If the functions f(t) = f and g(t) = g are constant functions, then (11) is converted
to

J(X,U) = XTX + UTU + FTPX +GTPU,

where P is introduced in [7]. Therefore, the OCP is approximated to a nonlinear
optimization problem with (12) as the objective function and (9) as constraints.
Eventually, we can utilize many well-developed optimization algorithms to dissolve
the finite-dimensional discretized optimization problem.
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3. Numerical Results

In this section, we examine the accuracy of the propounded method on two ex-
amples. In order to analysis the error of the method, the following notations are
introduced

∥ Ex ∥∞= max
1≤i≤2k(2M+1)

|Ex(ti)|, ∥Eu∥∞ = max
1≤i≤2k(2M+1)

|Eu(ti)|,(13)

where Ex(t) = x∗(t)−x∗(t), Eu(t) = u∗(t)−u∗(t) and ti, for 1 ≤ i ≤ 2k(2M+1),

are collocation nodes given in (3). We also define EJ = |J∗ − J∗|. In fact, |Ex|,
|Eu| and EJ are absolute errors.

Example 3.1. Consider the minimization of functional

J =

∫ 1

0

(x(t)− (t2 − 2))2 + (u(t)− t)2dt,

subject to controlled VFIE

x(t) = y(t) +

∫ t

0

(t− u(s))x2(s)ds+
∫ 1

0

(t+ u(s))x(s)ds,

where y(t) = −1
30 t

6 + 1
3 t

4 − t2 + 5
3 t −

5
4 . It can be verified that the exact optimal

control and state are x∗(t) = t2 − 2 and u∗(t) = t. Trivially, the optimal value of
the cost functional is J∗ = 0. Table 1 exhibits the results of solving this example
with the proposed scheme in Section 3.

Table 1. Numerical results of Example 3.1.

k ∥ Ex ∥∞ ∥ Eu ∥∞ EJ

M = 1
2 4.2316E-02 2.6692E-02 1.1916E-03
3 2.5252E-02 2.0635E-02 3.0568E-04
4 8.7912E-03 7.6122E-03 4.0794E-05
5 1.3350E-03 5.6710E-03 1.6163E-05

M = 2
2 4.4306E-02 2.4820E-02 5.4998E-04
3 2.6352E-02 2.0610E-02 1.1202E-04
4 1.2380E-02 7.7934E-03 2.8531E-05
5 8.1362E-03 1.4557E-03 2.7768E-06

Example 3.2. Consider the minimization of the cost functional

J =

∫ 1

0

(x(t)− 0.8182− 2.7273t2)2 + (u(t)− t2)2dt,

subject to the state dynamics

x(t) = y(t) +

∫ 1

0

x(s)(u(s) + t2)ds,
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where y(t) = t2. The optimal solutions are u∗(t) = t2 and x∗(t) = 0.8182 +
2.7273t2. The optimal value of performance index is J∗ = 0. Table 2 represents
the error of proposed method obtained from (13).

Table 2. Numerical results of Example 3.2.

k ∥ Ex ∥∞ ∥ Eu ∥∞ EJ

M = 1
2 3.3435E-03 2.8499E-01 1.3515E-03
3 1.9582E-03 2.2821E-02 3.7128E-04
4 4.6086E-04 7.1998E-03 8.6605E-05
5 1.2480E-04 5.8216E-03 2.2474E-05

M = 2
2 1.3679E-02 1.5848E-02 1.1103E-03
3 1.6481E-03 1.4022E-02 2.4918E-04
4 1.5095E-03 1.1112E-02 6.1521E-05
5 1.3085E-03 1.9518E-03 1.7370E-05

4. Conclusion

A collocation CAS wavelet-based method was developed to obtain the optimal
control and state of systems governed by nonlinear VFIE. The main aspect of the
proposed approach resides in converting the optimization problem into a mathe-
matical programming problem which can be solved by a variety of efficient numer-
ical approaches. This method is in the case of optimal control of IEs which plays
a cardinal role in the numerous fields of science and engineering [2, 4].
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Abstract. This work is concerned with the numerical solution of two-
dimensional time fractional telegraph equation by the reproducing kernel par-

ticle meshless method (RKPM). A meshless point collocation scheme is em-
ployed to furnish the spatial approximation. The Caputos fractional deriva-
tives are approximated by two schemes of orders O(τ3−α) and O(τ2−α),
1/2 < α < 1. The RKPM is a meshless method that obtain desire accuracy

and convergence by reproducing polynomial condition.
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1. Introduction

The numerical methods have an important role in appropriate simulation of phys-
ical problems. These problems are usually depicted by partial differential equa-
tions. Recent developments in science and engineering have yield the new type of
derivatives namely the fractional order derivatives. Due to the their memory, the
fractional order differential equations may cause to obtain more valuable infor-
mations form real life problems. The fractional differential equations have many
applications in fluid mechanics, physics, chemistry, viscoelasticity, finance, and
etc. [1].

In this paper, the time fractional telegraph equation has been considered as
follow

∂2αu(x, t)

∂t2α
+
∂αu(x, t)

∂tα
+ u(x, t) = ∆u(x, t) + f(x, t),(1)

1

2
< α < 1, (x, t) ∈ Ω× [0, T ],

with boundary and initial conditions:

u(x, 0) = h1(x),
∂u(x, t)

∂t
|t=0 = h2(x), x ∈ Ω,

u(x, t) = g(x, t), x ∈ ∂Ω,

here Ω ⊂ R2 is an open and bounded domain with the boundary ∂Ω and the

fractional derivative ∂αu(x,t)
∂tα is the Caputo fractional derivative of order α which
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is defined as [2]

∂αu(x, t)

∂tα
=

 1
Γ(m−α)

t∫
0

∂mu(x,s)
∂tm (t− s)m−α−1ds, m− 1 < α < m, m ∈ N,

∂mu(x,t)
∂tm , m = α,

where m is the smallest integer that exceeds α.
A wide variety of numerical methods have been applied to approximate the

solution of these equations. In the present works, we are going to use a meshless
point collocation methods based on reproducing kernel particle (RKP) approxi-
mation for spatial approximation and a finite difference scheme of orders O(τ3−α)
and O(τ2−α), 1/2 < α < 1 for Caputo’s fractional derivatives. In the following
section we will explain the main ideas of RKPM and time difference scheme.

2. Numerical Approach

In this section, at the first step the RKP approximation has been explained to semi-
discretization of the considered equation as spatial approximation. Then, the fully
discrete scheme has been yield by the aid of a finite difference approximation for
fractional derivatives.

2.1. The Reproducing Kernel Particle Approximation. The reproduc-
ing kernel particle method as a correction of smoothed particle hydrodynamic
(SPH) has been developed by Liu et al using Wavelets theory [3]. The main idea
of RKPM is to retrieve the consistency condition using a corrected kernel. The
modified kernel is actually a polynomial estimates of the kernel up to 2n degree.
The kernel approximations are convolution integrals that are replaced by summa-
tions on the particles. In the RKPM, we set

u(x) =

∫
Ω

u(y) w̄(x− y) dy,

where the correction kernel function w̄(x− y) is

w̄(x− y) = c(x;x− y) · w(x− y),

here c(x;x− y) is the correction function that is approximated using polynomials
as

c(x;x− y) =
m∑
i=1

pi(x− y) · bi(x) = pT (x− y)b(x),

where m is the basis size, pi(x− y) are the monomial basis functions and bi(x) are
the coefficients for each fixed particle x.

The reproducing property means that u(x) can reproduce a set of basis func-
tion such as a polynomial basis functions of degree n with d = dim(Ω) defined
as

p(x) = {xβ :
n∑
i=1

βi ≤ n},
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where β ∈ Nd0 are multi-indexes. This property is concluded by substituting p(x)
in (2) as

p(x) =

∫
Ω

p(y) c(x;x− y) · w(x− y) dy.

It can be proved that for polynomial basis functions, the uh(x) is

u(x) = pT (0)M−1(x)

∫
Ω

p(y − x) w̄(y − x)u(y) dy,(2)

where the M(x) is the so-called moment matrix which is defined as follow

M(x) =

∫
Ω

p(y − x)pT (y − x) w̄(y − x) dy.(3)

Replacing the integral of (2) by a summation over data sites {xi}NPi=1, one can
obtain

uh(x) = pT (0)M−1
h (x)

NP∑
I=1

p(xI − x) w̄(xI − x)∆VIUI ,(4)

where ∆VI is the sub-domain measure related to particle xI and

Mh(x) =
NP∑
I=1

p(xI − x)pT (xI − x) w̄(xI − x)∆VI .

Then, (4) can be expressed as

uh(x) =
NP∑
I=1

ϕI(x)UI ,(5)

where ϕI(x) is the shape function for node I and given by

ϕI(x) = CI(x)w(xI − x)∆VI ,
CI(x) = pT (0)M−1

h (x)p(xI − x).

2.2. The Time Difference Scheme. Following the pioneer work of Sun
and Wu [4], the approximation for fractional time derivatives can be concluded
from following lemmas.

Lemma 2.1. [4] Suppose g(t) ∈ C2[0, tn]. Then for 0 < β < 1, it holds that∣∣∣∣∣ 1

Γ(1− β)

∫ tn

0

g′(t)

(tn − t)β
dt−

τ−β

Γ(2− β)

[
a0g(tn)−

n−1∑
k=1

(an−k−1 − an−k)g(tk)− an−1g(t0)

]∣∣∣∣∣
≤

1

Γ(2− β)

[
1− β

12
+

22−β

2− β
− (1 + 2−β)

]
max

0≤t≤tn
|g′′(t)|τ3−β ,

where ak =
[
(k + 1)2−β − k2−β

]
.
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Lemma 2.2. [4] Suppose g(t) ∈ C2[0, tn]. Then for 1 < β < 2, it holds that∣∣∣∣∣
∫ tn

0

g′(t)

(tn − t)β−1
dt− 1

τ

[
b0g(tn)−

n−1∑
k=1

(bn−k−1 − bn−k)g(tk)− bn−1g(t0)

]∣∣∣∣∣
≤ 1

2− β

[
2− β
12

+
23−β

3− β
− (1 + 21−β)

]
max

0≤t≤tn
|g′′(t)|τ3−β ,

where bk = τ2−β

2−β
[
(k + 1)2−β − k2−β

]
.

2.3. The Fully Discrete Scheme. To get the fully discrete scheme, the
time interval [0, T ] is partitioned into N equally spaced intervals of the length
τ = T

N . At each instance tk = k τ , the following notations are defined

un−1/2 =
1

2
(un + un−1), δtu

n−1/2 =
1

τ
(un − un−1),

where un = u(x, tn). Now, if we consider

ν(x, t) =
∂u(x, t)

∂t
,

λ(x, t) =
1

Γ(2− α)

∫ t

0

∂ν(x, s)

∂s

ds

(t− s)α−1
,

ω(x, t) =
1

Γ(1− α)

∫ t

0

∂u(x, s)

∂s

ds

(t− s)α
,

then, using these notations and Lemmas 2.1 and 2.2, the problem (1) at the
instance tk−1/2 can be written as

λk−1/2 + ωk−1/2 + uk−1/2 = ∆uk−1/2 + fk−1/2, x ∈ Ω, k ≥ 1,(6)

here

νk−1/2 = δtu
k−1/2 +O(τ2),

λk−1/2 =
1

Γ(2− 2α)τ

[
b0ν

k−1/2 −
k−1∑
i=1

(bk−i−1 − bk−i)ν
i−1/2 − bn−1ν

0

]
+O(τ3−2α),

ωk−1/2 =
τ−α

Γ(2− α)

[
a0u

k−1/2 −
k−1∑
i=1

(ak−i−1 − ak−i)u
i−1/2 − an−1u

0

]
+O(τ2−α).

Now, by eliminating the small errors in above equations and approximating Uk =
U(x, tk) by (5), inserting into the semi-discrete scheme (6) and employing the
collocation method at each interior node xj , yields

Λ
k−1/2
j +W

k−1/2
j + U

k−1/2
j = ∆U

k−1/2
j + f

k−1/2
j , k ≥ 1,

where

Ukj =

NP∑
I=1

ϕI(x)Û
k
I .
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3. Numerical Results

To investigate the accuracy of the proposed scheme, the following two dimensional
time fractional telegraph equations has been considered

∂2αu

∂t2α
+
∂αu

∂tα
+ u = ∆u+ 2 sin(x) sin(y) (cos(t)− sin(t)), (x, y) ∈ Ω, t ∈ [0, T ],

over unit square domain and T = 1 with the exact solution

u(x, y, t) = cos(t) sin(x) sin(y).

The initial and boundary conditions can be easily extracted from exact solution.
The obtained root mean square (RMS) errors for different values of α with τ =
0.1 are summarized in Table 1. Also, the approximate solution and its contour
plot are depicted in Figure 1 at a complex domain that is generated by criterion
r = 1

n2

[
1 + 2n+ n2 − (n+ 1) cos(nθ) ], where we used n = 4.

Table 1. Obtained RMS errors with τ = 0.1 for different values of α.

α = 0.55 α = 0.75 α = 0.95
NP RMS RMS RMS

16 3.1542× 10−2 2.9837× 10−2 3.0572× 10−2

64 2.7641× 10−2 1.8614× 10−2 2.5862× 10−2

121 6.1732× 10−3 7.1135× 10−3 7.4812× 10−3

256 2.4534× 10−3 2.6271× 10−3 3.1492× 10−3

Figure 1. Approximate solution and its contour plot at T = 1.
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Abstract. A spectral Galerkin scheme based on the newly defined fractional-
order generalized Jacobi functions as basis functions are introduced to approx-

imate the solutions of a class of systems of fractional differential equations.
The numerical solvability as well as the complexity analysis of the proposed
method are also investigated.

Keywords: Fractional-order generalized Jacobi functions (FGJFs),
Linear systems of fractional differential equations, Galerkin method.
AMS Mathematical Subject Classification [2010]: 34A09,
65L05, 65L20.

1. Introduction

The main purpose of this paper is to develop a novel Galerkin method for the nu-
merical solution of the following linear systems of fractional differential equations
(FDEs) {

DθV (t) = CV (t) + F (t),

V (0) = 0, t ∈ [0, 1], θ = p
q ∈ (0, 1),

(1)

where the parameters p ≥ 1, q ≥ 2 are two relatively prime integers, C =
{cij}ni,j=1 is the coefficient matrix, F (t) = [f1(t), f2(t), . . . , fn(t)]

T and V (t) =

[v1(t), v2(t), . . . , vn(t)]
T are the vectors of right-hand continues functions and un-

knowns, respectively. Dθ is the Caputo type fractional derivative of order θ which
is defined by [1]

DθV (t) =
[ 1

Γ(1− θ)

t∫
0

(t− s)−θv′j(s)ds
]n
j=1

.

Our strategy produce a high accuracy and well-conditioned scheme to ap-
proximate the solutions of (1) through presenting an approach that leads to the
formation of algebraic triangular systems for the unknown vector V (t).

The rest of this paper is organized as follows. In the later section, FGJFs
are introduced. In Section 3, We design an efficient Galerkin scheme based on
the FGJFs as basis functions to approximate the solutions of (1). In Section 4,
efficiency of the proposed scheme is examined by an illustrative example.
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2. The Fractional-Order Generalized Jacobi Functions

In this section, we define new fractional-order generalized Jacobi functions (FGJFs)
which are characterized by applying a suitable coordinate transformation in the
generalized Jacobi polynomials/functions (GJP/Fs). This new family of orthogo-
nal systems not only has some approximation properties for functions with singu-
larity at boundaries, but also is a proper choice as basis function of the Galerkin
or Petrov Galerkin approximation for a class of initial or boundary value systems
of FDEs.

Now, let us define The GJP/Fs for each α, β ∈ R as [4]

Ĵα,βn (x) = (1−x)α̂(1+x)β̂J α̃,β̃ñ (x), x ∈ [−1, 1], ñ = n−σα,β ≥ 0, σα,β = [α̂]+[β̂],

where J α̃,β̃ñ is the well-known classical Jacobi polynomial, and [.] is the bracket

function. The parameters α̂, β̂ and α̃, β̃ are defined via α, β as follows

α̂ =

{
−α, α ≤ −1,
0, α > −1,

α̃ =

{
−α, α ≤ −1,
α, α > −1.

Similarly for β̂ and β̃ as well. These polynomials/functions are mutually
L2
wα,β ([−1, 1])-orthogonal, i.e.,∫ 1

−1

Ĵα,βm (x)Ĵα,βn (x)wα,β(x)dx = γα̃,β̃ñ δmn, m, n ≥ n̂,(2)

in which γα̃,β̃ñ = ∥Ĵα,βn ∥2wα,β =
2α̃+β̃+1Γ(ñ+ α̃+ 1)Γ(ñ+ β̃ + 1)

(2ñ+ α̃+ β̃ + 1)ñ!Γ(ñ+ α̃+ β̃ + 1)
, and δmn is

the well-known Kronecker function.
The FGJFs {Ĵα,β,λn }n≥σα,β

with λ ∈ (0, 1] and x ∈ [0, 1] are defined from the

GJP/Fs through the coordinate transform x = 2tλ − 1 as follows

Ĵα,β,λn (t) = Ĵα,βn (2 tλ − 1) = 2α̂+β̂(1− tσ)α̂tσβ̂J α̃,β̃ñ (2 tλ − 1),(3)

where α, β ∈ R, n ≥ σα,β .

Theorem 2.1. The FGJFs {Ĵα,β,λn }n≥σα,β
form a complete mutually orthog-

onal system in L2
wα,β,λ([0, 1]) with w

α,β,λ(t) = λ(1− tλ)αtλ(β+1)−1, α, β ∈ R.

Proof. Applying the coordinate transformation x = 2tλ − 1 and using the
relation (3), we can write∫ 1

0

Ĵα,β,λm (t)Ĵα,β,λn (t)wα,β,λ(t)dt =
1

2α+β+1

∫ 1

−1

Ĵα,βm (x)Ĵα,βn (x)wα,β(x)dx,

and the orthogonality relation (2) concludes the following desired result∫ 1

0

Ĵα,β,λm (t)Ĵα,β,λn (t)wα,β,λ(t)dt =
1

2α+β+1
γα̃,β̃ñ δmn.

Furthermore, suppose that the functions u(t) and U(x) are connected by the
relation u(t) = U(2tλ − 1). Clearly, for any u(t) ∈ L2

wα,β,λ [0, 1], we have U(x) ∈
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L2
wα,β [−1, 1]. Thus, the completeness of the GJP/Fs {Ĵα,βn }n≥σα,β

yields

u(t) = U(x) =
∞∑

n=σα,β

anĴ
α,β
n (x) =

∞∑
n=σα,β

anĴ
α,β,λ
n (t),

where

an =
(U, Ĵα,βn )wα,β

∥Ĵα,βn ∥2
wα,β

=
(u, Ĵα,β,λn )wα,β,λ

∥Ĵα,β,λn ∥2
wα,β,λ

,

which implies the completeness of the FGJFs {Ĵα,β,λn }n≥δα,β
in L2

wα,β,λ [0, 1]. □

3. Numerical Approach

From existence and uniqueness theorems, it can be concluded that the ⌈θ⌉-th deriv-
ative of vj(t) often suffer from discontinuity at the initial point with the asymptotic

behavior O(t⌈θ⌉−θ), even for smooth input functions [2, 3]. This drawback affects
accuracy when the GJP/Fs are applied as basis functions to obtain the Galerkin
approximation of (1). To modify this weakness, we apply a new Galerkin method
based on the FGJFs, which have a consistent behavior with the asymptotic be-
havior of the exact solutions of (1).

By substituting α = 0, β = −p and λ = 1
q into (3), the FGJFs {Ĵ0,−p,λ

r }r≥p
are obtained as follows

Ĵ0,−p,λ
r (t) = 2ptθJ0,p

r−p(2 t
λ − 1) = Span{tθ, tθ+λ, . . . , trλ}.

We can write J = JT , where J = [Ĵ0,−p,λ
p (t), Ĵ0,−p,λ

p+1 (t), . . . , Ĵ0,−p,λ
N (t), . . .]T is the

vector of FGJFs with degree (Ĵ0,−p,λ
r (t)) ≤ rλ, T = [tθ, tθ+λ, . . . , tNλ, . . .]T and J

is an infinite order invertible lower triangular coefficient matrix.
Now, we consider the approximate solutions as follows

VN (t) =
[
vj,N (t)

]n
j=1

, vj,N (t) = djJ = djJT ,(4)

where dj = [dj,p, dj,p+1, . . . , dj,N , 0, . . .]. Considering

FN (t) =
[
fj,N (t)

]n
j=1

, fj,N (t) = f
j
T̃ ,(5)

as an approximation of F (t), with f
j
= [fj,0, fj,1, . . . , fj,N , 0, . . .],

T̃ = [1, tλ, . . . , tNλ, . . .]T ,

and employing the relations (4) and (5) into the equivalence system of Volterra
integral equations of (1), we have

d
⊗

J = C
[
d
⊗

IθJ
]
+ f

⊗
IθT̃ ,(6)

where d = [d1, d2, . . . , dn]
T , f = [f

1
, f

2
, . . . , f

n
]T , and Iθ is the well-known

Riemann-Liouville fractional integral operator of order θ.
Computing IθJ and IθT̃ , the relation (6) can be written in the following

matrix formulation

d
⊗

J = C
[
d
⊗

(JMJ−1J)
]
+ f

⊗
(KJ−1J),(7)
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where

M =



p︷ ︸︸ ︷
0 . . . 0

Γ(θ+1)
Γ(2θ+1)

0 . . .

.

.. 0
Γ(θ+λ+1)
Γ(2θ+λ+1)

0 · · ·
.
..

.

.. 0
. . .

. . .

 ,K =


1

Γ(θ+1)
0 0 . . .

0
Γ(λ+1)

Γ(θ+λ+1)
0 · · ·

0 0
Γ(2λ+1)

Γ(θ+2λ+1)
· · ·

..

.
..
. 0

. . .

 .

Projecting (7) onto {Ĵ0,−p,λ
r }N−p

r=p , and some simple manipulations the unknown
coefficients satisfy the following relation

d
⊗

J = C
[
d
⊗

(JM)
]
+ f

⊗
K,

and equivalently

d =
(
C
⊗
M
)
d+ f,(8)

where d = d
⊗
J , and f = f

⊗
K. It is noticed that, in this stage we only consider

the principle sub-matrices and sub-vectors of order N̂ + 1, where N̂ = N − p.

3.1. Numerical Solvability and Complexity Analysis. In this subsec-
tion, we show that the algebraic system (8) has a unique solution and propose a
well-conditioned strategy to solve it. To this end, it can be easily checked that (8)
can be written in the following form

dN̂
j

=

n∑
i=1

dN̂
i
(cjiM)N̂ + f N̂

j
, 1 ≤ j ≤ n,

where f N̂
j

= f N̂
j
KN̂ = [f

j,0
, f
j,1
, . . . , f

j,N̂
], the corresponding index N̂ on the top

of the matrices and vectors represents the principle sub-matrices and sub-vectors of

order N̂ +1 respectively, and dN̂
i

= dN̂i J
N̂ = [di,p, di,p+1, . . . , di,N ] is the unknown

vector. Throughout, the structure of the matrixM, it can be concluded that

(dN̂
i
(cjiM)N̂ )N̂m=0 = [

p︷ ︸︸ ︷
0, . . . , 0, G0

ji(di,p), G
1
ji(di,p+1), . . . , G

N̂−p
ji (di,N̂ )],

where Gm−p
ji (di,m) = di,m cji

Γ(θ+(m−p)λ+1)
Γ(2θ+(m−p)λ+1) , m ≥ p, and thereby the unknown

components of the unknown vectors {dN̂
j
}nj=1 are calculated by the following re-

currence relations

dj,p = f
j,0
, . . . , dj,2p−1 = f

j,p−1
,

dj,2p =
n∑
i=1

G0
ji(di,p) + f

j,p
,

...

dj,N =
n∑
i=1

GN̂−p
ji (di,N̂ ) + f

j,N̂
.

Finally, obtaining dN̂i , 1 ≤ i ≤ n, from solving the lower triangular system dN̂
i

=

dN̂i J
N̂ , the fractional generalized Jacobi Galerkin solutions (4) can be calculated.
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4. Numerical Experiment

Example 4.1. Consider the following problem{
DθV (t) = CV (t) + F (t),

V (0) = 0, t ∈ [0, 1], θ ∈ (0, 1),

where V (t) = [ 32Eθ(−t
θ)− 1

2Eθ(−2t
θ), 32Eθ(−t

θ) + 1
2Eθ(−2t

θ)]T , C =

[
−3

2
1
2

1
2 − 3

2

]
and F (t) = [− 1

2 ,−
5
2 ]
T .

This problem is solved via the proposed scheme for various values of θ. the
numerical results are reported in Table 1 by considering 200-terms of the one
parameter Mittag-Leffler functions. The listed results in Table 1 approve the
reliability and high accuracy of the approximate solutions.

Table 1. Obtained errors for Example 4.1 with different values of θ and N .

θ = 1
2 θ = 2

3
N ∥ϵ1,N∥L2

w0,p,λ
∥ϵ2,N∥L2

w0,p,λ
CPU-time (sec) ∥ϵ1,N∥L2

w0,p,λ
∥ϵ2,N∥L2

w0,p,λ
CPU-time

10 5.76× 10−1 5.78× 10−1 0.34 2.50× 10−1 2.81× 10−1 0.41
20 1.18× 10−2 1.18× 10−2 0.36 1.75× 10−2 1.76× 10−2 0.44
40 1.07× 10−8 1.07× 10−8 0.42 1.68× 10−6 1.68× 10−6 0.59
80 2.52× 10−16 5.19× 10−16 0.69 5.56× 10−16 8.78× 10−16 0.84
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Abstract. High-order SEM using orthogonal basis is proposed for solving
nonlinear PDEs in complex geometries. The nonlinear terms in the weak
form of equation are expanded in terms of basis by a fast Fourier transform.
So, inner products of nonlinear terms can be computed using orthogonal

properties of basis with reduction of aliasing error. Some examples show
efficiency and accuracy of the proposed method.
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1. Introduction and Preliminaries

Modal SEM is used for solving nonlinear PDEs. The nonlinear terms in the
Galerkin projection are expanded in terms of orthogonal modal basis using FFT.
This idea can make the aliasing error so small in a lower expense than over-
integration. Let Pα,βn (x) denotes the nth Jacobi polynomial with real parameter

α, β > −1. The Lobatto polynomials are defined as Ln(ξ) = n+2
2 P

(1,1)
n (ξ). As

mentioned in [2, 5], these polynomials maintain a high degree of orthogonality
and generate sparse structure for mass and stiffness matrices. Lobatto polynomi-
als are orthogonal in I = [−1, 1] with respect to weight function w(ξ) = (1 − ξ2)
as follows ∫ 1

−1

Ln(ξ)Lm(ξ)w(ξ)dξ =
2(n+ 1)(n+ 2)

2n+ 3
δnm,(1)

where δnm is Kronecker’s delta.
To ensure C0-continuity condition of basis in the interfaces of neighbor ele-

ments, a decomposition of basis into interior and boundary modes are done [2].
So, the modal basis is defined on I as follows

ψn(ξ) =


1−ξ
2 , n = 0,

1−ξ2
4 Ln−1(ξ), n = 1, . . . , N − 1,

1+ξ
2 , n = N .

(2)

Let the computational domain Ω ⊆ R2 be partitioned by Ne non-conforming
and non-overlapping quadrilateral elements {Ωe}Ne

e=1 such that Ω = ∪Ne
e=1Ωe. If
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µ : Ω̂ → Ωe is transfinite mapping which mapped (x, y) ∈ Ωe on to a reference

element (ξ, η) ∈ Ω̂ = I2, then the local mass and stiffness matrices are defined as
follow

M (e) =

∫
Ω̂

ϕij(ξ, η)ϕkl(ξ, η)J
(e)(ξ, η) dξdη,(3)

S(e) =

∫
Ω̂

(D∇ξ,ηϕij) · (D∇ξ,ηϕkl)J (e)(ξ, η) dξdη,(4)

where ϕij(ξ, η) = ψi(ξ)ψj(η) is 2D basis on Ω̂ and J (e) is Jacobian of transforma-

tion. Also D =

(
∂ε
∂x

∂η
∂x

∂ε
∂y

∂η
∂y

)
. For computing the entries of M (e), S(e) defined by

(3)-(4), first the Jacobian term and other terms in S(e) are expanded in terms of Le-
gendre polynomials. This work is done by three steps; (i) collocate the desired term
at Gauss-Lobatto-Chebyshev (GLC) points; (ii) applying FFT between the phys-
ical and spectral chabyshev spaces; (iii) finding Legendre expansion coefficients
of the approximation term from Chebyshev ones. This algorithm can be done in
almost O(Ndlog2N) operations in d-dimension [6]. The third step is done by a
generalization of proposed algorithm in [6]. Let

∑
i,j αi,jTiTj =

∑
k,l βk,lPkPl,

where Ti and Pi are the ith Chebyshev and Legendre polynomials, respectively.
Multiply both sides of above equality by PnPm and integrate on Ω̂ give rises
D̃AD̃T = CBC, in which A = (αi,j), B = (βk,l), C is diagonal matrix with

Cii =
2

2i+1 and D̃ij = (Li, Tj)I is obtained by the following relation [6]

D̃i,j+1 =
2i+ 2

2i+ 1
D̃i+1,j +

2i

2i+ 1
D̃i−1,j − D̃i,j−1.(5)

So, B = C−1D̃AD̃TC−1 which D̃ is given in (5). Finally, we have M (e) =∑Nl

p,q=0 βp,q(Qp ⊗Qq) and

S(e) =

Nl∑
p,q=0

[
αp,q(Gp ⊗Qq) + γp,q(Qp ⊗Gq) + λp,q(Fp ⊗ FT

q + FT
p ⊗ Fq)

]
,(6)

in which, Qq[n, p] = (ψnψp, Pq)I , Gq[n, p] = (ψ′
nψ

′
p, Pq)I , and Fq[n, p] = (ψ′

nψp, Pq)I
can be computed exactly using (1)-(2) and orthogonal properties of Legendre poly-
nomials [1]. Also βp,q, αp,q, γp,q, λp,q in (6) are Legendre expansion coefficients

of J (e), D(:, 1).D(:, 1)J (e), D(:, 2).D(:, 2)J (e), D(:, 1).D(:, 2)J (e), respectively, ob-
tained by the aforementioned three steps algorithm.

2. Implementation and Reduction of Aliasing Error

Applying quadrature formulas with insufficient accuracy for evaluating nonlinear
terms introduces aliasing error which degrades the accuracy and causes numerical
instability [2, 3, 4]. In [3], super collocation or over-integration is considered for
quadratic and cubic nonlinear terms on non-uniform grid for eliminating aliasing
error which give rises to high computational cost and lose diagonal structure of
mass matrix of nodal basis. Let {υi(ξ)}Pi=0 be an orthonormal basis of polynomial

space PP . Define u(ξ) =
∑P
i=0 ûiυi(ξ). The interesting goal is finding the expres-

sion w(ξ) =
∑P
k=0 ŵkυk(ξ), such that

∥∥∥w(ξ)− [u(ξ)]2
∥∥∥
L2

is minimized. Obviously,
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ŵk is exactly computed as follows

ŵk =

P∑
i,j=0

ûiûj

∫ 1

−1

υi(ξ)υj(ξ)υk(ξ)dξ, k = 0, 1, . . . , P.(7)

The Gauss-Lobatto-Legendre (GLL) quadrature formula with Q nodes is exact for
all integrand in P2Q−3. So, the numerical approximation of ŵk in (7) (denoted
by w̃k) with Q = P + 2 nodes (which is exact in P2P+1) and the error of this
approximation can be given by

w̃k =
P∑

i,j=0

ûiûj [υi(ξ)υj(ξ), υk(ξ)]Q,(8)

w̃k = ŵk −
[ P∑

i,j=0
i+j>2P−k

ûiûj(⟨υiυj , υk⟩ − [υiυj , υk]Q)
]
.

For i + j + k ≤ 2P , there is not aliasing error because w̃k = ŵk. But, in this
example, i+ j + k ≤ 3P and so aliasing error are not zero except for k = 0. Also,
aliasing terms increase when k increases. In this paper, the nonlinear terms are
computed by FFT which makes the aliasing error so small because FFT imple-
ments one of the most linearly stable interpolation scheme (Fourier interpolation
on equidistant points) which has near-optimal approximation properties and is
good at minimizing aliasing error in a lower expense than over-integration. Now,
let P = 35 and ∀i, ûi = 1. In Figure 1, the exact modes ŵk are compared to w̃k
which are obtained from (8) with Q = 37 GLL quadrature nodes. Also, in this
figure, the approximation of ŵk denoted by w∗

k obtained with N = 35, 70 Fourier
collocation points are compared to the exact ones. It is evident that, in the case
of FFT, [u(ξ)]2 is approximated in O(N log2N) operations with smaller aliasing
error than over-integration with O(N2) operations.

Figure 1. Error of approximation of ŵk by A: w̃k, Q = 37, B:
w∗
k, N = 35, C: w∗

k, N = 70.

Now, the nonlinear equations in the following general form are considered

∂u

∂t
= N (u) + L(u) + f(x, t), x ∈ Ω ⊆ R2,(9)

in which L(u), N (u) are linear and nonlinear terms including u and its second
derivatives and integrals, respectively. Also, f(x, t) is a smooth source function.
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The boundary condition is kind of Dirichlet as u = ub on ∂Ω. If X = {u ∈
H1(Ω)|u = ub on ∂Ω} and V0 = {v ∈ H1(Ω)|v = 0 on ∂Ω}, then the discrete
variational form of (9) is finding û(t) ∈ Xδ such that

∂

∂t
⟨û, v̂⟩ = A(û, v̂) + B(û, v̂) + F(v̂), ∀v̂ ∈ V δ0 ,(10)

where A(û, v̂) = (N (û), v̂)Ω, B(û, v̂) = (L(û), v̂)Ω are nonlinear and bilinear forms
and F(v̂) = (f, v̂)Ω is a bounded linear functional. Also, Xδ ⊆ X, V δ0 ⊆ V0 are fi-
nite dimensional subspaces ofX , V0 defined byXδ = {u ∈ X; u|Ωe ∈ PN (Ωe), e =
1, . . . , Ne}, V δ0 = {v ∈ V0; v|Ωe ∈ PN (Ωe), e = 1, . . . , Ne}. Applying a semi-
implicit time differencing scheme can linearize the discrete weak form (10). Then
for computing nonlinear terms, the presented three steps algorithm in previous
section can be used. For third step, a connection between coefficients of Lobatto
and Chebyshev expansion of nonlinear terms on each element should be estab-
lished. This connection is expressed by linear system of equations Z(e)α =M (e)β,
in which α is vector of Chebyshev expansion coefficients and β is Lobatto expan-
sion ones. Also the entries of Z(e) = (TiTj , ϕmnJ

(e))Ω̂ can be computed similar
to the mass and stiffness matrices [1]. In the following, the proposed method is
briefly reported step by step.

i) Transfer GLC points in Ω̂ to local elements by transfinite mapping.
ii) Compute the nonlinear terms within each element at the GLC points.
iii) Use FFT for the nodal values to get Chebyshev expansion.
iv) Finding the modal basis expansion coefficients on each element from the

Chebyshev ones using solving linear system Z(e)α =M (e)β.
v) Assembling all coefficients vectors obtained on each element and forming

the global vector.

3. Numerical Results

Let Ω1 = {(r, θ)| r = R + 0.1cos(8θ), 0 ≤ θ ≤ 2π} and Ω2 = [−0.2, 0.2]2. The
nonlinear wave equation is considered on Ω = Ω1 − Ω2 as follow

∂2u

∂t2
+ ρ

∂u

∂t
+ β2u = a

∂2u

∂x2
+ b

∂2u

∂y2
+ f(u, x, y, t), (x, y) ∈ Ω, 0 < t ≤ T,(11)

with u(x, y, 0) = g0(x, y), ut(x, y, 0) = g1(x, y) as initial conditions and u(x, y, t) =
h(x, y, t) as boundary condition. Also g0, g1, h, and f are sufficiently smooth
functions. If ρ = 0, β =

√
α, a = b = α2 and f(u, x, y, t) = γu3 then Eq. (11) has

an exact solution u(x, y, t) =
√
α/γtanh(κ(x+y−ct)), where κ =

√
α/(2c2 − 4α2)

and c is a constant such that c2 > 2α2 and α, γ > 0. Also in this case Eq. (11)
posses the conservation of energy

E = E(t) =
1

2

∫
R2

[
(ut)

2 + α2((ux)
2 + (uy)

2) + αu2 − γ

2
u4
]
dxdy, ∀t > 0.(12)

In Figure 2, numerical solution at t = 1 is plotted. It must be noted that BDF2-
AB2 scheme is used for time differencing. L∞ and L2 errors are reported in Table
1. If Ẽ(t) denotes the estimate of conserved quantity in (12), then presenting the

values of |Ẽ(t)− Ẽ(0)| in Table 2 shows the significance and usefulness of method.
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Figure 2. (left) dividing domain into Ne = 16 elements; (right)
numerical solution at t = 1 with N = 14, ∆t = 10−4.

Table 1: Errors in the L∞ and L2 norms at t = 1 with Ne = 16.

δt N L∞ L2

0.001 6 1.4105858× 10−4 8.1562498× 10−4

10 2.9807601× 10−7 2.3458179× 10−6

14 3.3180932× 10−7 1.7931607× 10−6

0.0001 6 1.6370650× 10−4 8.1013011× 10−4

10 2.1444105× 10−7 1.7333975× 10−6

14 8.9327212× 10−10 1.2211564× 10−9

Table 2: Conserved quantity of wave equation with ∆t = 10−3, N = 14, Ne = 16.

t 5 10 15 20 25

|Ẽ(t)− Ẽ(0)| 1.5× 10−3 2.5× 10−3 7.4× 10−3 7.4× 10−3 7.4× 10−3
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Abstract. LSQR is an attractive iterative method for solving the linear sys-

tem Ax = b, and least-squares problem min ∥Ax− b∥2, where A is a large and
sparse matrix. Similar to other iterative methods, applying this method to
ill-conditioned systems can be slow or even stagnant. To accelerate the con-
vergence rate, we propose a polynomial type preconditioner. Some numerical

examples illustrate the potency and efficiency of this preconditioned method.
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1. Introduction

Consider the following linear system of equations:

Ax = b,(1)

where A is a large and sparse matrix in Rm×n, and m ≥ n. b is a vector in Rm
and x is unknown vector in Rn. Also, it is assumed that A has full column rank.
Many iterative methods have been presented for solving. Some Krylov subspace
methods are based on the Arnoldi method that reduce a general square matrix to
Hessenberg form.

CG-like methods with their sensible property require only a few vectors for
storage and they theoretically converge at most n iterations, when A is well con-
ditioned and many single values of A are close together and far from zero. In this
condition, these methods are more beneficial. These properties occur naturally in
many applications. One of the iterative methods is LSQR which has been pro-
posed by Paige and Saunders [3]. This method does not need to store A, but in
each iteration one matrix-vector product with A and one matrix-vector product
with AT are done. A sequence of approximate solutions xk are generated such
that the residual norm, ∥rk∥2 = ∥b − Axk∥2, is reduced monotonically. For ill-
conditioned problems, this method is likely to converge slowly or even stagnate.
In this situation a preconditioner can improve the method. A preconditioner is a
matrix or a matrix operator that, when applied to (1), can improve the condition
number of A. At the same time, the solution of the new system is the same as the
solution of (1).

In this paper, we propose a preconditioner called p(A) for (1) as follows:

p(A)Ax = p(A)b,(2)
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where p(A) is a polynomial in terms of A. The new system (2) can be solved
with LSQR. This preconditioner is based on the intrinsic properties of LSQR.
Then instead of (1), the linear system (2) is solved by LSQR. Numerical examples
illustrate the efficiency of the preconditioned method such that it reduces the
number of iterations for convergence in comparison with LSQR.

This study is organized as follows. In Section 2, a brief explanation of LSQR is
recalled. The construction of the preconditioned LSQR method and some analysis
discussions is presented in Section 3. Some numerical examples are implemented
in Section 4. Finally, some conclusions are the subject of Section 5.

2. An Overview of LSQR

LSQR [3] is an iterative method for solving (1). This section remindes some
essential properties of LSQR. In this method, Golub-Kahan procedure [1] is used to
transform A to the lower bidiagonal form. The bidiagonalization process, Bidiag1,
can be described as follows.
Bidiag1 (Starting vector b; reduction to lower bidiagonal form)

β1u1 = b, α1v1 = ATu1,

βi+1ui+1 = Avi − αiui,(3)

αi+1vi+1 = ATui+1 − βi+1vi, i = 1, 2, . . . , k.

The scalars αi ≥ 0 and βi ≥ 0 are chosen so that ∥ui∥2 = ∥vi∥2 = 1. With the
definitions:

Uk ≡ [u1, u2, . . . , uk],
Vk ≡ [v1, v2, . . . , vk],

Bk ≡


α1

β2 α2

. . .
. . .

βk αk
βk+1

 ,

(3) can be rewritten as:

Uk+1(β1e1) = b,(4)

AVk = Uk+1Bk,(5)

ATUk+1 = VkB
T
k + αk+1vk+1e

T
k+1.(6)

Proposition 2.1. [4] Assume that k steps of Bidiag1 have been given. Then
the vectors v1, v2, . . . , vk and u1, u2, . . . , uk, uk+1 are orthonormal basis of the Krylov
subspaces:

Kk(ATA, v1) = span{v1, ATAv1, . . . , (ATA)k−1v1},

Kk+1(AA
T , u1) = span{u1, AATu1, . . . , (AAT )ku1},

respectively.

Proposition 2.2. [4] Bidiag1 stops in step m if and only if m = min {µ, λ},
where µ is the grade of v1 associated with ATA and λ is the grade of u1 associated
with AAT .
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In LSQR, the approximate solution in step k is to form xk = Vkyk, where
yk ∈ Rk obtains to solve the subproblem min ∥b − Ax∥2. By using (4), (5), and
(6), we have:

rk = b−Axk = Uk+1(β1e1)−AVkyk
= Uk+1(β1e1 −Bkyk).(7)

From (7) and Proposition 2.2 the least-squares problem min ∥b − Axk∥2 will
be equivalent to

min ∥β1e1 −Bkyk∥2.(8)

Because Uk+1 is a unitary matrix. (8) can be solved by using the standard QR
factorization. For more details, see [3].

3. Construction of the Polynomial Preconditioner

The main idea of the polynomial preconditioned method is to construct a poly-
nomial p(t) satisfying p(A) ≈ A+, for some matrices A, and then solve the linear
system of Eq. (2) instead of Eq. (1).

Suppose the following Krylov matrix:

Kk = [v1, A
TAv1, . . . , (A

TA)k−1v1].

Since the columns of Vk span the samespace as the columns of Kk(A
TA, v1), the

following relationship holds:

Vk = KkRk,(9)

where Rk is an upper triangular matrix. It is obtained from (5)

Avk = Uk+1(Bk).,k.(10)

By multiplying both sides of (10) in AT , we have

ATAvk = ATUk+1(Bk).,k.(11)

Now, exchanging (6) in (11) gives:

ATAvk = (VkB
T
k + αk+1vk+1e

T
k+1)(Bk).,k

= VkB
T
k (Bk).,k + αk+1vk+1e

T
k+1(Bk).,k

= VkB
T
k (Bk).,k + αk+1βk+1vk+1,

and

αk+1βk+1vk+1 = ATAvk − VkBTk (Bk).,k.(12)

From (9) we have

vk = Kk(Rk).,k.(13)

Combining (12) with (13), we have

αk+1βk+1Kk+1(Rk+1).,k+1 = ATAKk(Rk).,k − VkBTk (Bk).,k

= Kk+1

[(
0

(Rk).,k

)
−
(
RkB

T
k (Bk).,k
0

)]
.
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So a simple recursive formula for the (k+ 1)th column of Rk+1 is obtained as
followed

(Rk+1).,k+1 =
1

αk+1βk+1

[(
0

(Rk).,k

)
−
(
RkB

T
k (Bk).,k
0

)]
.

Hence, from (8), we have

xk = Vkyk = KkRkyk

=
k−1∑
i=0

λi(A
TA)iv1,(14)

where Rkyk = [λ0, λ1, · · · , λk−1]
T and yk solves (8). Consider qk−1(t) =

∑k−1
i=0 λit

i

as a polynomial of degree k − 1. Therefore, (14) can be written as

xk = qk−1(A
TA)v1.(15)

On the other hand, according to Bidiag1, v1 =
1

α1β1
AT b. So, (15) can be

written as

xk =
1

α1β1
qk−1(A

TA)AT b.(16)

From the comparison (16) with (1), we conclude that
1

α1β1
qk−1(A

TA)AT ≈ A+,

and can be used as a preconditioner for LSQR.

4. Numerical Examples

In this section some numerical experiments of using the polynomial preconditioned
LSQR (PPLSQR) and the LSQR methods are provided to solve (1). In all ex-
amples, the starting guess for both methods is taken zero vector, the stopping
criterion ∥rk∥2 ≤ 10−10, and maximum number of iterations is considered 10000
iterations.

Example 4.1. In this example some matrices that are shown in Table 1 are
taken from the Matrix Market [2]. The first column of Table 1 shows the names
of matrices. The dimension of matrices (order) has been reported in the second
column. The number of nonzero elements of each matrices is shown in the third
column and the condition number of matrices that can be obtained by cond(A) =
∥A∥2∥A+∥2 is given in the last column of Table 1. The right-hand side vector of (1)
is considered such that the exact solution is a vector with entries 1. Table 2 shows
the performance of PPLSQR and LSQR. For each matrix, the optimum degree
(deg) shows the optimal degree of PPLSQR implementation for different degrees
from {1, 2, . . . , 25}, such that the performance with the optimal degree will result
in the lowest iteration number. The number of iterations for the preconditioned
method (PLSQR-It) and for LSQR (LSQR-It) have been reported in this table.
As it can be seen, the preconditioned method has a better performance than
the standard method. Because compared to LSQR the number of iterations for
convergence has reduced, strictly.
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Table 1. Properties of test matrices in Example 4.1.

matrix column row nnz cond
HB/well1850 1850 712 8755 1.11e+ 02

LUONG/photogrammetry2 4472 936 37056 1.33e+ 08
JGD-Taha/abtaha2 37932 331 137228 1.22e+ 01
JGD-Taha/abtaha1 14596 209 51307 1.22e+ 01

Table 2. Numerical results obtained for Example 4.1.

matrix deg PLSQR-It PLSQR-time LSQR-It LSQR-time
HB/well1850 4 2 0.21 365 1.32

LUONG/photogrammetry2 3 86 048 590 2.74
JGD-Taha/abtaha2 5 109 0.4 393 1.63
JGD-Taha/abtaha1 4 123 0.11 401 0.93

5. Conclusion

To accelerate the convergence of the LSQR method, we take advantage of the
LSQR method to construct a polynomial preconditioner. Numerical experiments
show that the preconditioned LSQR algorithm is more efficient than the standard
method without the polynomial preconditioner.
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unknown functions of the mention inverse problem.

Keywords: BBM-type equation, Inverse problem, Quartic B-spline,
Haar wavelet method.
AMS Mathematical Subject Classification [2010]: 35Q55,
65D07, 68W25, 35R30.

1. Introduction

In this paper we consider the damped generalized regularized long-wave (DGRLW)
equation

ut − (φ(x, t)uxt)x − αuxx + upux = f(x, t), t > 0,(1)

where x is the spatial variable, p ≥ 1, φ(x, t) is the variable dispersion coefficient
and f is the external force. In the case φ ≡ 1, some numerical solutions are
obtained based on finite difference scheme [1, 6] and finite element method [2,
3, 5, 9]. When the dispersion coefficient φ is ignored, Eq. (1) is known as the
generalized Burgers equation

In this paper, we consider Eq. (1) on (x, t) ∈ [0, 1]×[0, T ] with initial condition

u(x, 0) = p(x),(2)

and boundary conditions, and

u(0, t) = g1(t), u(1, t) = g2(t),(3)

where f and p are two continuous known functions and T is the final existence
time. Here we study numerically an inverse problem related to (1), indeed g1(t),
g2(t), and u(x, t) are unknown and should be determined. There are different
methods to obtain numerical solutions of DGRLW equations. Here, we present
two new methods to the solution of (1). More precisely, we apply the Collocation
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method based on a quartic B-spline basis functions and the Haar wavelet method.
We will need the following assumptions: there exist two positive constants m and
M such that

0 < m ≤ φ(x, t) ≤M, φt(x, t) ≤ 0, (x, t) ∈ [0, 1]× [0, T ],

It is known that the use of B-splines have many different features and are
effective in numerical works. One of the most important feature is that the condi-
tions on the continuity of functions are built-in and have the smooth interpolation
functions. On the other hand, as the support of each B-spline is embedded only on
a few sub-intervals, the resulting matrix related to the discretized equation will be
tightly banded. Moreover, if one combine with collocation, the solution procedure
will be clear and shorten.

In the second part of the paper, we will use the Wavelet methods based on
the Haar wavelets. Indeed, as they are made up of pairs of piecewise constant
functions, they are the simplest functions in the family of the wavelet functions. On
the other hand, one of the most worthy property of Haar wavelets is that one can
integrate analytically these wavelets in arbitrary times, however their discontinuity
is a big barrier in the general wavelet functions. One can read [4], where Çelik
used the Haar wavelet method for solving magnetohydrodynamic flow equations
in a rectangular duct in presence of transverse external oblique magnetic field,
and also Saha in [7] applied the Haar wavelet method for the numerical solution
of fractional Bagley Torvik equation. We refer the reader to study [4, 7] and
references therein where the Haar wavelet techniques were used for the solutions
of several differential equations. We employ this approach to see the efficiency of
the Haar wavelet method for our inverse problem (1) and (2)-(3).

2. Main Results

We first use the Quartic B-spline collection method to study our inverse problem.
Problem (1) and (2)-(3) will be solved with the over-specified conditions

u(a, t) = h1(t), ux(a, t) = h2(t), uxx(a, t) = h3(t),(4)

where t ∈ [0, T ] and 0 < a < 1 is denoted as a fixed point. We consider the quartic
B-spline Bi(x) for i = −2(1)N + 1 as in [8]. Let Um(x, t) ∈ ζ be the B-spline ap-

proximation to the exact solution u(x, t) in the form Um(x, t) =
∑m+1
i=−2 ci(t)Bi(x),

where ci(t) are time dependent parameters determined by the boundary and col-
location conditions. Substituting trial functions Bj into the above equation, the

nodal values of U , U ′, U ′′ and U
′′′

are obtained in terms of the element parameters
cm by

Um = cm+1 + 11cm + 11cm−1 + cm−2,

U ′
m =

4

h
(cm+1 + 3cm − 3cm−1 − cm−2),

U ′′
m =

12

h2
(cm+1 − cm − cm−1 + cm−2),

U ′′′
m =

24

h3
(cm+1 − 3cm + 3cm−1 − cm−2),

(5)
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we use the following finite difference approximation to discretize the time variable

with the uniform step size k to see unt
∼=

δt
k(1− γδt)

un, n ≥ 0 and γ ̸= 1, where

δtu
n = un+1 − un, un = u(x, tn) and u

0 = u(x, 0) = p(x). So

δt
k(1− γδt)

(un − φx(x, tn)unx − φ(x, tn)unxx) = αunxx − upux
n + f(x, tn).

The nonlinear term is linearized by using the quasi-linearization formula as
given below:

f(un+1, un+1
x ) = f(un, unx) + (un+1 − un)∂f

n

∂u
+ (un+1

x − unx)
∂fn

∂ux
.

for p = 1 and p = 2 and by rearranging terms we obtain that

A∗cn+1
i−2 +B∗cn+1

i−1 + C∗cn+1
i +D∗cn+1

i+1 = H(xi, tn) +H(xi, tn+1),

consist of (N + 1)-linear equation with (N + 4) unknowns,

(c−2, c−1, c0, . . . , cN , cN+1)
T .

To have a unique solution of the above system we are required the over-specified
condition (4). Suppose that a = xs, 1 ≤ s ≤ N − 1, thusly we have

u(xs, t) = h1(t), ux(xs, t) = h2(t), uxx(xs, t) = h3(t),

where t ∈ [0, T ]. If we consider m = s in (5), then we have h1(tn+1) = cn+1
s+1 +

11cn+1
s+2 + 11cn+1

s+3 + cn+1
s+4 , h2(tn+1) =

4
h (c

n+1
s+4 + 3cn+1

s+3 − 3cn+1
s+2 − c

n+1
s+1 ), h3(tn+1) =

12
h2 (c

n+1
s+4 − c

n+1
s+3 − c

n+1
s+2 + cn+1

s+1 ). Consequently, AC = B is a system of (N + 4)
linear equations with (N + 4)-unknown functions. We notice that the matrix A
is ill-condition, so we obtain solution of system AC = B by using the Tikhonov
regularization method. We check the convergence of our algorithm. Suppose that

U(x) =
∑N+1
i=−2 ciBi(x) is the B-spline collocation approximation of u(x). The

following lemma and thearem will be important in our analysis that proofs of
them have been done,

Lemma 2.1. If {B−2, B−1, B0, . . . , BN+1} be quartic B-spline, then∣∣∣∣∣
N+1∑
i=−2

Bi(x)

∣∣∣∣∣ ≤ 35,

for x ∈ [0, 1].

Theorem 2.2. Let u ∈ C5[0, 1] be an exact solution of (1) such that
∣∣∣∂5u(x,t)

∂x5

∣∣∣ ≤
L for all x, t. If U(x, t) is the numerical approximation by our method of u, then
∥u(x)− U(x)∥ ≤ O(k2 + h3).

We will investigate the stability by applying Von-Neuman stability analy-
sis. Also we will obtain a numerical solution for the nonlinear inverse problem
(1) which is based on the Haar wavelet method with the over-specified condi-
tions u(a, t) = h1(t) and ux(a, t) = h2(t), where a ∈ (0, 1) is a fixed
point and t ∈ [0, tf ]. It is known that any integrable function u ∈ L2[0, 1]
can be written in terms of by the Haar coefficients with an infinite number of

terms u(x) =
∑∞
i=1 cihi(x), ci = 2j

∫ 1

0
hi(x)u(x) dx, where i = 2j + k + 1 with
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j ≥ 0 and 0 ≤ k ≤ 2j . Note that c1 =
∫ 1

0
u(x) dx. so u(x) = c1h1(x) +∑

j≥0

∑2j−1
k=0 c2j+k+1h2j+k+1(x). The function u(x) is terminated at finite step,

denoting uj(x), because u(x) is piecewise constant function or can be approxi-
mated by some continuous function which are piecewisely constant in each sub-

interval uj(x) ∼= c1h1(x) +
∑J
j=0

∑2j−1
k=0 c2j+k+1h2j+k+1(x) = CTMHM (x). Now

CTM and the Haar function HM (x) are defined as CTM = (c1, c2, . . . , cM ),HM (x) =
(h1(x), h2(x), . . . , hM (x))T . Suppose that the interval [0, T ] is spitted into N sub-
intervals of length ∆t = T

N and denote ts = (s− 1)∆t, s = 1(1)N + 1. We assume

that u̇
′′
can be expanded in terms of Haar wavelets as,

u̇
′′ ∼= cs1h1(x) +

J∑
j=0

2j−1∑
k=0

cs2j+k+1h2j+k+1(x) = CTMHM (x).(6)

The notations · and ′′ denotes the differentiation with respect to t and x,
respectively. By integrating Eq. (6) in t from ts to t, and then in x from a to x,
and using the over-specified conditions, we obtain that

u
′′
(x, t) = (t− ts)CTMHM (x) + u

′′
(x, ts),

u
′
(x, t) = (t− ts)CTM [PMHM (x)− PMHM (a)] + u

′
(x, ts) + h2(t)− h2(ts),

u̇
′
(x, t) = CTM [PMHM (x)− PMHM (a)] + h

′

2(t),

and

u(x, t) =(t− ts)C
T
M [QMHM (x)−QMHM (a)− (x− a)PMHM (a)] + u(x, ts)

+ [h1(t)− h1(ts)] + (x− a)[h2(t)− h2(ts)].
(7)

Now, it follows by differentiating (7) in t that

u̇(x, t) =CTM [QMHM (x)−QMHM (a)− (x− a)PMHM (a)] + h
′

1(t) + (x− a)h
′

2(t),

for p = 1 and p = 2, we obtained a system ofM linear equations withM unknowns
and can be rewritten in a form of matrix vector, as follows AX = B. We can
calculate the approximate solution successively for l = 1(1)M and s = 1(1)N as
follows:

u(0, ts+1) = g1(ts+1) = TCT
M [aPMHM (a)−QMHM (a)] + u(0, ts) + [h1(ts+1)− h1(ts)]

− a[h2(ts+1)− h2(ts)],

u(1, ts+1) = g2(ts+1) = TCT
M [QMHM (1)−QMHM (a)− (1− a)PMHM (a)] + u(1, ts)

+ [h1(ts+1)− h1(ts)] + (1− a)[h2(ts+1)− h2(ts)],

u(xl, ts+1) = TCT
M [QMHM (xl)−QMHM (a)− (xl − a)PMHM (a)] + u(xl, ts)

+ [h1(ts+1)− h1(ts)] + (xl − a)[h2(ts+1)− h2(ts)].

Example 2.3. In this example, we solve the inverse nonlinear problem (1)
and (2)-(3) in (x, t) ∈ [0, 1] × [0, 1] with φ(x, t) = (x2 + 1)e−t/10, the initial data
u(x, 0) = sin(x), and the force function f(x, t) = − sin(x)e−t − (2x cos(x) + (x2 +

1))e
−11t
10 )+ 1

2 sin(2x)e
−2t. The exact solution of (1) is u(x, t) = sin(x)e−t, u(0, t) =

g1(t) = 0, u(1, t) = g2(t) = sin(1)e−t. Tables 1 and 2 show the numerical results of
u(0, t) and u(1, t), respectively. Table 3 shows the numerical values of u(x, t) at
point x = 0.1.
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Table 1. A comparison between the numerical and exact values
of g1(t) in Example 2.3 by applying the quartic B-spline collo-
cation method with N = 100 and Haar wavelet method with
M = 32.

Quartic B-spline Haar wavelet
t g1(t) g∗1(t) |g1(t)− g∗1(t)| g1(t) g∗1(t) |g1(t)− g∗1(t)|
0.1 0.000000 −0.000087 8.680878e− 05 0.000000 0.000006 6.003483e− 06
0.5 0.000000 0.000003 2.585573e− 06 0.000000 0.000031 3.131937e− 05
1 0.000000 0.000049 4.857072e− 05 0.000000 0.000045 4.450173e− 05
Sg1 - - 1.5505e− 06 - - 1.0034e− 05

Table 2. A comparison between the numerical and exact values
of g2(t) in Example 2.3 by applying the quartic B-spline collo-
cation method with N = 100 and Haar wavelet method with
M = 32.

Quartic B-spline Haar wavelet
t g2(t) g∗2(t) |g2(t)− g∗2(t)| g2(t) g∗2(t) |g2(t)− g∗2(t)|
0.1 0.761394 0.762338 9.439216e− 04 0.761394 0.770657 9.262471e− 03
0.5 0.510378 0.512352 1.974290e− 03 0.510378 0.520399 1.002151e− 02
1 0.309560 0.311945 2.384915e− 03 0.309560 0.320023 1.046333e− 02
Sg2 - - 5.9608e− 05 - - 1.0034e− 05

Table 3. The comparison between the exact and numerical val-
ues of function u(0.1, t) in Example 2.3 extracted from the quar-
tic B-spline collection method with N = 100 and Haar wavelet
method with M = 32.

Quartic B-spline Haar wavelet
t u(0.1, t) u∗(0.1, t) |u(0.1, t)− u∗(0.1, t)| u(0.1, t) u∗(0.1, t) |u(0.1, t)− u∗(0.1, t)|
0.1 0.090333 0.090307 2.555846e− 05 0.090333 0.090335 2.129506e− 06
0.5 0.060552 0.060553 1.415859e− 06 0.060552 0.060562 1.028834e− 05
1 0.036727 0.036742 1.530312e− 05 0.036727 0.036741 1.466508e− 05
S - - 4.7494e− 07 - - 3.3021e− 06

So we have employed successfully the quartic B-spline method and the Haar
wavelet to estimate unknown boundary conditions in an inverse problem related
to the damped generalized regularized long-wave (DGRLW) Eq. (1) with (2)-(3).
We have discussed the convergence rate of the our methods and shown the rate
of the quartic B-spline method is O(k2 + h3), while O( 1

M ) is the convergence rate
for the Haar wavelet method.

References

1. T. Achouri, N. Khiari and K. Omrani, On the convergence of difference schemes for the
Benjamin-Bona-Mahony (BBM) equation, Appl. Math. Comput. 182 (2006) 999–1005.

283



F. Ghanadian, R. Pourgholi and S. H. Tabasi

2. D. N. Arnold, J. Douglas Jr. and V. Thomée, Superconvergence of finite element approxima-

tion to the solution of a Sobolev equation in a single space variable, Math. Comp. 36 (1981)
53–63.

3. R. E. Ewing, Time-stepping Galerkin methods for nonlinear Sobolev partial differential equa-
tion, IAM J. Numer. Anal. 15 (1978) 1125–1150.
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Abstract. This manuscript proposed an efficient meshless method for nu-

merical solution of fractional differential equations. The main advantage of
this scheme is to obtain a global approximation for this problem which re-
duces such problems to a system of algebraic equations. To approximate the
first and derivative fractional order against the time, we use the finite dif-

ference relations. To discretization this model in space variables, we use the
MK interpolation. An example is provided and the results are compared to
their analytical solutions to verify the efficiency of our method.
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1. Introduction

Fraction differential equations (FDEs) are one of the most important branches of
mathematics that have been considered by many researchers in recent years. They
have many applications in engineering, and sciences such as physics, chemistry, and
fluid mechanics. The numerical solution of these equations is of great importance.
Here we present a meshless method for numerically solving these equations. In
this concept, we suppose the following time fractional model of FDEs

∂αΨ(x, t)

∂tα
+ γ1

∂βΨ(x, t)

∂tβ
+ γ2Ψ(x, t) = γ3∇Ψ(x, t) + f(x, t),(1)

1 < α ≤ 2, β = α− 1,

subject to the initial and boundary conditions

Ψ(x, 0) = Ψ0(x), x ∈ Ω ⊂ Rd,
∂Ψ(x, 0)

∂t
= g(x),(2)

Ψ(x, t) = h(x, t), x ∈ ∂Ω, t ∈ [0, T ],

where ∂α

∂tα and ∂β

∂tβ
are the Caputo sense of fractional differential operator with

respect to t as follows

∂αΨ(x, t)

∂tα
=


1

Γ(2−α)
∫ t
0

1
(t−η)α−1

∂2Ψ(x,η)
∂η2 dη, 1 < α < 2,

∂2Ψ(x,t)
∂t2 , α = 2,
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∂βΨ(x, t)

∂tβ
=


1

Γ(1−β)
∫ t
0

1
(t−η)β

∂Ψ(x,η)
∂η dη, 0 < β < 1,

∂Ψ(x,t)
∂t , β = 1.

In Eq. (1) ∆ is Laplacian differential operator. Also, γ1, γ2 and γ3 are positive con-
stants. Moreover, Ψ0, g, f and h are given continuous functions. As regards the
solution of FDEs is of essential importance to explain several phenomena in engi-
neering and physics, thus solving this equation is very necessary. In this paper, we
will apply an collocation meshless scheme based on Moving Kriging interpolation
method to obtain the numerical solution of (1). This paper is constructed from
the following sections: In Section 2, we give brief review of the MK interpolation.
In Section 3 , we explain the time discretization and numerical performance of the
meshless technique for the FDEs. Finally, a brief conclusion is given in Section 4.

2. The Moving Kriging Interpolation

The moving Kriging (MK) interpolation is a well-known geostatic technique for
spatial interpolation in geology and mining [1, 3]. In the following, we will explain
the building of meshless shape function using MK interpolation.

Assume that the problem domain Ω ⊆ R2 is discretized by a set of properly
scattered nodes xi, i = 1, 2, . . . , n and u(x) is a function defined in Ω. Similar
to the MLS approximation, assumed that only N nodes surrounding point x have
the effect on Ψ(x). The MK interpolation Ψh(x) is defined as [4, 5, 6]

Ψh(x) =
N∑
j=1

ϕi(x)Ψ̂i = Φ(x)Ψ, x ∈ Ωx,

where

Φ(x) = pT (x)A+ rT (x)B.

Matrices A and B are known by the following relations

A = (PTR−1P )−1PTR−1, B = R−1(I − PA),

in which I is an unit matrix of sizes N ×N , and vector p(x) is

pT (x) = [p1(x) · · · pm(x)],

where pj(x), j = 1, 2, . . . ,m is the m polynomial basis functions, which have
monomial terms. For example, for a two-dimensional problem, the linear basis
is pT (x) = [1, x, y] and the quadratic basis is pT (x) = [1, x, y, x2, y2, xy]. Note
that we have used a quadratic basis in our computations in the next sections.
Values of the polynomial basis functions (3) at the given set of nodes are collected
in the matrix P as

P =

 p1(x1) · · · pm(x1)
· · · · · · · · ·

p1(xN ) · · · pm(xN )

 .
Also, the vector r(x) in (3) is given by

rT (x) =
[
γ(x,x1) . . . γ(x,xN )

]
,
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where γ(x,xj) is the correlation function between any pair of nodes located at
x and xj . Many functions can be used as a correlation function. In the current
study, the following weight function is used

γ(x,xj) =

{
1− 6d2j + 8d3j − 3d4j , dj ≤ 1,
0, dj > 1,

(3)

where dj =
∥x−xj∥
rj

, in which rj is the size of support in correlation function (3).

In addition, the correlation matrix R is given in the following form

R =

 γ(x1,x1) · · · γ(x1,xN )
· · · · · · · · ·

γ(xN ,x1) · · · γ(xN ,xN )

 .
The first- and second-order partial derivatives of shape function Φ(x) against the
coordinates x and y can be easily obtained from (3) as

ϕ,i(x) = PT,i (x)A+ rT,i (x)B, ϕ,ii(x) = PT,ii(x)A+ rT,ii(x)B.

The shape function Φ(x) obtained from the MK interpolation possesses the delta
function property. For other properties of the MK based shape functions see [5].

3. Numerical Implementation

In this section, we illustrate a meshless method based on MK interpolation for
solving Eq. (1). Suppose, Ω is the problem domain and X ∗ = {x1,x2,x3, . . . ,xn}
be an arbitrary sufficient scattered nodes in the global domain Ω. Here, instead of
calculation global weak form, we construct weak form over a local subdomain like
the Ωx which is a small region environment over each node in the general domain
Ω. These subdomains can be any arbitrary geometric shapes and size [1, 3] which
overlap each other and cover entire domain Ω. In our study, we take them as the
circle shape in Ω. Now, for every random point xi ∈ X ∗(1 ≤ i ≤ n) we introduce
the local weak form of (1) in associated subdomain Ωix ⊂ Ω to xi. For every point
xi, the local weak form of Eq. (1) in Ωix is as follows

∂αΨ(xi, t)

∂tα
+ γ1

∂βΨ(xi, t)

∂tβ
+ γ2Ψ(xi, t) = γ3∇Ψ(xi, t) + f(xi, t),(4)

Assuming just N points in the neighborhood node xk have the effect on the nu-
merical solution, results in

Ψh(x, t) =
N∑
j=1

Ψj(x)Ψ̂j(t).(5)

Substituting the MK interpolation (5) in Eq. (4), the following system for all
nodes will be obtained

C
∂αΨ(t)

∂tα
+ γ1C

∂βΨ(t)

∂tβ
= KΨ(t) + F.(6)

Note that C is an unit matrix because the shape functions obtained by the MK
interpolation have the δ Kronecker property, and

KIj = −γ2ϕj(xI) + γ3∆ϕj , F (I) = f(xI , t).
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To generate a fully discrete scheme of Eq. (6), suppose τ = T
n be the step time.

So, we take tk = kτ, k = 0, 1, 2, . . . , n, which n is a non-negative integer. Using
the following relations [2] to approximate the fractional derivative

∂αΨ(x, tn+1)

∂tα
= c0[Ψn+1 − 2Ψn +Ψn−1(7)

+

n∑
k=1

dk (Ψn−k+1 − 2Ψn−k +Ψn−k−1)] +O(τ3−α),

∂βΨ(x, tn+1)

∂tβ
= a0[Ψn+1 −Ψn +

n∑
k=1

bk (Ψn−k+1 −Ψn−k)] +O
(
τ2−β

)
,(8)

in which c0 = τ−α

Γ(3−α) , dk =
[
(k + 1)2−α − (k)2−α

]
, a0 = τ−β

Γ(2−β) , bk = (k+1)1−β−
(k)1−β and Ψn = Ψ(x, nτ). Also,

Ψ =
1

2
(Ψn+1 +Ψn).(9)

Substituting Eqs. (7), (8) and (9) in (6), the following discrete scheme in time
variable is resulted

(µ1C −
1

2
K)Ψn+1 = (µ2C +

1

2
K)Ψn − c0CΨn−1

− c0C

n∑
k=1

dk (Ψn−k+1 − 2Ψn−k +Ψn−k−1)

− a0γ1C
n∑
k=1

bk (Ψn−k+1 −Ψn−k) + Fn.(10)

in which µ1 = c0 + a0γ1, µ2 = 2c0 + a0γ1 and Fn = F (x, tn). For n = 0, from the
initial condition (2) we have

∂Ψ(x, 0)

∂t
=

Ψ1 −Ψ−1

2τ
= g(x)⇒ Ψ−1 = Ψ1 − 2τG(x),

in which G(x) = [g(x1), . . . , g(xN )]
T
so (C = I)

((µ1 + c0)C −
1

2
K)Ψ1 = (µ2C +

1

2
K)Ψ0 + 2c0τG+ F0,

and for other n(n > 0) we use Eq. (10).

Example 3.1. In this section, we choose an example to illustrate the validity
and applicability of this scheme. To show the accuracy of proposed method, the
L∞ error is considered as follows

L∞ = max
1≤i≤N

|Ψ(xi)−Ψh(xi)|,

where Ψ(xi) and Ψh(xi) are the exact and numerical solutions at node xi.
Suppose the following fractional equation

∂αu(x, t)

∂tα
+
∂βu(x, t)

∂tβ
+ u(x, t) = ∇u(x, t) + 2

t2−α

Γ(3− α)

+ 2
tβ

Γ(2− β)
+
(
t2 + x2 + y2

)
− 4,
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Table 1. The L∞ errors between present method and analytical
solutions for Example 3.1 over Ω with different final times.

T α = 1.1, β = 0.9 α = 1.5, β = 0.5 α = 1.6, β = 0.4 α = 1.9, β = 0.1
1 1.1740e− 04 4.8198e− 05 3.2552e− 04 7.2140e− 04
2 1.5474e− 04 4.6447e− 06 1.8688e− 04 1.1251e− 03
3 1.8845e− 04 4.6447e− 05 1.7790e− 04 1.4447e− 03
5 2.4835e− 04 1.4892e− 04 3.5802e− 04 1.9942e− 03

where Ω = [0, 1]× [0, 1] and τ = 0.01. The exact solution is Ψ(x, t) = x2 + y2 + t2.
We extract the initial and boundary conditions from the exact solution. We choose
31 × 31 uniform nodes in Ω. The first column of Table 1 is final time and other
columns of this table are L∞ errors of the presented method for different values of
α and β for solving this example. This table reveals that our scheme is accurate
and efficient for solving this problem.

4. Conclusion

In this scheme, to apply the essential boundary conditions automatically, we used
moving Kriging interpolation in this method. Since the moving Kriging inter-
polation shape functions have Kronecker’s delta properties. Also, we used finite
difference relations to approximate the time fraction derivative order. We indi-
cated the capability and accuracy of this method by an example.
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1. Introduction

Many physical problems can be expressed as mathematical models and these mod-
els also include partial differential equations (PDEs). In many problems, numeri-
cal analysis researchers use the finite element method (FEM) [2] , Finite Volume
Method (FVM) [5] and Boundary Element Method (BEM) [7] to discretize the
spatial dimension. Another group of numerical methods known as meshless meth-
ods that do not require mesh for discretization such as Element Free Galerkin
(EFG) [4] and Meshless Local Petrov-Galerkin (MLPG) [3]. In these methods,
the test and trial functions must be continuous throughout the domain, and for
this purpose, Radial Basis Function (RBF) and Moving Least Squares (MLS) ap-
proximations commonly used. Attaining trial functions by these methods cause a
lot of complexity in trial functions and make it difficult to apply boundary con-
ditions and weak form integrations. Hence by analyzing and comparing the other
numerical methods, Leiting Dong and colleagues to provide a general method for
solving extreme problems so that the test and trial functions are simple, local, and
discontinuous polynomials introduced a new meshless method called the Fragile
Points Method (FPM) [6]. In FPM, the generalized finite difference method, or
the differential quadrature method or the compactly supported used to achieve
test and trial functions that are discontinuous polynomials. Due to the disconti-
nuities in these polynomials, FPM may be inconsistent. For this reason, we use
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Numerical Flux Corrections [1]. Then we achieve a matrix of coefficients that is
symmetric and sparse. This matrix is as a sum of Point Stiffness.

In this paper, wave equation

∂2u

∂t2
(x, t) = α2∇2u(x, t) + f(x, t) x ∈ Ω,(1)

with initial conditions

u(x, 0) = g1(x),
∂u

∂t
(x, 0) = g2,(2)

and the boundary conditions

u(x, t) = h1(x, t), x ∈ ΓD,(3)

∇u.n(x, t) = h2(x, t), x ∈ ΓN ,(4)

will be studied by Fragile Points Method (FPM) and by mentioning some exam-
ple and related curves, the accuracy, and stability of the method are checked.
Boundaries ΓD (Dirichlet) and ΓN (Neumann) satisfy that ∂Ω = ΓD ∪ ΓN and
ΓD ∩ ΓN = ∅; n is the unit outward normal of ∂Ω.

2. Main Results

2.1. Polynomial Discontinuous Trial and Test Functions. Inside the
domain Ω and it’s boundary ∂Ω, several points are distributed sporadically. Using
these points, the domain is divided into subdomains that have nothing in common,
and each subdomain consists of only one point. The Voronoi Diagram method has
been selected for the partition of the domain. In each subdomain of Ω, trial
function can be defined according to the values u and its gradient at the internal
point. For example, the trial function uh in the subdomain E0 which includes the
point P0 can be written as

uh(x, t) = u0(x, t) + (x− x0)∇u(x, t)|P0 , x ∈ E0.(5)

In the above equation, u0 is the value of uh at P0 and x0 denotes the coordinate
of the point P0.

The gradient of ∇u at P0 is the yet unknown. We employ the Generalized
Finite Difference (GFD) method to calculate ∇u at P0 in terms of the values
of uh at several neighboring points of P0. We name these neighboring points as
q1, q2, . . . , qm. In the following, to calculate the amount of the gradient of ∇u at
P0, we minimize a weighted discrete L2 norm J so that

J =
m∑
i=0

(
∇u|P0

. (xi − x0)
T − (ui − u0)

)2
wi,

where wi denotes the value of weight function at qi, xi is the coordinate vector of
qi, and ui is the value of uh at qi, (i = 1, 2, . . . ,m). For convenience, we assume
that w is constant. Due to the stationarity of J we have

∇u =
(
ATA

)−1
AT (um − u0Im) ,(6)
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where

A =


x1 − x0 y1 − y0
x2 − x0 y2 − y0
... . . .

xm − x0 ym − y0

 , um =


u1
u2
. . .
um

 , Im =


1
1
. . .
1


m×1

.

Also Eq. (6) can be expressed at point P0 as follows:

∇u = BuE ,(7)

where

B =
(
ATA

)−1
AT


−1 1 0 . . . 0

−1 0 1
. . .

...
...

...
. . .

. . . 0
−1 0 · · · 0 1


m×(m+1)

, uE =


u0
u1
...
um

 .
Also by substituting (7) into (5) the relation between uh and uE will be obtained
as

uh = NuE , ∀x ∈ E0, N = [x− x0]B+ [1, 0, . . . , 0]1×(m+1).

2.2. Implementation of Numerical Flux Corrections. We can rewrite
wave Eq. (1)-(4) using mixed form as following,

σ = ∇u(x, t), in Ω,

−α2∇.σ = −∂
2u

∂t2
(x, t) + f(x, t), in Ω,

u(x, t) = h1(x, t), in ΓD,

σ.n(x, t) = h2(x, t), in ΓN .

(8)

By multiplying the first and second equations in (8) by test functions τ and ν
respectively and integrating it on the subdomain E, using the Green formula and
by summing these equations over all subdomains we have∫

Ω

σh.τdΩ = −
∫
Ω

uh∇.τdΩ+
∑
E∈Ω

∫
∂E

ûhn.τdΓ,(9)

α2

∫
Ω

σh.∇ν = α2
∑
E∈Ω

∫
∂E

σ̂h.nνdΓ−
∫
Ω

∂2u

∂t2
(x, t)νdΩ+

∫
Ω

f(x, t)νdΩ.(10)

In the above equations values σ̂h and ûh represent approximations σh and uh on
∂E. These values are named Numerical Fluxes. To simplify Eqs. (9) and (10),
we define operators the average and the jump which by these operators, we can
manage the numerical fluxes. As regards Γ = Γh + ΓD + ΓN , Table 3.1 in [6] and
by substituting the Interior Penalty Numerical Fluxes (IPNF), we have

α
2
∑
E∈Ω

∫
E

∇uh.∇νdΩ − α
2

∑
e∈Γh∪ΓD

∫
e

({∇uh} [ν] + {∇ν} [uh]) dΓ + α
2

∑
e∈Γh∪ΓD

η

he

∫
e

[ν] [uh] dΓ

=

∫
Ω

f(x, t)νdΩ + α
2

∑
e∈ΓD

∫
e

(
η

he

ν − ∇ν.n
)
h1(x, t)dΓ + α

2
∑

e∈ΓN

∫
e

νh2(x, t)dΓ −
∫
Ω

∂2u

∂t2
(x, t)νdΩ.
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The above equation is the formula of FPM, which is called FPM-Primal method.
If the matrix form of this method is expressed as follows:

α2Ku+Cü = F.(11)

By Substituting values B instead of ∇ν and ∇u, N instead of uh and ν in Eq.
(11), the point stiffness matrices will be achieved as follows:

C =

∫
E

NTNdΩ, E ∈ Ω,

KE =

∫
E

BTB dΩ, E ∈ Ω,

Kh =
−1
2

∫
e

(BT
1 n

T
1 N1 +NT

1 n1B1)dΓ +
η

he

∫
e

NT
1 N1dΓ

+
−1
2

∫
e

(BT
2 n

T
2 N2 +NT

2 n2B2)dΓ +
η

he

∫
e

NT
2 N2dΓ

+
−1
2

∫
e

(BT
2 n

T
1 N1 +NT

2 n2B1)dΓ +
η

he

∫
e

NT
1 N2dΓ

+
−1
2

∫
e

(BT
1 n

T
2 N2 +NT

1 n1B2)dΓ +
η

he

∫
e

NT
2 N1dΓ, e ∈ ∂E1 ∩ ∂E2,

KD = −
∫
e

(BTnTN+NTnB)dΓ +
η

he

∫
e

NTNdΓ, e ∈ ΓD,

and we can also be written

FE =

∫
E

NT f(x, t)dΩ, E ∈ Ω,

FN =

∫
e

NTh2(x, t)dΓ, e ∈ ΓN ,

FD =

∫
e

(
η

he
NT −BTn)h1(x, t)dΓ, e ∈ ΓD.

We also use finite difference schemes to deal with the time derivative in the equa-
tion. For this purpose, we can write Eq. (11) as follows:

α2K(
un+2 + un+1

2
) +C(

un+2 − 2un+1 + un

∆t2
) = F

(
n+ 1

2
)
.

In the system of the above equations, the expression of right side means the cal-
culation of FE , FN and FD in the average time of steps n and n− 1.

2.3. Numerical Examples. In this section, some examples to verify the
accuracy and efficiency of the present method will be evaluated. The relative
errors used in this section are defined as follows:

r0 =
∥uh − u∥L2

∥u∥L2

, r1 =
∥∇uh −∇u∥L2

∥∇u∥L2

.
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Example 2.1. Consider the two-dimensional inhomogeneous wave equation
as follows

utt(x, y, t) = ∇2u(x, y, t) + cos(x), x ∈ (0, π), y ∈ (0, π), t > 0.

Dirichlet boundary conditions u(0, y, t) = 1 + sin(y) sin(t), u(π, y, t) = −1 +
sin(y) sin(t),u(x, 0, t) = cos(x), u(x, π, t) = cos(x) and initial condition u(x, y, 0) =
cos(x) and ut(x, y, 0) = sin(y) and analytical solution can be expressed as
u(x, y, t) = cos(x) + sin(y) sin(t). Relative errors r0 and r1 have been shown
in Table 1.

Table 1. The relative errors of the method for Example 2.1 at
T = 1 and ∆t = 0.01.

Points Computational Parameters r0 r1 CPU Time

N = 121 he = 1 , η = 6 1.7263× 10−2 9.5218× 10−2 1.6s
N = 676 he = 0.1 , η = 3 4.4831× 10−3 2.7873× 10−2 11s
N = 2601 he = 0.1 , η = 3 2.7653× 10−3 1.5448× 10−2 91s

Example 2.2. In the previous example, we consider the boundary conditions
as ∇u.n(x, 0, t) = ∇u.n(x, π, t) = − sin(t). The Figures 1 and 2 show the accuracy
of this method for this example.

0 0.5 1 1.5 2 2.5 3 3.5
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5
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1.7
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Y

U

 

 
exact solution
 FPM solution

Figure 1. Numerical and exact solutions related to Example 2.2
for dt = 0.01, Nx = Ny = 51 (N = 2601), T = 1 and x = 0.6283.

According to the results of the table and comparison of the curves obtained
by FPM with the exact curves, we can be seen that the method is stable and
has good precision. Also, the method does not have much computational cost
and depending on the number of points used, it will achieve numerical solutions
with good accuracy in a short time that this is an advantage over finite element
methods. Also in the finite element methods if the element is highly distorted,
inaccuracy can occur.

Compared to meshless methods, we can also point out the advantage that
FPM uses test and test functions that are in the form of simple and discontinuous
polynomials. Therefore the computation of integrals in the weak forms will be eas-
ier. Other advantages of this method over other numerical methods are described
in detail in Table 1 in [8].

295



D. Haghighi and S. Abbasbandy

Figure 2. Plot of numerical and exact solutions for Example 2.2
so that Nx = Ny = 26 (N = 676), dt = 0.01, T = 1.

Therefore, with regards to the capabilities of FPM, it can be apply for types of
problems. This method is also suitable for problems with discontinuous domains
that these issues will be discussed in our future studies.
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1. Introduction

Given a set of n distinct points {xj}nj=1 ⊂ Rd and corresponding data values

{fj}nj=1, the RBF interpolant is given by s(x) =
∑n
j=1 λjϕ(∥x − xj∥), where

ϕ(r), r ≥ 0, is some radial function [4]. The expansion coefficients λj are de-
termined from the interpolation conditions s(xj) = fj , j = 1, . . . , n, which leads
to the symmetric linear system Aλ = f , where A = [ϕ(∥xi − xj∥)]1≤i,j≤n . A
class of functions for which the interpolation problem is uniquely solvable for any
distinct point set {xj}nj=1 is the class of positive definite functions.

Definition 1.1. A radial basis function ϕ ∈ C([0,∞)) is called positive def-
inite on Rd if and only if for any finite set of distinct points {xj}nj=1 ⊂ Rd, the
matrix A = [ϕ(∥xi − xj∥)]1≤i,j≤n , is positive definite.

Examples of such RBFs are Guassian ϕ(r) = exp(− r2

2c2 ), and Inverse mul-

tiquadrics ϕ(r) = (1 + r2

c2 )
β
2
, β < 0, where c is a positive factor called shape

parameter and can be found numerically for getting accurate numerical solutions
and good conditioning of the collocation matrix [1].

2. Construction

We start with a fundamental theorem by Schoenberg [3] as a relation between
completely monotone functions and positive definite radial functions.

Definition 2.1. A function g is called completely monotone on (0,∞) if it

satisfies g ∈ C∞(0,∞) and (−1)lg(l)(t) ≥ 0, for all l ∈ N0, t > 0. If in addition
g ∈ C[0,∞) then g is called completely monotone on [0,∞).
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Definition 2.2. A function g is called completely monotone of order k on

(0,∞), if (−1)kg(k)(t) is completely monotone.

Theorem 2.3. (Schoenberg) A non-constant function g : [0,∞)→ R is com-
pletely monotone on [0,∞) if and only if ϕ(r) = g(r2) is positive definite on every
Rd.

Theorem 2.4. Suppose that f is a function which is completely monotone of
order k on (0,∞), and a > b > 0. Let{

g1(x) = −f(x+ a) + f(x+ b),

gi(x) = −gi−1(x+ a) + gi−1(x+ b), i = 2, . . . , k.
(1)

Then φ(r) = gk(r
2) is a positive definite radial basis function on every Rd.

Proof. Let g0(x) = f(x). We show that the function gi, i = 1, . . . , k, is
completely monotone of order k − i on (0,∞). The derivatives of gi(x) are given

as g
(l)
i (x) = −g(l)i−1(x+ a) + g

(l)
i−1(x+ b). We now deduce for l ⩾ k − i

(−1)lg(l)i (x) = (−1)l
(
−g(l)i−1(x+ a) + g

(l)
i−1(x+ b)

)
= (−1)l

(
−
∫ x+b

x+a

−g(l+1)
i−1 (t)dt

)

= (−1)l+1

∫ x+a

x+b

g
(l+1)
i−1 (t)dt ⩾ 0.

The last inequality holds because gi−1 is completely monotone of order k − i+ 1.
So gk is completely monotone on (0,∞). Now, we prove that gk ∈ C[0,∞) by
induction on i. Since f ∈ C(0,∞), and a > b > 0, then g1 ∈ C[0,∞). Let
gi−1 ∈ C[0,∞), then gi ∈ C[0,∞), which in turn gives gk ∈ C[0,∞). So the
theorem is proved according to the Schoenberg theorem. □

Example 2.5. Since the funtion f(x) = − ln(x) is completely monotone of

order 1, then the function ϕ(r) = ln
(
r2+a
r2+b

)
is a positive definite RBF according

to Theorem 2.4. The plots of ϕ is given for different values of a, b and shape
parameter c, in Figure 1.

3. Numerical Results

In this section, we use the new positive definite RBF ϕ( rc ) = ln(
( rc )

2 + a

( rc )
2 + b

) for

interpolating two different functions. The values of all shape parameters are chosen
according to algorithm 2 in [2].

Test Problem 1. (Runge function) Let f(x) =
1

1 + 25x2
be the function that

we are going to interpolate on the interval [−1, 1]. We report condition numbers
of the coefficient matrices as well as L2 and L∞ errors for M = 125 number of
test points and different values of a, b, shape parameter c, and number of center
points N, in Table 1. The numerical results show that the proposed RBF is more
accurate than the Gaussian, Mutiquadric and Matern kernels. We also plot the
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Figure 1. Plots of ϕ(r) for different values of a and b (left),
and ϕ( rc ) (right) for a = 4, b = 1 and different values of shape
parameter c.

exact and approximate Runge function as well as point-wise error distributions for
a = 8, b = 1, N = 200, M = 125, and c = 0.0861, in Figure 2.

Figure 2. Exact and approximate solutions of the Runge func-
tion (left), and point-wise error distributions (right), with N =
200, M = 125, a = 8, b = 1 and c = 0.0861.

Test Problem 2. Consider the interpolation of Frankes function on [0, 1]2.
We report condition numbers of the coefficient matrices as well as L2 and L∞ errors
for M = 2601 number of test points and different values of a, b, shape parameter
c, and number of center points N, in Table 2. The numerical results show that the
proposed RBF is more accurate than the Gaussian and Matern kernels and is in
agreement with the Mutiquadric kernel. We also plot the exact and approximate
Frank’s function in Figures 3(a)-3(b) and point-wise error distributions in Figures
3(c)-3(d) for a = 8, b = 1, N = 400, M = 2601, and c = 0.3046, respectively.
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Table 1. The comparison of L2, L∞ error, and condition number
of new RBF. (Test problem 1)

Kernel N c L2 error L∞ error Condition number

New kernel a = 4, b = 1

80 0.2232 5.9168e-08 3.9773e-08 9.9202e+12
100 0.1776 1.8027e-08 1.1127e-08 9.9917e+12
200 0.0879 1.1128e-08 7.7784e-09 1.0134e+13
300 0.0584 8.7215e-09 6.1204e-09 1.0141e+13
400 0.0438 3.7796e-09 2.5488e-09 1.0649e+13

New kernel a = 8, b = 1

80 0.2190 7.8833e-08 5.2942e-08 9.9476e+12
100 0.1741 3.0312e-08 1.8654e-08 9.8673e+12
200 0.0861 4.9953e-09 3.4897e-09 1.0031e+13
300 0.0572 6.2254e-09 4.3668e-09 1.0120e+13
400 0.0429 2.9899e-09 2.0113e-09 1.0670e+13

Gaussian

80 0.0636 2.2312e-06 1.5152e-06 1.0408e+13
100 0.0506 1.2482e-06 7.9458e-07 1.0528e+13
200 0.0251 5.7539e-07 4.0445e-07 1.0993e+13
300 0.0167 2.2064e-07 1.5560e-07 1.1153e+13
400 0.0125 6.6761e-08 4.6489e-08 1.0498e+13

Multiquadric

80 0.1864 1.1464e-07 7.6478e-08 9.9632e+12
100 0.1458 7.2354e-08 4.3566e-08 9.9898e+12
200 0.0680 3.9285e-08 2.7272e-08 9.9784e+12
300 0.0435 1.8238e-08 1.2720e-08 1.0006e+13
400 0.0317 7.0049e-09 4.5729e-09 1.0262e+13

Matérn/Sobolev ν = 3/2

80 55.3201 2.7317e-05 1.8101e-05 9.9985e+12
100 40.9741 1.0948e-05 7.0236e-06 1.0000e+13
200 16.1811 6.7350e-07 4.0664e-07 1.0001e+13
300 9.4141 1.2512e-07 7.8808e-08 1.0000e+13
400 6.4199 3.8129e-08 2.4786e-08 1.0012e+13

Table 2. The comparison of L2, L∞ error, and condition number
of new RBF. (Test problem 2)

Kernel N c L2 error L∞ error Condition number

New kernel a = 4, b = 1

100 0.6829 1.8354e-01 2.5566e-02 1.0028e+13
225 0.4261 7.2332e-03 1.4854e-03 1.0018e+13
400 0.3108 3.2966e-04 9.6041e-05 1.0017e+13
900 0.2020 1.6623e-04 5.6203e-05 1.0075e+13

New kernel a = 8, b = 1

100 0.6701 1.8091e-01 2.5334e-02 1.0029e+13
225 0.4179 7.1154e-03 1.4680e-03 1.0006e+13
400 0.3046 3.1688e-04 9.1339e-05 1.0059e+13
900 0.1975 1.4947e-04 5.1102e-05 1.0035e+13

Gaussian

100 0.2188 1.8790e-01 2.5430e-02 1.0105e+13
225 0.1306 9.8565e-03 1.8153e-03 1.0309e+13
400 0.0939 8.8701e-03 2.3129e-03 1.0137e+13
900 0.0610 7.8115e-03 2.0663e-03 1.3092e+13

Multiquadric

100 0.6067 1.7560e-01 2.4783e-02 9.9974e+12
225 0.3718 6.8009e-03 1.4090e-03 9.9783e+12
400 0.2661 2.5467e-04 5.7233e-05 1.0067e+13
900 0.1669 9.0262e-05 2.6162e-05 9.9166e+12

Matérn/Sobolev ν = 3/2

100 157.99 1.0134e-01 1.7967e-02 1.0002e+13
225 81.420 1.5799e-02 3.3855e-03 1.0001e+13
400 50.789 5.7471e-03 1.7654e-03 1.0002e+13
900 26.058 1.4982e-03 5.1894e-04 1.0000e+13
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(a) (b)

(c) (d)

Figure 3. Exact (a) and approximate (b) Franke’s function; Relative (c)

and absolute (d) errors distributions, with N = 400, M = 2601, a = 8, b = 1

and c = 0.3046.
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Abstract. In this paper, we propose an efficient meshfree least square sup-

port vector machine regression approach (LS-SVR) to simulate the gener-
alized Fitzhugh-Nagumo (gFHN) equation in a large spatial domain. By
discretizing the problem in time, we turn it into a system of ordinary differ-
ential equations and then solve the reformed problem with LS-SVR at each

time step. In addition, we have used Richardson extrapolation to increase the
accuracy of the problem over time (∆τ2). Numerical results are tested with
C6 Wendland kernels and its comparison with the other numerical solution
shows that this approach is highly accurate for solving gFHN types partial

differential equations.

Keywords: Meshfree least square support vector machine, Machine
learning, Fitzhugh-Nagumo, Partial differential equation,
Neuroscience.
AMS Mathematical Subject Classification [2010]: 35Q92,
65M70, 68T05.

1. Introduction

Machine learning methods have been considered by many researchers during the
last decade, so that the evolution and development of these methods have left
admirable effects in the field of engineering and basic sciences [1]. Support Vec-
tor Machine (SVM) is one of the newest and most powerful machine learning
tools used to classify and cluster data based on similarities or features, however
the high flexibility of this approach and its close relationship with the concept of
constrained optimization makes it possible to use this approach for curve fitting
and approximating [1]. Generally, the phenomena dynamics are modeled using
differential equations, which are analyzed and investigated using optimization ap-
proaches [6, 7].

∗Speaker
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In this paper, we intend to show the numerical simulation by LS-SVR for the
generalized Fitzhugh-Nagumo equation with time-dependent coefficients given by

uτ + v(τ)ux − µ(τ)uxx − η(τ)u(1− u)(ρ− u) = 0, (x, τ) ∈ [D1, D2]× [0, T ],(1)

subject to the boundary (bc) and initial (ic) conditions

u(D1, τ) = h1(τ), u(D2, τ) = h2(τ), τ ∈ [0, T ],(2)

u(x, 0) = g(x), x ∈ [D1, D2],(3)

where v(τ), µ(τ) and η(τ) are arbitary real-valued functions of τ [5]. It should be
noted that considering parameters v(τ) = 0, µ(τ) = 1 and η(τ) = −1, the popular
FitzHugh-Nagumo model is obtained, which is widely used in neuroscience, and in
recent years, extensive studies have been conducted on this type of model [3, 4].

2. Methodology

We first discretize the Eq. (1) in time using the Crank-Nicolson discretization in
the following iterative form

un+1 − ∆τ

2
[µn+1un+1

xx + ηn+1(1− un)(ρ− un)un+1 − vn+1un+1
x ](4)

= un +
∆τ

2
[µnunxx + ηn(1− un)(ρ− un)un − vnunx ],(5)

where n refers to the time step as n ≡ n∆τ, n = 0, . . . , N and the first time step
(n = 0) is obtained from the initial condition of the problem and then the solutions
of the problem in the next steps (n + 1) is calculated according to the previous
step (n) which is known value.

Now, according to the LS-SVR framework, considering the solution of the

problem in the primal form un+1(xi) ≃
∑L
l=2 w

n+1
l ϕ(xi)+b

n+1 ≡ wn+1Tϕi+b
n+1,

we convert the time-descrete model (4) and (5) to the following Lagrangian form

L([w, b, ei, αi, βk]n+1) =
wTw

2
+
γeT e

2

−
M−1∑
i=2

αi(w
T [ϕi −

∆τ

2
(µn+1ϕ′′i + ηn+1(1− uni )(ρ− uni )ϕi − vn+1ϕ′i)]

+b− ∆τ

2
(ηn+1(1− uni )(ρ− uni )b)− rni − ei)−

2∑
k=1

βk(w
Tϕ∗k + b− hk),(6)

where ϕ is basis function, γ is a regularization parameter, {αi}Mi=1, {βk}2k=1 are
Lagrange multipliers, rni is equivalent to the value obtained to the Eq. (5) at the
xi, ϕ∗1 = ϕ1 and ϕ∗2 = ϕM . Note that in this work we consider M nodal points
x ∈ [D1, D2] as x1, x2, . . . , xM in domain of problem. Also, to solve the problem
in the dual form, we must have the basis dual matrices (kernel matrices) and its
derivatives as follows (to investigate theorems of kernel, see [2, 6, 7])

Φ(d1)(s)
T
Φ(d2)(t) = ∇d2d1[K

ĵ

î
] = [ϕ(sî)

(d1)ϕ(d2)(tĵ)]̂i,ĵ , d1, d2 = 0, 1, 2.
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Now, the Karush-Kuhn-Tucker (KKT) optimality conditions for Eq. (6) are as
follows

∂L
∂w

=w =

M−1∑
i=2

αi([ϕi −
∆τ

2
(µn+1ϕ′′

i + ηn+1(1− un
i )(ρ− un

i )ϕi − vn+1ϕ′
i)]) +

2∑
k=1

βk(ϕ∗k ),

∂L
∂b

=

M−1∑
i=2

αi(1−
∆τηn+1(1− un

i )(ρ− un
i )

2
) +

2∑
k=1

βk = 0,

∂L
∂ei

= ei = −αi

γ
,

∂L
∂αi

= wT [ϕi −
∆τ

2
(µn+1ϕ′′

i + ηn+1(1− un
i )(ρ− un

i )ϕi − vn+1ϕ′
i)]

+ b− ∆τ

2
(ηn+1(1− un

i )(ρ− un
i )b)− ei = rni ,

∂L
∂βk

= wTϕ∗k + b = hk.

After elimination of the primal variables w and {ei}M−1
i=2 making use of Mercers

theorem, the solution is given in the dual form (See [2]), and writing dual form
equations in matrix form gives the linear system as following

∇0
0[K

1
1 ] Ξ1 ∇0

0[K
M
1 ] 1

Ξ2 Ξ3 Ξ4 Ξ5

∇0
0[K

1
M ] Ξ6 ∇0

0[K
M
M ] 1

1 Ξ7 1 0



β1
α
β2
b


n+1

=


hn+1
1

rn

hn+1
2

0

 ,(7)

where

Ξ1 = ĀM−1
2 • ∇0

0[K
2,...,M−1
1 ] + B̄M−1

2 • ∇0
1[K

2,...,M−1
1 ]

+C̄M−1
2 • ∇0

2[K
2,...,M−1
1 ],

Ξ2 = (Ā2
M−1)T • ∇0

0[K
1
2,...,M−1]

+(B̄2
M−1)T • ∇1

0[K
1
2,...,M−1] + (C̄2

M−1)T • ∇2
0[K

1
2,...,M−1],

Ξ3 = Â(∇0
0[K

2,...,M−1
2,...,M−1 ]Â+∇0

1[K
2,...,M−1
2,...,M−1 ]B̂ +∇0

2[K
2,...,M−1
2,...,M−1 ]Ĉ)

+B̂(∇1
0[K

2,...,M−1
2,...,M−1 ]Â+∇1

1[K
2,...,M−1
2,...,M−1 ]B̂

+∇1
2[K

2,...,M−1
2,...,M−1 ]Ĉ)

+Ĉ(∇2
0[K

2,...,M−1
2,...,M−1 ]Â+∇2

1[K
2,...,M−1
2,...,M−1 ]B̂

+∇2
2[K

2,...,M−1
2,...,M−1 ]Ĉ) + I/γ,

Ξ4 = (Ā2
M−1)T • ∇0

0[K
M
2,...,M−1] + (B̄2

M−1)T • ∇1
0[K

M
2,...,M−1]

+(C̄2
M−1)T • ∇2

0[K
M
2,...,M−1],

Ξ5 = (Ā2
M−1)T ,

Ξ6 = ĀM−1
2 • ∇0

0[K
2,...,M−1
M ] + B̄M−1

2 • ∇0
1[K

2,...,M−1
M ]

+C̄M−1
2 • ∇0

2[K
2,...,M−1
M ],

Ξ7 = Ā2
M−1,

α = [α2, . . . , αM−1]
T , rn = [rn2 , . . . , r

n
M−1]

T ,
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ĀM−1
2 = 1− ηn+1∆τ/2(−ρ+ (1 + ρ) • [un2,...,M−1]− [un2,...,M−1] • [un2,...,M−1]),

B̄M−1
2 = ∆τvn+1I/2, C̄M−1

2 = −∆τµn+1I/2,

Â = diag(ĀM−1
2 ), B̂ = diag(B̄M−1

2 ), Ĉ = diag(C̄M−1
2 ),

in which I is an M − 2 × M − 2 identity matrix and symbol “ • ” denoted
Hadamard product. By solving the system (7) and obtaining the unknown coef-
ficients [β1,α, β2, b] at each time step n + 1, we obtain an approximation of the
function u(x) in the time step n+ 1. To increase the accuracy of the solution, we
use Richardson extrapolation to approximate the final solution, that is, we solve
the problem once with the N time steps (u1(x)

N ) and again with the 2N time
steps (u2(x)

2N ), and consider the approximation as follows

û(x, τ) ≈ 2u2(x)
2N − u1(x)N .

3. Results

To evaluate the efficiency of the method, we consider two different examples with
specific parameters and the following conditions

Example 3.1.

ic : 0.5 + 0.5 tanh(
x

2
√
2
), bc : {0.5 + 0.5 tanh(

1

2
√
2
)(−10− (2ρ− 1)τ√

2
);

0.5 + 0.5 tanh(
1

2
√
2
)(10− (2ρ− 1)τ√

2
)}, (x, τ) ∈ [−10, 10]× [0, 1],

v = 0, µ = 1, η = −1, ρ = 0.75, γ = 1010,

Example 3.2.

ic :
ρ

2
+
ρ

2
tanh(

ρx

2
), bc : {ρ

2
+
ρ

2
tanh(

ρ

2
(−20− (3− ρ) sin(τ)));

ρ

2
+
ρ

2
tanh(

ρ

2
(20− (3− ρ) sin(τ)))}, (x, τ) ∈ [−10, 10]× [0, 1],

v = cos(τ), µ = cos(τ), η = cos(τ), ρ = 0.75, γ = 1010.

In addition, for both examples, we consider 100 nodal pointsM , and 1000 time
steps N and 1000 evaluation points N to evaluate the error of method ; Moreover,
the exact solutions of the first and second examples are 0.5 + 0.5 tanh( 1

2
√
2
)(x −

(2ρ−1)τ√
2

) and ρ
2 + ρ

2 tanh(
ρ
2 (x − (3 − ρ) sin(τ))), respectively. The C6 Wendland

kernel [3] K(s, t) = (1−σ∥s−t∥)8+(1+8σ∥s−t∥+25σ∥s−t∥2+32σ∥s−t∥3) is also
used for both examples and the optimal local parameter σ is selected as 0.0001 with
try and error. The numerical simulations are carried out on a computer with Core
i7 CPU 2.70 GHz 8 GB RAM, and the software programs are run under MATLAB
2017. The result of both examples is shown in Figure 1. The Table 1 shows the L∞
error ( max

1≤j≤M
( max
1≤i≤N

|u(xi, τj)− û(xi, τj)|)) obtained for 1000 evaluation points and

the CPU time for the proposed method. The Polynomial differential quadrature
method (PDQM) [5] method is also shown in the Table 1 to compare L∞ error
and CPU time. According to this table, the L∞ error of the proposed method is
better than the PDQM method and the processor time is longer. Of course, we
should note that the number of nodal points in the [5] is not specified, and so we
do not know how many nodal points the CPU time is calculated for.
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Figure 1. Behavior of the model for both examples.

Table 1. Comparison of the L∞ error and CPU time of the pro-
posed method method with the PDQM [5].

example presented method (L∞) PDQM (L∞) presented method (CPU time) PDQM (CPU time)
1 1.692E-5 7.903E-4 3.8521s 0.24s
2 3.166E-4 6.328E-4 3.4325s 0.27s

4. Concluding Remarks

In the present work, we proposed a meshless method based on the LS-SVR to
solve the gFHN equation over a large spatial domain. Richardson extrapolation
has also been used to increase the accuracy of the problem. By evaluating two
examples and comparing them with PDQM, we showed that the proposed method
is efficient and accurate.
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Abstract. In this paper, a fast meshless method is proposed for solving
coupled nonlinear advection-diffusion-reaction systems on irregular domains.
In this method, the Petrov-Galerkin strategy is used to build the primary

local weak forms. Based on the generalized moving least squares technique,
direct approximations of local weak forms are performed to construct the
stiff and mass matrices. The computational efficiency is the most significant
advantage of this method in comparison with the original MLPG method.

This is because the numerical integrations are performed over polynomials
instead of complicated MLS shape functions. The numerical results confirm
the good efficiency of this method for solving coupled nonlinear advection-
diffusion-reaction systems on irregular domains.

Keywords: Coupled nonlinear advection-diffusion-reaction system,
Meshless method, Petrov-Galerkin formulation, Generalized moving
least squares approximation.
AMS Mathematical Subject Classification [2010]: 65M99,
65N99.

1. Introduction

Meshless methods have been developed in the past decade for numerical compu-
tations of wide ranging engineering problems. These meshless methods do not
require any mesh, element or lattice for discretization of problem domains, and
they construct the approximate functions only via a set of nodes scattered on
the computational domains. These methods can be classified in the two basic
category: strong form, weak form. In the global weak form techniques, at first,
the governing partial differential equations (PDEs) are transformed to a set of
so-called weak-form integral equations. By a numerical integration procedure over
the computational domain, these weak-form integral equations are converted to a
set of algebraic equations. A set of background cells is required for this integration
process and therefore these methods are not truly meshless methods. To avoid the
use of global background cells, the meshless local Petrov-Galerkin method have
been developed by Atluri and Shen. This method does not use global background
cells to evaluate integrals and the integration process is applied on some simple
shape, regular and independent sub-domains. In MLPG method, the numerical in-
tegrations are applied over moving least squares (MLS) functions and this leads to
high computational costs in comparison with the finite elements method (FEM), in
which integrations are done over simple polynomials. To overcome this drawback,
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the Direct MLPG (DMLPG) method has been proposed in [2]. This technique
is an improved version of MLPG and uses the generalized moving least squares
(GMLS) approximation [1] instead of MLS. In DMLPG, numerical integrations
on Petrov-Galerkin formulation are applied over low-degree polynomials instead
of complicated MLS functions. This advantage overcomes the main drawback of
meshless weak form techniques and significantly accelerate the procedure.

In this article, we propose MLPG and DMLPG methods for numerical solution
of a coupled nonlinear advection-diffusion-reaction system as follows

∂u
∂t + µ(x) · ∇u−∇ · (D(x)∇u) + e1wpf (u, v) = 0,

∂v
∂t + µ(x) · ∇v −∇ · (D(x)∇v) + e2wpf (u, v) = 0,

∂w
∂t + µ(x) · ∇w −∇ · (D(x)∇w) + e3wpf (u, v) + r(x)w = 0,

(1)

where u, v and w denote the concentration of the main ground substance, aqueous
solution electrolyte concentration and concentration of microorganism (e.g. bac-
teria), respectively [3]. The vector µ(x) = (µ1(x), µ2(x)) is the average linearized
groundwater velocity, D(x) is a hydrodynamic diffusion function, wp is the total
concentration of active microorganism and w = wp/RM with a positive constant
RM . The nonlinear term is

f (u, v) =
u

Ku + u
.

v

Kv + v
,

ei(i = 1, 2, 3), Ku and Kv are positive constants.

2. MLS and GMLS Methods

In MLS technique the unknown function u (x) is approximated in terms of N
scattered points X = {x1,x2, . . . ,xN} ⊂ Ω as

u (x) ≈ û (x) =
N∑
j=1

ψj (x)uj , x ∈ Ω,

where ψj(x) are MLS shape functions and are defined as follows:

Ψ (x) := [ψ1(x), . . . , ψN (x)] = p (x)
[
PTWP

]−1
PTW,

where

p (x) = [p1 (x) , p2 (x) , . . . , pQ (x)] ,

P :=


p1(x1) p2(x1) · · · pQ(x1)
p1(x2) p2(x2) · · · pQ(x2)

...
...

. . .
...

p1(xN ) p2(xN ) · · · pQ(xN )

 ,
W =W (x) := diag{w(x,xj)} ∈ RN×N .

where w is a weight function and Pdm = span {p1, p2, . . . , pQ} is the space of d-
variable polynomials of degree at most m.
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For a functional λ and an unknown function u, the value of λ [u] is approximated
by λ [û] as follows

λ [u (x)] ≈ λ [û (x)] =
N∑
j=1

λ [ψj (x)]uj .(2)

In the above equation λ operates on shape functions ψj . These shape functions
have no closed form and therefore computation of λ [û] is a time-consuming task.
If the functional λ has a complex form, this would be even more acute .
For overcoming this disadvantage, the GMLS technique [1] directly approximates
the functional λ in terms of nodal values u(xj), j = 1, 2, . . . , N as follows

λ [u (x)] ≈ λ̂ [u (x)] =
N∑
j=1

aj (λ)u (xj) ,(3)

where aj(λ), unknown coefficients related to the functional λ, are produced as
follows [2]

a (λ) := [a1 (λ) , a2 (λ) , . . . , aN (λ)] = λ (p)
[
PTWP

]−1
PTW.

In the above equation, it can be seen that the functional λ operates only on low-
order polynomials instead of complicated MLS functions. This property overcomes
the main disadvantage of MLS-based methods and significantly speeds up the
procedure. In the case of complicated forms of functional λ, this issue will be
more important.

3. Discretization Process

For interior nodes, the PetrovGalerkin formulation of (1) against a suitable test
function can be written as follows

∫
Ωi

∂u
∂t
ξi dx+

∫
Ωi

µ(x) · ∇u ξi dx−
∫
Ωi

∇ · (D(x)∇u) ξi dx+
∫
Ωi

e1wpf (u, v) ξi dx = 0,

∫
Ωi

∂v
∂t
ξi dx+

∫
Ωi

µ(x) · ∇v ξi dx−
∫
Ωi

∇ · (D(x)∇v) ξi dx+
∫
Ωi

e2wpf (u, v) ξi dx = 0,

∫
Ωi

∂w
∂t
ξi dx+

∫
Ωi

µ(x) · ∇w ξi dx−
∫
Ωi

∇ · (D(x)∇w) ξi dx+
∫
Ωi

e3wpf (u, v) ξi dx

+
∫
Ωi

r(x)w ξi dx = 0.

By selecting the Heaviside step function as the test function and employing the
divergence theorem, the above local weak forms are transformed to the following
simplified form

∫
Ωi

∂u
∂t

dx+
∫
Ωi

µ(x) · ∇u dx−
∫

∂Ωi

D(x)∇u .ni dx+ e1
∫
Ωi

wpf (u, v) dx = 0,

∫
Ωi

∂v
∂t
dx+

∫
Ωi

µ(x) · ∇v dx−
∫

∂Ωi

D(x)∇v .ni dx + e2
∫
Ωi

wpf (u, v) dx = 0,

∫
Ωi

∂w
∂t

dx+
∫
Ωi

µ(x) · ∇w dx−
∫

∂Ωi

D(x)∇w .ni dx+ e3
∫
Ωi

wpf (u, v) dx

+
∫
Ωi

r(x)w dx = 0.

(4)
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Table 1. Comparison of DMLPG and MLPG methods.

DMLPG MLPG
Domain N ∥eu∥∞ ∥ev∥∞ ∥ew∥∞ CPU ∥eu∥∞ ∥ev∥∞ ∥ew∥∞ CPU

Ω1 1123 5.5473E−4 4.4534E−4 6.2538E−4 1.34 5.3206E−4 4.7612E−4 4.2532E−4 158.22
3582 4.8756E−5 4.5443E−5 3.6567E−5 8.25 7.1947E−5 5.3408E−5 8.2294E−5 400.34

Ω2 1324 1.5473E−4 2.6523E−4 1.2538E−4 1.76 3.0683E−4 3.2034E−4 4.2034E−4 165.45
3867 2.4507E−5 4.0087E−5 4.9808E−5 9.45 5.6509E−5 5.0545E−5 6.9898E−5 434.65

The local sub-domain Ωi is assumed to be

Ωi := B(xi, ρ) ∩ Ω, xi ∈ X, ρ = chX,Ω,

where X is a set of pairwise different scattered nodes and hX,Ω is the fill distance
of the set X, i.e.

h := hX,Ω = sup
x∈Ω

min
xj∈X

∥x− xj∥2 .

The vector ni is the outward normal to the boundary ∂Ωi. Applying (2) and (3)
for approximating of integrals in Eq. (4) yields MLPG and DMLPG methods,
respectively. All other steps of these two methods are similar. Approximating of
functionals in Eq. (4) leads to the following first-order system.

d
dtU(t) = F (U, t),

U(t0) = U0.

Many standard methods can be applied for discretizing of time variable. Here, the
fourth-order RungeKutta method is applied for solving the above linear first-order
system of ODEs.

4. Numerical Results

For an example, the advection-diffusion-reaction nonlinear system (1) is considered
with the following exact solutions

u (x, y, t) = exp (−5t) sin (πx) sin (πy) ,

v (x, y, t) = exp (−2t) sin (πx) sin (πy) ,

w (x, y, t) = exp (−3t) sin (πx) sin (πy) .

on irregular domains demonstrated in Figure 1. The coefficients are considered to
be µ(x) = [1, 1], D(x) = 10−3, r(x) = 2, RM = 1, Ku = 1, Kv = 2, e1 = 0.6,
e2 = 0.1 and e3 = 0.8. We solve this problem with Dirichlet boundary conditions.
The quartic spline weight function w(x,xj) is defined as follows

w(x,xi) = w(δi =
∥x− xi∥

rs
) =

{
1− 6δ2i + 8δ3i − 3δ4i , δi ≤ 1,
0, δi > 1,

where rs is the radius of the local support domain. This system is solved by
DMLPG and MLPG methods and the L∞ error norms of the components u, v
and w at time T = 1 with τ = 0.001 for various values of h are shown in Table 1.
Moreover, in Table 1 the CPU times used for construction of coefficient matrix in
these methods are compared.
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Figure 1. Considered irregular computational domains.
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1. Introduction

In recent years, there has been a growing interest to the saddle point problems
in the field of numerical linear algebra. This kind of linear systems arise in a
great deal of sciences, such as nonlinear constrained optimization, finite element
approximation for solving the Navier-Stockes equation, incompressible elasticity,
constrained least squares problems, and so forth [2, 3].

Double saddle point problems has been considered as the following large and
sparse form

Au ≡

 A B C
−BT 0 0
−CT 0 D

xy
z

 =

b1b2
b3

 ≡ b,(1)

where A ∈ Rn×n and D ∈ Rp×p are symmetric positive definite(SPD), B ∈ Rn×m
with rank(B) = m < n, C ∈ Rn×p, x, b1 ∈ Rn, y, b2 ∈ Rm and z, b3 ∈ Rp. The
following proposition given in [2] provides a necessary and sufficient condition for
the invertibility of the matrix A in the case that the (1, 1)-block and (3, 3)-block
are both SPD.

Proposition 1.1. Assume that A and D are symmetric positive definite
(SPD). Then matrix A in (1) is invertible if and only if B has full column
rank.

Both Uzawa-type stationary methods and block preconditioned Krylov sub-
space methods are discussed in [2] for double saddle point problem (1).

The reminder of this paper is organized as follows. In Section 2, we preset a
hybrid of diagonal preconditioner and shift-splitting iteration method. In Section

∗Speaker
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3, theoretical investigation will provide for the given method. Some numerical
results are given in Section 4, to clarify the effectiveness and accuracy of the
presented preconditioner for Krylov subspace methods.

2. Hybrid of Diagonal Preconditioner and Shift-Splitting

To establish the properties of preconditioned shift-splitting iterative method, we
propose a diagonal preconditioner to system (1) as

P =

A 0 0
0 Q 0
0 0 D

 ,

where Q ∈ Rm×m is a symmetric positive definite matrix. So, we define

Ā = P− 1
2AP− 1

2 =

 I B̄ C̄
−B̄T I 0
−C̄T 0 I

 ,

x̄ȳ
z̄

 = P
1
2

xy
z

 =

A 1
2x

Q
1
2 y

D
1
2 z

 ,

and b̄1b̄2
b̄3

 = P− 1
2b =

A− 1
2 b1

Q− 1
2 b2

D− 1
2 b3

 ,

where B̄ = A− 1
2BQ− 1

2 ∈ Rn×m also has full column rank, and C̄ = A− 1
2CD− 1

2 ∈
Rn×p. Then, system (1) can be transformed into a new equivalent one I B̄ C̄

−B̄T 0 0
−C̄T 0 I

x̄ȳ
z̄

 =

b̄1b̄2
b̄3

 .(2)

Applying shift-splitting method given in [1, 4] into (2), we obtain

1

2

(1 + α)I B̄ C̄

−B̄T αI 0
−C̄T 0 (1 + α)I

x̄k+1

ȳk+1

z̄k+1

 =
1

2

(α− 1)I −B̄ −C̄
B̄T αI 0
C̄T 0 (α− 1)I

x̄kȳk
z̄k

+

b̄1b̄2
b̄3

 .

It then follows immediately that in the original variables,

1

2

(1 + α)A B C

−BT αQ 0
−CT 0 (1 + α)D

xk+1

yk+1

zk+1

 =
1

2

(α− 1)A −B −C
BT αQ 0
CT 0 (α− 1)D

xkyk
zk

+

b1b2
b3

 .

It could be naturally induced a splitting preconditioner PDPSS for Krylov sub-
space methods, corresponds to the diagonal preconditioned shift-splitting (DPSS)
iteration as

PDPSS =
1

2

(1 + α)A B C
−BT αQ 0
−CT 0 (1 + α)D

 .

We can do the following matrix factorization for splitting preconditioner PDPSS .

PDPSS =
1

2

 I 1
αBQ

−1 1
1+αCD

−1

0 I 0
0 0 I

 S 0 0
0 αQ 0
0 0 (1 + α)D

 I 0 0

− 1
αQ

−1BT I 0

− 1
1+αD

−1CT 0 I

 ,

where S = (1 + α)A + 1
αBQ

−1BT + 1
1+αCD

−1CT ∈ Rn×n. At each step of
the DPSS iteration or applying the DPSS preconditioner PDPSS within a Krylov
subspace method, we need to solve a linear system as PDPSSz(k) = r(k) for a

316



HYBRID OF DIAGONAL PRECONDITIONER AND SHIFT-SPLITTING ...

given residual vector r(k) at each step. In the following Algorithm, Let us consider
r(k) = [rT1 , r

T
2 , r

T
3 ]
T and z(k) = [zT1 , z

T
2 , z

T
3 ]
T , where r1, z1 ∈ Rn, r2, z2 ∈ Rm and

r3, z3 ∈ Rp.
Algorithm 1. Diagonal Preconditioned Shift-Splitting Iteration Method

(1) Set k := 0. Given inital guess u(0) and α > 0. Choose ϵ > 0 as the
precision, and kmax as the maximum iteration. Set r(0) = b − Au(0),
and its block entries r1, r2 and r3 as defined in advance.

(2) For u(k) ∈ Rm+n+p, and associated residual r(k), if ∥r(k)∥2

∥r(0)∥2
≥ ϵ or k ≤

kmax continue, goto Step 3, else STOP.
(3) Solve Dw = 2

1+αr3.

(4) Solve Qy = r2.
(5) w1 = 2

(
r1 − 1

αBy
)
− Cw.

(6) Solve Sz1 = w1.
(7) Solve Qz2 = 1

α (B
T z1 + 2r2).

(8) Solve Dv = 1
1+αC

T z1.

(9) z3 = v + w.
(10) Let z(k) = [zT1 , z

T
2 , z

T
3 ]
T , compute u(k+1) = u(k)+z(k) and set k := k+1,

goto Step 2.

Remark 2.1. From Algorithm 1, we can see that at each iteration, it is re-
quired to solve linear systems with the coefficient matrices Q,D and (1 + α)A +
1
αBQ

−1BT + 1
1+αCD

−1CT . Fortunately, the aforementioned matrices are sym-
metric positive definite, for all α > 0.

Remark 2.2. The symmetric positive definite matrix Q ∈ Rm×m should be
chosen such that the linear system with coefficient matrix Q is easily solvable, and
the singular values of the matrix A− 1

2BQ− 1
2 ∈ Rn×m are tightly clustered, or in

other words, Q should be a good preconditioner to the matrix BTA−1B ∈ Rm×m.

3. Convergence Analysis of DPSS Method

Now, we turn to study the convergence of the diagonal preconditioned shift-
splitting iteration method. Note that the iteration matrix of the proposed method
is

TDPSS =

(1 + α)A B C
−BT αQ 0
−CT 0 (1 + α)D

−1(α− 1)A −B −C
BT αQ 0
CT 0 (α− 1)D

 .(3)

Let ρ(TDPSS) denote the spectral radius of TDPSS . To study the convergence
of the diagonal preconditioned shift-splitting iteration, we first give the following
lemma.

Lemma 3.1. Let A and D be symmetric positive definite matrices, and B have
full row rank. Let TDPSS be defined as in (3). If λ is an eigenvalue of TDPSS,
then λ ̸= ±1.

Next theorem could be proved similar in [4] for the convergence of the diagonal
preconditioned shift splitting scheme proposed in this paper.
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Theorem 3.2. Let A ∈ Rn×n and D ∈ Rp×p be symmetric positive definite
matrices and B ∈ Rn×m has full row rank, and let α be a positive number. Then,
we have

ρ(TDPSS) < 1, for all α > 0.

We propose using the Krylov subspace method like GMRES, or its restarted
version GMRES(m) to accelerate the convergence of the iteration. It is easy to
see that the linear system Au = b is equivalent to the linear system [5]

(I − TDPSS)u = P−1
DPSSAu = P−1

DPSSb.

4. Numerical Results

In practical computations, we use left preconditioning with restarted GMRES(♯)
as the Krylov subspace method. Here, the integer ♯ in GMRES(♯) denotes that
the algorithm is restarted after every ♯ iterations. In this paper, we take ♯ = 30.
All runs are started from the initial zero vector and terminated if the current

iterations satisfy ERR = ∥r(k)∥2

∥r(0)∥2
≤ 10−6, or if the prescribed iteration number

kmax = 5000 is exceeded. All runs are performed in MATLAB R2015a on an Intel
Core i3 Laptop with 4G RAM. We consider two cases of the DPSS method as
follows:
• Case I: Q = Im,
• Case II: Q = βBTB for β = 0.001.

Example 4.1. By the finite difference scheme of the Stokes problem, the
submatrices of the coefficient matrix in the double saddle point problems have the
following form

A =

(
I ⊗ T + T ⊗ I 0

0 I ⊗ T + T ⊗ I

)
∈ R2q2×2q2 , B =

(
I ⊗ F
F ⊗ I

)
∈ R2q2×q2 ,

D = I ⊗ T + T ⊗ I ∈ Rq2×q2 , C =

(
I ⊗ F
F ⊗ I

)
∈ R2q2×q2 ,

where T = ν
h2 tridiag(−1, 2,−1) ∈ Rq×q, F = 1

h tridiag(−1, 1, 0) ∈ Rq×q, with ⊗
being the Kronecker product symbol and h = 1

q+1 the discretization mesh size.

In Tables 1 and 2, we list the numerical results corresponding to the two ν,
i.e. ν = 0.1, 0.01. For each ν, three different q are used, i.e. q = 8, 16, 24. The
parameter α in the PDPSS is taken the same the viscosity ν. In these tables, I,
PDPSS and PHSS denote the GMRES(30) method without preconditioning, with
the left DPSS preconditioning and with the left HSS preconditioning, respectively.
IT, CPU and ERR stand for the iteration numbers, the elapsed CPU times (in
seconds) and the relative error, respectively. To demonstrate efficiency of diagonal
preconditioned shift-splitting method, the HSS preconditioner is considered as
follows

PHSS =

 αI +A 0 0
0 αI 0
0 0 αI +D

 αI B C
−BT αI 0
−CT 0 αI

 .
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Table 1. Numerical results for solving Example 4.1 with ν = 0.1.

Grid I PDPSS PHSS

Case I Case II

8× 8
IT 7(6) 1(4) 1(3) 3(29)

CPU 0.347 0.031 0.023 2.047
ERR 9.7061e-07 5.4733e-07 5.7328e-07 6.3789e-07

16× 16
IT 12(21) 1(5) 1(4) 6(25)

CPU 7.245 1.500 1.400 111.821
ERR 9.7001e-07 3.6912e-08 4.0800e-08 9.97071e-07

24× 24
IT 24(27) 1(5) 1(4) †

CPU 66.679 12.513 9.156 †
ERR 9.9045e-07 6.3548e-08 1.7903e-07 †

Table 2. Numerical results for solving Example 4.1 with ν = 0.01.

Grid I PDPSS PHSS

Case I Case II

8× 8
IT 47(26) 1(2) 1(2) 3(29)

CPU 2.757 0.013 0.014 2.103
ERR 9.9691e-07 4.3954e-07 3.7612e-09 8.8729e-07

16× 16
IT 95(21) 1(2) 1(2) 7(3)

CPU 60.123 0.477 0.461 129.335
ERR 9.9886e-07 5.3702e-07 7.4961e-09 8.60139e-07

24× 24
IT 124(18) 1(2) 1(2) †

CPU 352.326 4.067 4.205 †
ERR 9.9951e-07 6.3462e-07 1.2512e-08 †

References

1. Z. Z. Bai, J. F. Yin and Y. F. Su, A shift-splitting preconditioner for non-Hermitian positive
definite matrices, J. Comput. Math. 24 (2006) 539–552.

2. F. P. A. Beik and M. Benzi, Iterative methods for double saddle point systems, SIAM J.

Matrix Anal. Appl. 39 (2) (2018) 902–921.
3. M. Benzi and G. H. Golub, A preconditioner for generalized saddle point problems, SIAM J.

Matrix Anal. Appl. 26 (2004), 20–41.
4. M. M. Izadkhah, Shift-splitting preconditioners for augmented systems with block 3×3 struc-

ture, 48th Annual Iranian. Mathematics Conference, Bu-Ali Sina University, Hamedan, Iran,
(2017) pp. 22–25.

5. Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed., Society for Industrial and
Applied Mathematics, Philadelphia, 2003.

E-mail: izadkhah@birjandut.ac.ir

319

mailto:izadkhah@birjandut.ac.ir




The 51st Annual Iranian Mathematics Conference University of Kashan, 15–20 February 2021

Computation of the Eigenvalues of the Sturm-Liouville
Problem Using the Mittag-Leffler Function

Mohammad Jafari∗

Department of Science, Payame Noor University, P. O. BOX 19395-3697, Tehran, Iran

Abstract. In this work, we have presented a method for obtaining the eigen-
values of the Sturm-Liouville fourth order problem using the Mittag-Leffler
function and its the integral representation.

Keywords: Mittag-Leffler function, Sturm-Liouville problem,
Asymptotic form.
AMS Mathematical Subject Classification [2010]: 26A33,
65Q10.

1. Introduction

The well-known Sturm-Liouville problems with integer derivatives have evolved
over two centuries as an interesting and important field of research due to their
importance in many areas of science, engineering and mathematics: see [2] and
references therein. However, although a huge number of papers and books have
been published in this area of research.

The main our purpose are to investigate and discuss on eigenvalues of Sturm-
Liouville 4 order using the Mittag-Leffler. Here, we recall some definitions, nota-
tions and properties of fractional calculus theory used in this work.

1.1. Laplace Transform.

Definition 1.1. The Laplace transform of a function f(t), defined for all real
numbers t ≥ 0, is the function F (s), which is a unilateral transform defined by

L {f(t)} =
∫ ∞

0

e−stf(t)dt = F (s),

where s is a complex number frequency parameter.

Theorem 1.2. [1] p-Laplace transform of Dα
p f(t) is defined as follows:

L {f ′(t)} = sF (s)− f(0).

Theorem 1.3. [1] (p-convolution theorem)

L {f ∗ g} = L {f}L {g}.

Theorem 1.4. [1] If f(t) is 4-differentiable, then we have

L {f (4)(t)} = s4F (s)− s3f(0)− s2f ′(0)− sf ′′(0)− f ′′′(0).
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1.2. Mittage-Leffler Function and Theirs Properties.

Definition 1.5. [3] The 2-parameter Mittage-Leffler is defined for z, β ∈
C,ℜ(α) > 0,

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
.

Lemma 1.6. [3] ℜ(α > 0), the inverse Laplace transform of some spacial
functions are as below:

L −1{ sα

s(sα − λ)
} = Eα(λt

α),

L −1{ s
α−β

sα − λ
} = tβ−1Eα,β(λt

α),

L −1{ k!sα−β

(sα − λ)k+1
} = tkα+β−1E

(k)
α,β(λt

α),

where ℜ(s) > |λ| 1α .

2. Sturm-Liouville Problem

Theorem 2.1. Let us consider the SL problem as follows:

y(4)(t)) = λy,(1)

y(0) = y(1) = y′′(0) = y′′(1) = 0,(2)

where y ∈ ACn[a, b]. The eigenvalues of SL problem (1) and (2) is

λ = (nπ)4, n = 1, 2, . . . .(3)

Proof. Apply the Laplace transform Theorem 1.4 on (1), we have

Y (s) = c1
s3

s4 − λ
+ c2

s2

s4 − λ
+ c3

s

s4 − λ
+ c4

1

s4 − λ
.(4)

Now by Lemma 1.6 on (4) we have

y(t) =c1E4,1

(
λt4
)
+ c2tE4,2

(
λt4
)
+ c3t

2E4,3

(
λt4
)
+ c4t

3E4,4

(
λt4
)
.

In other hand

y′′(t) =c1λt
2E4,3

(
λt4
)
+ c2λt

3E4,4

(
λt4
)
+ c3E4,1

(
λt4
)
+ c4t

2E4,2

(
λt4
)
.

Finally by imposing the boundary conditions (2) we have
c2E4,2

(
λ
)
+ c4E4,4

(
λ
)
= 0,

c2λE4,4

(
λ
)
+ c4E4,2

(
λ
)
= 0.

We obtain

E2
4,2

(
λ
)
− λE2

4,4

(
λ
)
= 0.(5)
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From the Mittage-Leffler integral representation [4], we have the following
relation

Eα,β(z) =
1

2πi

∫
C

sα−β

sα − z
esds,

where C is a loop which starts and ends at −∞ and encircles the circular disc
|t| ≤ |z| 1α in the positive sense: −π ≤ arg s ≤ π.

We see that

E4,2

(
λ
)
=

1

2πi

∫
C

s2

s4 − λ
esds.

For solving this integral, we use Cauchy’s residue theorem.

s4 − λ = 0 =⇒ sk =
(
λ
) 1

4

ei(
kπ
2 ), k = . . . ,−1, 0, 1, . . . .

Acceptable poles are

s−1 = −i
(
λ
) 1

4

, s0 =
(
λ
) 1

4

, s1 = i
(
λ
) 1

4

, s2 = −
(
λ
) 1

4

.

Thus

E4,2

(
λ
)
=

1

4

2∑
i=−1

esi

si
.

After calculations we have

E4,2

(
λ
)
=

1(
λ
) 1

4

{
sinh

(
λ

1
4

)
+ sin

(
λ

1
4

)}
.(6)

In similarly on E4,4

(
λ
)
, we obtain

E4,4

(
λ
)
=

1(
λ
) 3

4

{
sinh

(
λ

1
4

)
− sin

(
λ

1
4

)}
.(7)

With substitution (6) and (7) in (5) we get

1(
λ

) 1
2

{
4 sinh

(
λ

1
4

)
sin
(
λ

1
4

)}
= 0,

Thus (3) is obtained. □
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1. Introduction

Consider the distributed control problems of the form (See [6]):

min
y,u

1

2

∫ T

0

∫
Ω

|y(x, t)− yd(x, t)|2dxdt +
ν

2

∫ T

0

∫
Ω

|u(x, t)|2dxdt,

s.t.
∂

∂t
y(x, t)−∆y(x, t) = u(x, t) in QT ,

y(x, t) = 0 on ΣT ,

y(x, 0) = y(x, T ) on ∂Ω,

u(x, 0) = u(x, T ) in Ω,

where Ω is an open and bounded domain in Rd (d ∈ {1, 2, 3}) and its boundary ∂Ω
is Lipschitz-continuous. We introduce the space-time cylinder QT = Ω×(0, T ) and
its lateral surface ΣT = ∂Q× (0, T ). Here, ν is a regularization parameter, yd(x, t)
is a desired state and T > 0. We may assume that yd(x, t) is time-harmonic, i.e.,
yd(x, t) = yd(x)e

iωt, with ω = 2πk/T for some k ∈ Z. Substituting yd(x, t) in the
problem and using finite element discretization of the problem method we get the
following system of linear equations M 0 K − iωM

0 νM −M
K + iωM −M 0

ȳū
p̄

 =

Mȳd
0
0

 ,(1)

where M ∈ Rm×m and K ∈ Rm×m are the mass and stiffness matrices, respec-
tively. Both of the matricesM and K are symmetric positive definite (SPD). From
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the second equation in (1) we have, ū = p̄/ν and by substituting ū in the third
equation, we obtain the following system{

Mȳ + (K − iωM)p̄ =Mȳd,
(K + iωM)ȳ − 1

νMp̄ = 0,

which is itself equivalent to

Ax =

(
M

√
ν(K − iωM)√

ν(K + iωM) −M

)(
ȳ
q̄

)
=

(
ŷd
0

)
= b,(2)

where q̄ = p̄/
√
ν and ŷd =Mȳd.

In [2], Krendl proposed the real block diagonal and the alternative indefi-
nite preconditioners for the system (2). Zheng et al. in [6] proposed the block
alternating splitting (BAS) iteration method which can be summarized as{

(αV +H1)x
k+ 1

2 = (αV − S1)x
k + P1b,

(αV +H2)x
k+1 = (αV − S2)x

k+ 1
2 + P2b,

where α > 0, V = blkdiag(M,M),

H1 = blkdiag(M,−M), H2 = blkdiag(
√
νK,
√
νK),

S1 =
1

1 + ω2ν

(
−iωνK

√
νK

−
√
νK iωνK

)
and S2 =

(
i
√
νωM −M
M −i

√
νωM

)
.

Numerical results presented in [6] show that the BAS iteration method outper-
forms the GMRES method [4]. They also showed that the parameter α = 1+ νω2

often gives quite suitable results. Therefore, if νω2 ≪ 1, then α = 1 is a good
choice.

In this paper we present a new iterative method for the system (2) and inves-
tigate its convergence properties.

2. The New Iterative Method

Using the idea of [5], the system (2) can be written in the 4-by-4 block real system

Ax ≡


M 0

√
νK ω

√
νM

0 M −ω
√
νM

√
νK√

νK −ω
√
νM −M 0

ω
√
νM

√
νK 0 −M




ℜ(ȳ)
ℑ(ȳ)
ℜ(q̄)

ℑ(q̄)

 =


ℜ(ŷd)
ℑ(ŷd)

0

0

 ≡ b̂.(3)

We define the matrices G1 and G2 as following

G1 =


I 0 0 ω

√
νI

0 I −ω
√
νI 0

0 −ω
√
νI −I 0

ω
√
νI 0 0 −I

 , G2 =
√

1 + νω2


0 0 I 0
0 0 0 I
I 0 0 0
0 I 0 0

 ,

where I ∈ Rm×m is the identity matrix. Then, the system (3) can be equivalently
rewrite as

(G1M+

√
ν√

1 + νω2
G2K̂)x = b̂.(4)

326



A NEW ITERATIVE METHOD FOR SOLVING A CLASS

where

M =


M 0 0 0
0 M 0 0
0 0 M 0
0 0 0 M

 and K̂ =


K 0 0 0
0 K 0 0
0 0 K 0
0 0 0 K

 .

It is easy to see that G1 is nonsingular and

G−1
1 =

1

1 + νω2


I 0 0 ω

√
νI

0 I −ω
√
νI 0

0 −ω
√
νI −I 0

ω
√
νI 0 0 −I

 ,

and

G := G−1
1 G2 =

1√
ν(1 + νω2)


0 ωνI

√
νI 0

−ωνI 0 0
√
νI

−
√
νI 0 0 −ωνI

0 −
√
νI ωνI 0

 .

Moreover, we have G2 = −I with I being the identity matrix of order 4m, G−1 =
−G and GT = −G. Premultiplying both sides of the system (4), gives the system

Bx = (M+ GK)x = b,(5)

where K =
√
νK̂/
√
1 + νω2 and b = G−1

1 b̂. Given α > 0, we rewrite Eq. (5) as

(αI +M)x = (αI − GK)x+ b.(6)

We also rewrite Eq. (5) as

G(αI +K)x = (αG −M)x+ b.

Premultiplying both sides of this equation by G−1 and having in mind that G−1 =
−G, gives

(αI +K)x = (αI + GM)x− Gb.(7)

Now, using Eqs. (6) and (7) we establish the Alternating SPD and Scaled sym-
metric positive semidefinite splitting (ASSS) method for solving the system (5)
as {

(αI +M)x(k+ 1
2 ) = (αI − GK)x(k) + b,

(αI +K)x(k+1) = (αI + GM)x(k+ 1
2 ) − Gb,

(8)

where x(0) is an initial guess. Eliminating x(k+ 1
2 ) from Eq. (8) yields the following

stationary iterative method

x(k+1) = Tαx(k) + f ,

where

Tα = (αI +K)−1(αI + GM)(αI +M)−1(αI − GK),
is the iteration matrix of the ASSS method and f = α(αI + K)−1(I − G)(αI +
M)−1b. On the other hand, if we define

P =
1

α
(I + G)−1(αI +M)G(αI +K), Q =

1

α
(I + G)−1(αG −M)(αI − GK),
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then B = P − Q and Tα = P−1Q. Hence, the matrix P can be used as pre-
conditioner for the system (5). Since G−1 = −G, in the implementation of the
preconditioner P in a Krylov subspace method like GMRES we only need solving
two systems with the matrices αI + K and αI +M along with two matrix mul-
tiplications with the matrices G and I + G. These systems can be solved exactly
using the Cholesky factorization of the matrices αI + K and αI +M , or inex-
actly using the conjugate gradient (CG) method. The following theorem states
the convergence of the ASSS method.

Theorem 2.1. Assume that the matrices K and M are symmetric positive
semidefinite and SPD matrices, respectively. For every α > 0, we have

ρ(Tα) ≤ γα = max
µ∈σ(M)

√
α2 + µ2

α+ µ
< 1,

which shows that the ASSS iteration method converges unconditionally. Here, σ(.)
and ρ(.) denote the spectrum and the spectral radius of a matrix, respectively.

Proof. Evidently the matrix Tα is similar to the matrix RαSα, where Rα =
(αI + GM)(αI +M)−1 and Sα = (αI − GK)(αI +K)−1. So we have

ρ(Tα) = ρ(RαSα) ≤ ∥RαSα∥2 ≤ ∥Rα∥2∥Sα∥2.
On the other hand, it follows from G2 = −I, GT = −G andMG = GM that

∥Rα∥22 = ρ
(
(αI +M)−1(αI −MG)(αI + GM)(αI +M)−1

)
= ρ((αI +M)−1(α2I + αMG − αGM−MG2M)(αI +M)−1)

= ρ
(
(αI +M)−2(α2I +M2)(αI +M)−1

)
= max

µ∈σ(M)

α2 + µ2

(α+ µ)2
= max
µ∈σ(M)

α2 + µ2

(α+ µ)2
< 1.(9)

In the same way, we deduce that

∥Sα∥22 = max
λ∈σ(K)

α2 + λ2

(α+ λ)2
≤ 1.(10)

Therefore, from equations (9) and (10) we see that ρ(Tα) ≤ γα < 1, which com-
pletes the proof. □

Similar to [1, Corollary 2.1] the minimum value of the γα (upper bound of the
ρ(Tα)) is obtained at α∗ =

√
µminµmax, where µmin and µmax are the smallest and

largest eigenvalues of the matrix M , respectively.

3. Numerical Results

We consider the distributed control problem in two-dimensional case. The com-
putational domain is the unit square Ω = (0, 1)× (0, 1) ∈ R2. The target state is
chosen as

yd(x, y) =

{
(2x− 1)2(2y − 1)2, if (x, y) ∈ (0, 12 )× (0, 12 ),
0, otherwise.

We present the numerical results for above example. To generate the system (1)
we have used the codes of the paper [3] which is available at

www.numerical.rl.ac.uk/people/rees/.
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Table 1. Numerical results for ν = 10−6 and ω = 103.

h Method αopt Iters CPU Err

2−6 ASSS 0.0003 48 0.30 8.3e-9
BAS 2.1 77 0.55 9.1e-9

h Method αopt Iters CPU Err
2−7 ASSS 0.00003 51 1.66 7.5e-9

BAS 1.7 76 4.21 9.3e-9

We compare the numerical results of the ASSS method with those of the BAS
iterative method. The iteration is terminated as soon as the residual 2-norm is
reduced by a factor of 108. We always use a zero vector as an initial guess. The
inner systems are solved using the Cholesky factorization of the coefficient matrix
in conjunction with the symmetric minimum degree reordering using the symamd.m
command of MATLAB. In both of the methods we have used the optimal value
of the parameter α (denoted by αopt) which gives the minimum number of itera-
tions. The value of α∗ was computed experimentally. All runs are implemented in
MATLAB R2017, equipped with a Laptop with 1.80 GHz central processing unit
(Intel(R) Core(TM) i7-4500), 6 GB RAM and Windows 7 operating system.

Numerical results for ν = 10−6, ω = 103 and h = 26, 27 have been presented
in Table 1. In this table, “Its” and “CPU” stand for the number of iterations and
the CPU time (in seconds), respectively. To show the accuracy of the computed
solution we have also presented the relative error (denoted by “Err”). As we see,
ASSS method outperforms the BAS iteration method.
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1. Introduction

In this paper, we are concerned with the generalized coupled Sylvester tensor
equations

n∑
j=1

Xj ×1 Aij1 ×2 Aij2 × · · · ×d Aijd = Ei, i = 1, 2, . . . , n,(1)

where the matrices Aijl ∈ Cnijl×nijl (i, j = 1, 2, . . . , n and l = 1, 2, . . . , d), tensors
Ei ∈ Cni1×···×nid(i = 1, 2, . . . , n) are known and Xj ∈ Cnj1×···×njd(j = 1, 2, . . . , n)
are unknown tensors and the j-mode product ×j will be defined later. The (cou-
pled) Sylvester tensor equations often arise from the finite element, finite difference
or spectral methods [3]. In [1], Khosravi Dehdezi and Karimi proposed the ex-
tended conjugate gradient squared and conjugate residual squared methods for
solving (1). In this paper, tensors are written as calligraphic capital letters such
as A,B, . . . . Let N be a positive integer, an order N real tensor A ∈ R×I1×···×IN

is the following multidimensional array

A = (ai1i2···N )(1 ≤ ij ≤ nj , j = 1, 2, . . . , N), ai1i2···N ∈ R,

with H(H = n1n2 . . . nN ) entries [2]. Each entry of A is denoted by ai1i2···N . O
with all entries zero denote the zero tensor. With this definition of tensor, matrices
are tensors of order two, where signified by capital letters, e.g., A. As usual, C
denotes the complex number field.

Definition 1.1. [2] The operators ×k(k = 1, 2, . . . , n) represent the k-mode
product of a tensor X with a matrix A ∈ Cm×nk defined as follows

∗Speaker

331



E. Khosravi Dehdezi and S. Karimi

(X ×k A)i1i2···k−1jik+1···d =

nk∑
ik=1

xi1i2···k−1ikik+1···dajik .

Definition 1.2. [2] Let N,M be positive integers. The inner product of two
tensors X ,Y ∈ CI1×···×IN×J1×···×JM is defined by

< X ,Y >=
JM∑
jM=1

· · ·
J1∑
j1=1

IN∑
iN=1

· · ·
I1∑
i1=1

xi1...iN j1...jM ȳj1...jM i1...iN ,

so the tensor norm that generated by this inner product is

||X || =
√
< X ,X > =

√√√√ JM∑
jM=1

· · ·
J1∑
j1=1

IN∑
iN=1

· · ·
I1∑
i1=1

|xi1...iN j1...jM |2,

which is the tensor Frobenius norm. We say that X ,Y are orthogonal if < X ,Y >=
0.

We define a new inner product which is needed in the following.

Definition 1.3. Let Hj , j = 1, 2, . . . , n be the linear space Cnj1×···×njd , j =
1, 2, . . . , n. Define

L : H1 ×H2 × · · · ×Hn → H1 ×H2 × · · · ×Hn

L(X1,X2, . . . ,Xn) =


L1(Xj)
L2(Xj)
. . .
Ln(Xj)

 ,

where

Li(Xj) =
n∑
j=1

Xj ×1 Aij1 ×2 Aij2 × · · · ×d Aijd, i = 1, 2, . . . , n.

According to this definition, the linear system (1) can be rewritten as

L(X1,X2, . . . ,Xn) = E , E =
(
E1T , E2T , . . . , EnT

)T
.(2)

The remainder of this paper is organized as follows. In Section 2,the higher-
order Bi-CGSTAB and Bi-CRSTAB methods are obtained according to tensor
form for solving the tensor equations (1). Finally in Section 3, we show compara-
tive results.

2. Higher Order Bi-CGSTAB and Bi-CRSTAB Methods to Solve (1)

Two of the important iterative methods for solving large sparse non-Hermitian
linear systems of equations

Ax = b, A ∈ Rn×n, x ∈ Rn.
are the bi-conjugate gradient (Bi-CG) and bi-conjugate residual (Bi-CR) methods
based on the non-symmetric Lanczos procedure. Van der Vorst in [4] introduced
one of the most successful improvements, a fast and smoothly convergent variant of
Bi-CG that avoids calculating the matrix A∗, known as the Bi-CGSTAB algorithm.
In exact arithmetic, the Bi-CGSTAB algorithm terminates with a true solution
after j ≤ n steps [4]. In the following, we present the higher order Bi-CGSTAB
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(HOBi-CGSTAB) and higher order Bi-CRSTAB (HOBi-CRSTAB) algorithms to
solve the generalized coupled Sylvester tensor Eq. (1). The mode-k matricization
of a tensor X ∈ Cn1×n2×···×nM is denoted by X (k) and the mode-k fibres are
arranged to be the columns of the resulting matrix. The operator “vec” denotes the
columns of a matrix or tensor to form a vector. For a matrix A = (a1, a2, . . . , an) =
(aij) ∈ Cm×n and a matrix B, A⊗B = (aijB) is a Kronecker product and vec(A)
is a vector defined by vec(A) = (aT1 , a

T
2 , ..., a

T
n )
T , where ai, 1 ≤ i ≤ n is the i-th

column of A and for tensor X ∈ CI1×I2×···×IM , X (1) is the mode-1 matricization
of the tensor X [2]. By using the property of the Kronecker product it can be
shown that tensor Eq. (1) are equivalent to the following equations

n∑
j=1

Gijvec(Xj) = vec(Ei), Gij = Aijd ⊗ · · · ⊗Aij2 ⊗Aij1, i, j = 1, 2, . . . , n,

and ⊗ stands Kronecker product.
Thus, the general coupled Sylvester tensor Eq. (1) can be transformed into

the following linear system
G11 G12 . . . G1n

G21 G22 . . . G2n

. . . . . . . . . . . .
Gn1 Gn2 . . . Gnn


︸ ︷︷ ︸

A


vec(X1)
vec(X2)
. . .

vec(Xn)


︸ ︷︷ ︸

x

=


vec(E1)
vec(E2)
. . .

vec(En)


︸ ︷︷ ︸

b

.

It is obvious that the size of this linear system is very large even for small values
of N and thus using of the Bi-CGSTAB and Bi-CRSTAB algorithms to solve the
linear system Ax = b instead of corresponding tensor Eq. (1) will consume much
more computer time and memory space as the dimension increases. To overcome
this problem, we propose the HOBi-CGSTAB and HOBi-CRSTAB algorithms for
solving the tensor Eq. (1). For this purpose, we first provide the common Bi-
CGSTAB and Bi-CRSTAB algorithms for solving Ax = b as follows. Let Xi,k and
Pi,k ∈ CI1×···×IN , i, j = 1, . . . , n, k = 0, 1, 2, . . . , be the k-th equation solution
tensor and k-th search direction tensor, respectively. By taking

Ri,k = Ei − Li(Xi,k), Qi,k = Li(Pj,k), Si,k = Ri,k − αkQi,k,

Wi,k = Li(Sj,k), Ri,k+1 = Si,k − ωkWi,k,

in step k and using variables of Bi-CGSTAB and Bi-CRSTAB algorithms and
choosing R∗

i,0 ∈ CI1×···×IN , i = 1, 2, . . . , n, arbitrary, the following vectors can be
rearranged with the corresponding tensors. Set

b =


vec(E1)
vec(E2)
. . .

vec(En)

 , xk =


vec(X1,k)
vec(X2,k)

. . .
vec(Xn,k)

 ,(3)

pk =


vec(P1,k)
vec(P2,k)

. . .
vec(Pn,k)

 , wk =


vec(W1,k)
vec(W2,k)

. . .
vec(Wn,k)

 ,
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qk =


vec(Q1,k)
vec(Q2,k)

. . .
vec(Qn,k)

 , rk =


vec(R1,k)
vec(R2,k)

. . .
vec(Rn,k)

 , r∗0 =


vec(R∗

1,0)
vec(R∗

2,0)
. . .

vec(R∗
n,0)

 ,(4)

where Ci,Xi,k,Pi,k,Qi,k,Vi,k,Wi,k,Ri,k,R∗
i,0 ∈ Cni1×···×nid for i = 1, 2, . . . , n and

k = 0, 1, 2, . . . . By using Eqs. (3) and (4), we have the following relation

<rk+1, r
∗
0 >=

⟨
vec(R1,k+1)
vec(R2,k+1)

. . .
vec(Rn,k+1)

 ,


vec(R∗

1,0)
vec(R∗

2,0)
. . .

vec(R∗
n,0)

⟩
=

n∑
i=1

< vec(Ri,k+1), vec(R∗
i,0) >

=
n∑

i=1

< Ri,k+1,R∗
i,0 > .

and similarly

< wk, wk > =
n∑
i=1

<Wi,k,Wi,k >,< qk, r
∗
0 >

=

n∑
i=1

< Qi,k,R∗
i,0 >,< wk, sk >

=

n∑
i=1

<Wi,k,Si,k > .

Inspired by common Bi-CGSTAB and Bi-CRSTAB, the tensors Pi,k,Qi,k are
auxiliary tensors and Ri,k, i = 1, 2, . . . , n are k-th residual of i-th equation, i.e.
Ri,k = Ei − Li(Xj,k), i = 1, 2, . . . , n, k = 0, 1, 2, . . . .

In regard to (2), the k-th residual is as Rk = E − L(X1,k,X2,k, . . . ,Xn,k).
Therefore, the residual norm is ||Rk||∗ =

√∑n
i=1 ||Ri,k||2. According to the above

discussions the HOBi-CGSTAB and HOBi-CRSTAB algorithms for solving the
generalized coupled Sylvester tensor Eq. (1), can be presented as follows.
Algorithm (HOBi-CGSTAB)
Input matrices Aijl and tensors Xj,0, Ei for i, j = 1, 2, . . . , n and l = 1, 2, . . . , d.

(1) Set Pi,0 = Ri,0 = Ei − Li(Xj,0).
(2) Choose arbitrary tensors R∗

i,0 such that
∑n
i=1 < Ri,0,R∗

i,0 > ̸= 0.
(3) For i = 1, 2, . . . , n and k = 0, 1, . . . , until ||Rk||∗ small enough Do
(4) Qi,k = Li(Pj,k), αk = (

∑n
i=1 < Ri,k,R∗

i,0 >)/(
∑n
i=1 < Qi,k,R∗

i,0 >).
(5) Si,k = Ri,k − αkQi,k, Wi,k = Li(Sj,k),

ωk = (
∑n
i=1 <Wi,k,Si,k >)/

∑n
i=1 <Wi,k,Wi,k > .

(6) Xi,k+1 = Xi,k + αkPi,k + ωkSi,k, Ri,k+1 = Si,k − ωkWi,k.

(7) βk = (
∑n

i=1<Ri,k+1,R∗
i,0>∑n

i=1<Ri,k,R∗
i,0>

)(αk

ωk
), Pi,k+1 = Ri,k+1 + βk(Pi,k − ωkQi,k).

(8) End Do

Due to the similarity of HOBi-CRSTAB with the HOBi-CGSTAB algorithm and
the limited number of pages of the submitted article, writing the HOBi-CRSTAB
algorithm is avoided.
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Proposition 2.1. Let αk, βk and ωk be the parameters obtained by HOBi-
CGSTAB. The iterates in HOBi-CGSTAB satisfy the following properties

i)
∑n
j=1 ||Rj,k+1||2 ≤

∑n
j=1 ||Sj,k||

2
,

ii)
∑n
j=1 < Sj,k,R∗

j,0 >= 0,

iii) ωk minimizes
∑n
j=1 ||Rj,k+1||2,

iv) Ri,k = Ei − Li(Xj,k),
where i = 1, 2, . . . , n and k = 0, 1, 2, . . . .

3. Numerical Examples

In this section, due to existing restrictions, we give only a numerical example to
show the efficiency of the HOBi-CGSTAB and HOBi-CRSTAB algorithms.

Example 3.1. Consider the generalized coupled Sylvester tensor equation{
X ×1 A1 ×2 A2 + Y ×1 B1 ×2 B2 = E1,
X ×1 D1 ×2 D2 + Y ×1 E1 ×2 E2 = E2,

with

A1 = ones(m,m) + diag(3.5 + diag(rand(m))),

A2 = diag(1.5 + diag(rand(n))),

B1 = ones(m,m)− diag(1.5 + diag(rand(m))),

B2 = diag(2 + diag(rand(n))),

D1 = 1.5× ones(m,m) + diag(1 + diag(rand(m))),

D2 = diag(1.5 + diag(rand(n))),

E1 = ones(m,m)− diag(2.5 + diag(rand(m))),

E2 = diag(1.5 + diag(rand(n))).

For m = 50 and n = 40, we apply the mentioned algorithms to compute the
approximate solution (Xk,Yk). The numerical results are depicted in Figure 1,

where Rk = log10

√
||E1 − L1(Xk,Yk)||2 + ||E2 − L2(Xk,Yk)||2. As shown in Figure

1, the HOBi-CGSTAB and HOBi-CRSTAB algorithms have more superiority over
the other algorithms.

Figure 1. Comparison of residuals for Example 3.1.
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Abstract. In the present study, a habrid of finite difference method and a
Legendre-collocation spectral method are applied for solving the linear and

nonlinear time-fractional parabolic integro-differential equations by the Ca-
puto fractional derivative. In the proposed method, for space-dependent par-
tial differential equations is used the finite difference and the time-dependent
integro-differential equation is applied the spectral method. The time and

space variables are on the basis of Legendre-Gauss (LG) interpolation points.
We have investigated the convergence analysis of the proposed method on the
L∞-norm and L2-norm while it is not mentioned in the paper due to high
volume of calculations.
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1. Introduction

In this paper, we consider the following initial-boundary-value problem domains
with memory term

Dα
+ut(x, t) +

∫ t

0

k(x, t− τ)u(x, τ)dτ − (uβ(x, t))xx = f(x, t),(1)

(x, t) ∈ Ω× [0, T ], 0 < α ≤ 1,

u(x, 0) = u0(x), x ∈ Ω,(2)

u(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ],(3)

where ∂Ω is the boundary of Ω and β = 1, 2. The functionsf , k and u0 are known
and u is unknown function. We assumed that f , k to be sufficiently smooth and
satisfies the Lipschitz condition on Ω× [0, T ]. Here, Dα

+ denotes the Caputo time-
fractional derivative. We set Ω = [1, 1]. The basic idea of Legendre-collocation
spectral method for solving time-fractional parabolic integro-differential equation
has been proposed in [1, 2, 3, 4, 5] and these references.
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2. Implementation Numerical Scheme

Before using collocation methods, we apply of Caputo fractional derivatives for the
fractional derivative of u(x, t) then, the sake of applying the theory of orthogonal

polynomials, we use the variable transformations t =
T (τ + 1)

2
, τ ∈ [−1, 1] and

s =
T (y + 1)

2
, y ∈ [−1, τ ] to rewrite problems (1)-(3) as follows

T

2Γ(1− α)

∫ τ

−1

∂v(x, y)

∂y

dy

(τ − y)α
+
T

2

∫ τ

−1

K(x, τ − y)v(x, y)dy(4)

= (vβ(x, τ))xx + g(x, τ), x, τ ∈ [−1, 1], 0 < α ≤ 1,

where

K(τ − y) := k

(
T (1 + τ)

2
− T (y + 1)

2

)
, v(x, τ) := u(x,

T (τ + 1)

2
),

g(x, τ) := f(x,
T (τ + 1)

2
),

and v(x,−1) := u0(x). Denote the collocation points {(xj , τi)}N,Mj,i=0 be the set of

Legendre-Gauss-Lobatto. Equation (4) at {(xj , τi)} is
T

2Γ(1− α)

∫ τi

−1

∂v(xj , y)

∂y

dy

(τ − y)α
+
T

2

∫ τi

−1

K(xj , τi − y)v(xj , y)dy(5)

= (vβ(xj , τi))xx + g(xj , τi), x, τ ∈ [−1, 1], 0 < α ≤ 1.

By integrating of vτ (x, τ) and hold at {(xj , τi)}N,Mj,i=0, we obtain

v(xj , τi) = u0(xj) +

∫ τi

−1

∂v(xj , y)

∂y
dy.(6)

Gauss quadrature formulas will be used to compute the integral terms in Eqs.
(5)-(6) so, we convert the integral interval [−1, τ ] to a fixed interval [−1, 1]
T (τ i + 1)

4Γ(1− α)

∫ 1

−1

∂v(xj , y(τi, θ))

∂θ

dθ

(τ − y(τi, θ))α
+
T (τ i + 1)

4

∫ 1

−1

K(xj , τi − y(τi, θ))

v(xj , y(τi, θ))dθ = (vβ(xj , τi))xx + g(xj , τi), x, τ ∈ [−1, 1], 0 < α ≤ 1,

v(xj , τi) = u0(xj) +
(τi + 1)

2

∫ 1

−1

∂v(xj , y(τi, θ))

∂θ
dθ,

by using the following variable change

y(τi, θ) =
τi + 1

2
θ +

τi − 1

2
, θ ∈ [−1, 1].

By applying the (p+1)-point Legendre-Gauss type quadrature formula, using
the notes and weights represented via {θk, wk}pk=0, we estimate the integral to
obtain

T (τ i + 1)

4Γ(1− α)

p∑
k=0

∂v(xj , y(τi, θk))

∂θ

1

(τ − y(τi, θk))α
wk(7)

+
T (τ i + 1)

4

p∑
k=0

K(xj , τi − y(τi, θk))v(xj , y(τi, θk))wk
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≈ (vβ(xj , τi))xx + g(xj , τi),

v(xj , τi) ≈ u0(xj) +
(τi + 1)

2

p∑
k=0

∂v(xj , y(τi, θk))

∂θ
wk.(8)

We consider approximation solutions as follows

v(x, τ) ≈ INMv(x, τ) =
N∑
n=0

M∑
m=0

ln(r)ρm(τ)v(xn, τm),(9)

where ln and ρm are the nth and mth Lagrange interpolation polynomials based
on the grid points {xn}Nn=0, {τm}Mm=0, respectively. Substituting these approxi-
mations Eq. (9) into Eqs. (7), (8) and appling the standard formula of numerical
differentiation for estimate the spatial derivative vxx in (7):

T (τ i + 1)

4Γ(1− α)

p∑
k=0

v(1)(xj , τi)

N∑
n=0

M∑
m=0

1

(τ − y(τi, θk))α
ln(xj)pm(y(τi, θk))wk(10)

+
T (τ i + 1)

4

p∑
k=0

v(xj , τi)

N∑
n=0

M∑
m=0

K(xj , τi − y(τi, θk))ln(xj)pm(y(τi, θk))wk

≈
V β
j+1(τi)− 2V β

j (τi) + V β
j−1(τi)

h2
+ g(xj , τi),

v(xj , τi) ≈ u0(xj) +
(τi + 1)

2

p∑
k=0

v(1)(xj , τi)

N∑
n=0

M∑
m=0

ln(xj)pm(y(τi, θk))wk.(11)

To make it easier to solve the Eqs. (10) and (11) can be written in matrix

form. Therefore, we denote Vj,i and V
(1)
j,i be the approximation of v(rj , τi) and

v(1)(rj , τi), respectively. So, we define matrix forms as in the following

V(N−1)(M+1) = vec[Vj,i], V(1)
(N−1)(M+1) = vec[V

(1)
j,i ], IVP = vec[u0(xj)],

G(N−1)(M+1) = vec[G(xj , τi)], 1 ≤ j ≤ N − 1, 1 ≤ i ≤M + 1,

where the vec operator transforms a matrix to a vector via the placement of matrix
rows below one other starting from the first to the last. Then, the linear systems
Eqs. (10) and (11) reduce to the following matrix forms of

AV(1)
(N−1)(M+1) +BV(N−1)(M+1) = EVβ(N−1)(M+1) +G(N−1)(M+1),

V(N−1)(M+1) = IVP +DV(1)
(N−1)(M+1),

in which for all 1 ≤ m,n ≤ M + 1, A = (Aij)j,i, B = (Bij)j,i, and C = (Cij)j,i,

are block matrices. That each j, i, Aij , B
i
j and Cij are diagonal matrices with

dimension of (N − 1)× (N − 1), where the entries of matrices Aij are determined
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as follows:

(Amn )i,j =
T (τ i + 1)

4Γ(1− α)

p∑
k=0

1

(τi − y(τi, θk))α
ln(xj)ρm(y(τi, θk))wk,

(Bmn )i,j =
T (τ i + 1)

4

p∑
k=0

k(xj , τi − y(τi, θk))ln(xj)ρm(y(τi, θk))wk,

(Cmn )i,j =
T (τ i + 1)

2

p∑
k=0

ln(xj)ρm(y(τi, θk))wk,

we have

E :=
1

h2


−2 1 · · · 0

1
. . .

. . .
...

...
. . .

. . . 1
0 · · · 1 −2


(N−1)×(N−1)

.

3. Numerical Results

For the following section, we use of the mentioned numerical method to solve a
numerical example. We set T = 1, p = 16. All the calculations are supported by
the software MATLAB.

Example 3.1. Consider the problem (1) with k(x, t) = ext, and the exact
solution is v(x, t) = (1− x2) sin(t).

The errors in Table 1 and 2 for the linear and nonlinear problems are given
with norm ∥e∥∞ in the collocation node points with N =M = 16.

Figure 1. (a) Exact solution forN = M = 16, β = 1, h =
0.1 and α = 0.5, (b) the error v and v(1) versus the number of
collocation points.

340



HYBRID OF FINITE DIFFERENCE AND SPECTRAL METHODS

Table 1. The errors ∥v − vM,N∥∞ for Example 3.1.

α = 0.5 α = 0.75

β h M(= N) ∥E∥∞ CPU time(s) M(= N) ∥E∥∞ CPU time(s)

1 0.1 16 3.25e−12 45.32 16 6.85e−08 61.03
0.2 16 5.91e−09 35.04 16 5.62e−07 58.67

2 0.1 16 9.32e−08 72.22 16 5.35e−06 75.29
0.2 16 5.71e−07 65.35 16 1.21e−05 69.62

Table 2. The errors ∥v(1) − v(1)M,N∥∞ for Example 3.1.

α = 0.5 α = 0.75

β h M(= N) ∥E∥∞ CPU time(s) M(= N) ∥E∥∞ CPU time(s)

1 0.1 16 3.25e−11 52.75 16 5.21e−07 67.52
0.2 16 5.91e−08 41.35 16 5.62e−06 62.23

2 0.1 16 6.73e−07 81.75 16 5.35e−05 81.36
0.2 16 7.84e−06 92.63 16 9.08e−05 92.81
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Abstract. Excessive synchronization of neurons in the brain networks can
be a reason for some episodic disorders such as epilepsy. In this paper, we
develop a machine learning method based on the least square support vector

machine to simulate controlling synchronization in a population of noise-
free and uncoupled neural oscillators. The control algorithm is based on
phase reduction and uses the probability phase distribution partial differential
equation to change the distribution of oscillators. We apply the proposed

method on a population of Hidnmarsh-Rose neural oscillators to show the
control algorithm can desynchronize the neurons efficiently.

Keywords: Phase distribution control, Neural oscillator population,
Computer simulation, Support vector machine, Partial differential
equations.
AMS Mathematical Subject Classification [2010]: 35Q92,
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1. Introduction

Epilepsy is one of the most common neurological disorders which affect patients’
lives quality significantly. Due to various symptoms of epilepsy and uncertainty
of the cause of this disorder, there is not exist a unique definition for that [1].
However, we can define epilepsy as a neurological disorder that appears by the dis-
proportionate synchronization, excessive excitation, or scanty inhibition in neural
networks of the brain. This cognitive disorder might be closely linked with abnor-
mal synchronization of neurons in the brain. Control strategies of the seizure are
divided into three main categories: anti-epileptic drugs (AEDs), resection surgery
in some acute cases and Deep Brain Stimulation (DBS). The prediction of seizure
occurrence and controlling the brain functions are the main parts of the study of
epilepsy disorder. In this study, we intend to prevent the seizures by controlling
the synchronization in neural populations. In this paper, we consider the control
algorithm proposed by Monga and Moehlis [2] and suggest an efficient numerical
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method based on least square support vector machines (LS-SVM) to control a
population of uncoupled, identical, noise-free, synchronized neural oscillator with
high accuracy and low energy consumption.

2. Background

In this section, we explain the key concepts of phase reduction briefly. Phase
reduction is a useful technique for describing a dynamical system that reduces the
dimensionality of the system to a single-phase variable θ. Consider the following
n-dimensional dynamical system [3]:

dx

dt
= F (x) + u(t), x ∈ Rn,(1)

where u(t) is the control input. This system has a stable periodic orbit with
periodic orbit T ,and we have dθ

dt = 2π
τ = λ. By using phase reduction the

aforementioned system can be written as the following one dimensional system:

θ̇ = ω + u(t)Z(θ),(2)

in which Z(θ) is phase response curve (PRC) which depends on neural models.
We can represent the population dynamics of uncoupled, identical, noise-free by
their probability distribution.

∂ρ(θ, t)

∂t
= − ∂

∂θ

(
(ω + u(t)Z(θ))ρ(θ, t)

)
.(3)

Over time, by a specific control input law, we close to a desired distribution.
The desired final probability distribution will be taken to be a traveling wave. For

this purpose, we define L2 norm as
∫ 2π

0

(
ρ(θ, t) − ρf (θ, t)

)2
dθ. According to the

derivative of L2 norm and some experimental and theoretical reasons, we take the
following proportional control input law:

u(t) = max(min(umax,−KI(t)), umin),(4)

where K is a positive scalar and we have:

I(t) = 2

∫ 2π

0

(∂ρ(θ, t)
∂θ

− ∂ρf (θ, t)

∂θ

)
Z(θ)ρ(θ, t)dθ.(5)

3. Numerical Approach

In this section, we apply LS-SVM scheme to overcome the complexity of the prob-
lem and simulate the control algorithm efficiently. At first, the temporal variable
in (3) is discretized using the well-known first-order Euler method. After applying
the Euler algorithm on (3) we have the following equations:

ρ(θ, tk) + ∆t
∂

∂θ

(
(λ+ u(tk−1)Z(θ))ρ(θ, tk)

)
= ρ(θ, tk−1), k = 0, ...,M,(6)

where ∆t is the time step size and tk = k∆t. By LS-SVM scheme, we approximate

the solution of (6) asρ(θ, tk) ≈ ρk(θ) =
∑N
i=1 wiϕ(θi)+ b = wTϕ(theta)+ b, where
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N is the number of training points. Now, the approximate solution can be obtained
by solving the following optimization problem [4]:

min
w,e

1

2
wTw +

γ

2
eT e(7)

s.t. ρk(θi) + ∆t
∂

∂θ

(
(λ+ u(tk−1)Z(θi))ρk(θi)

)
− ei = ρk−1(θi), i = 1, ..., N.

The Lagrangian function of the constrained optimization problem (7) becomes:

L(w, b, ei, αi) =
1

2
wTw +

γ

2
eT e−

N∑
i=1

αi

[
wT
(
ϕ(θi) + λ∆tϕ′(θi) +(8)

∆tuk−1Z ′(θi)ϕ(θi) + ∆tuk−1Z(θi)ϕ′(θi)
)(

1 + ∆tuk−1Z(θi)
)
b− ρk−1 − ei

]
,

in which {αi}Ni=1 are Lagrange multipliers [5]. Consider that ϕ(θi) = ϕi; then, the
KarushKuhnTucker (KKT) optimality conditions are as follow:

∂L
∂w

= 0 ⇒
N∑
i=1

αi

[
ϕi + λ∆tϕ′i +∆tuk−1Z ′(θi)ϕi +∆tuk−1Z(θi)ϕ′i

]
,

∂L
∂b

= 0 ⇒
N∑
i=1

αi

[
1 + ∆tuk−1Z(θi)

]
,

∂L
ei

= 0 ⇒ ei =
αi
γ
,

∂L
αi

= 0 ⇒ wT
(
ϕi + λ∆tϕ′i +∆tuk−1Z ′(θi)ϕi +∆tuk−1Z(θi)ϕ′i

)
+

(
1 + ∆tuk−1Z(θi)

)
b− ei = ρk−1.

In order to solve the problem in the dual form, we should construct the kernel
matrix and its derivatives as:

[Ωmn ]i,j =
[
ϕ(n)(ui)ϕ

(m)(vj)
]
i,j
, m, n = 0, 1.(9)

By elimination of the primal variables w and {ei}Ni=1, using Mercers theorem and
imposing the boundary condition, the following matrix equation of the dual form
is obtained: (

D
[
K + 1

γ I P
F 0

]
+Q

)[α
b

]
= D

[
ρk−1

0

]
,(10)

where

D = Diag(0, 1, 1, . . . , 1),

K = A0
0 +A1

0 +A0
1 +A4Ω

1
1,

A0
0 = Ω0

0 +∆tuk−1Diag(Z ′)Ω0
0 +∆tuk−1Ω0

0Diag(Z ′)

+ ∆t2(uk−1)2Diag(Z ′)Ω0
0Diag(Z ′),

A1
0 = λ∆tΩ1

0 +∆tuk−1Diag(Z)Ω1
0 + λ∆t2uk−1Ω1

0Diag(Z)

+ ∆t2(uk−1)2Diag(Z)Ω1
0Diag(Z ′),
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A0
1 = λ∆tΩ0

1 + λ∆t2uk−1Diag(Z ′)Ω0
1 +∆tuk−1Ω0

1Diag(Z)

+ ∆t2(uk−1)2Diag(Z ′)Ω0
1Diag(Z),

A1
1 = λ2∆t2Ω1

1 + λ∆t2uk−1Diag(Z)Ω1
1 + λ∆t2uk−1Ω1

1Diag(Z)

+ ∆t2(uk−1)2Diag(Z)Ω1
1Diag(Z),

P = 1 +∆tuk−1Z ′,

F = 1 +∆tuk−1Z ′,

Q =

B11 − B1
N B2

1 − B2N · · · BN1 − BNN
0 0 · · · 0
0 0 · · · 0

 ,
Bqp = [Ω0

0]p,q + λ∆t[Ω1
0]p,q +∆tZ ′

q[Ω
0
0]p,q +∆tuk−1Zq[Ω1

0]p,q.

By solving the linear algebraic system (10), the probability distribution is
approximated at each time step.

4. Simulation Results

In this section, we simulate the control model on a population of uncoupled
Hindmarsh-Rose oscillators. We can use the proposed method for different neural
models by choosing the appropriate PRC function for the model. For HR model,
PRC is defined as Z(θ) = (1 − cos(θ))/2π). The initial probability distribution

of synchronized neurons are considered as ρ(θ, 0) = exp(ζ cos(θ−π))
2πI0(b)

, where I0 is the

modified Bessel function of first kind of order 0 and ζ = 26.The desired final distri-
bution consider as ρf (θ, t) =

1
2π . The simulation is done with N = 100,M = 200.

The model has a stable periodic orbit with time period τ = 0.2 and T = 5τ .

We use the Gaussian kernels K(u, v) = exp
(
− (u−vσ )2

)
for the simulations.

Moreover, suitable values for parameters are chosen by test and trial as umax =
−umin = 5, K = 100, λ = 104 and σ = 0.07. The obtained results are represented
in Figure 1.

5. Conclusion Remarks

Recent studies conclude that many of the cognitive disorders such as epilepsy
and Parkinsons diseases might be closely linked with abnormal synchronization of
neurons in the brain; so, in this paper, we developed an efficient and fast numerical
algorithm to improve a control algorithm for desynchronization of uncoupled and
noise-free neural oscillators all receiving the same control input. The algorithm was
based on phase reduction and used a population-level partial differential equation
formulation for this issue. The proposed method was applied on Hindmarsh-Rose
neurons as an example to evaluate its efficacy.
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Figure 1. Simulation results for HR oscilators: (a) Probability
distribution at various times (b) The control input (c) Logarithm
of L2 norm (d) Distribution of the firing of 100 neurons at t = 0
(blue circles) and t = 5τ (red circles).
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Abstract. The stability of solving time-dependent PDEs with RBF collo-
cation method, depends on time discretization method. In many problems
we use implicit methods to increase the stability range of numerical meth-

ods. Rational RBF (RRBF) is an improvement of standard RBF which has
more potential to approximate discontinuous problems than standard RBF.
As RRBFs are non-linear, so to avoid calculating nonlinear system of equa-

tions, we need to discretize time variable with explicit methods which they
are conditionally stable and usually their stability ranges are smaller than im-
plicit methods. In this paper we present an approach to increase the stability
of solving time-dependent PDEs with RRBFs methods.

Keywords: Rational RBF, Burgers equation, Advection equation,
Semi-implicit scheme.
AMS Mathematical Subject Classification [2010]: 65D05.

1. Introduction

Rational radial basis function (RRBF) is an improvement of RBF which intro-
duced to interpolate functions with poles, which are challenging issues in applied
mathematics [1, 4]. RRBFs appear more powerful and efficient than standard
RBFs in interpolation problems with discontinuous solutions, but they suffer from
high computational cost. So De Marchi et al. [2], introduced partition of unity
RRBF (RRBF-PU), to improve the speed of method especially in higher dimen-
sional problems. Recently Sarra [5] used RRBF and RRBF-PU to solve some
time-dependent PDE problems with discontinuous solutions. He used a high order
explicit method such as Runge-Kutta to discretize time direction and also used
RRBF to discretize space variable. As expected, this approach was successful to
solve one-dimensional pure advection equation with discontinuous initial condition
and also one-dimensional inviscid Burgers equation which has a discontinuous so-
lution [5]. These two problems are very hard to be solved with standard RBFs,
we invite reader to study reference [1, 3].

Since the RRBFs are non-linear, so solving a time-dependent PDE problem
with RRBFs is not simple as working with standard RBFs. To avoid solving
nonlinear systems, we need to discretize time direction with explicit methods which
they are conditionally stable and usually their stability ranges are smaller than
stability range of implicit methods.
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In this paper we are going to present an approach to use RRBFs for space
variable discretization and also an implicit method to discretize time. The new
scheme is semi-implicit approach which it is more stable than conventional RRBFs
and it has their benefits in application.

The rest of this paper is organized as follows: In next section we introduce
RRBF and in Section 3 we explain how to solve time-dependent PDEs with semi-
implicit approach and Section 4 is devoted to numerical results.

2. Rational Radial Basis Functions

Let us consider the framework of standard RBF collocation problems. Let Ω ⊆ Rd
with d = 1, 2, 3 be area of space variable and X = {x1, . . . ,xN |xi ∈ Ω} be the
sets of centers. Also let us assume that ϕ(r) be a radial function and define
Φi(x) = ϕ(∥xi − x∥) which is a radial basis function. To interpolate data by

standard RBFs we have RNf(x) =
∑N
i=1 λiΦi(x), where RN is the interpolation

operator and λi are some scalers. In RRBFs we consider the interpolation problem
as follows:

RNf(x) :=
p(x)

q(x)
,(1)

where p, q ∈ NΦ(Ω) (Native space of Φ). So we have p(x) =
∑N
i=1 αiΦi(x) and

q(x) =
∑N
i=1 βiΦi(x), where αi and βi can be determined with collocation method

if p(x) and q(x) are known.
Let p = (p(x1), . . . , p(xN ))T and q = (q(x1), . . . , q(xN ))T be the evaluation

vectors of p and q, respectively. From (1) we have RNf(xi) = f(xi) = pi

qi
for

i = 1, 2, . . . , N , i.e.,

p = Dq,

where D is a diagonal matrix with (f(x1), f(x2), . . . , f(xN ))T on its diagonal.
Assume A is the interpolation matrix with Φi(x) basis ( Ai,j = Φi(xj) ), then we
have

Aα = p, Aβ = q.

To find p and q we need to solve an optimization problem as follows [4]:

min
q ∈ RN

1
∥f∥22

∥Dq∥22 + ∥q∥22 = 1

(
1

∥f∥22
qTDTA−1Dq+ qTA−1q

)
.(2)

The optimization problem (2) is equivalent to the generalized eigenvalue problem
Mq = λNq, whereM = 1

∥f∥2
2
DTA−1D +A−1 and N = 1

∥f∥2
2
DTD + IN .

3. Implicit Method for Time Discretization

In this section we want to discretize two time-dependent PDE problems using
RRBFs method for approximating the space variable and Crank-Nicolson method
for time discretization.
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3.1. Pure Advection Equation. We consider

ut = −ux.

Using Crank-Nicolson method to discretize time variable, we obtain

un+1 +
∆t

2
un+1
x = un − ∆t

2
unx .

Let X = {xi ∈ Ω|i = 1, 2, . . . , N} be the set of centers and also let

un ≈ (u(tn,x1), u(tn,x2), . . . , u(tn,xN ))T ,

be the approximation solution of u at n-th time step and center points. We use
the RRBFs to approximate un as follows

un+1 =
pn+1

qn+1
,

where pn, qn ∈ NΦ(Ω), so we obtain

pn+1

qn+1
+

∆t

2

(
pn+1

qn+1

)
x

= un − ∆t

2
unx .(3)

Calculating the derivatives in Eq. (3), gives

pn+1

qn+1
+

∆t

2

(
pn+1
x qn+1 − pn+1qn+1

x

(qn+1)
2

)
= un − ∆t

2
unx ,(4)

and some easy calculations, (4) yields

1

qn+1

(
pn+1 +

∆t

2

(
pn+1
x − pn+1 q

n+1
x

qn+1

))
= un − ∆t

2
unx .(5)

The non-linearity of approximating the space variable with RRBFs, is observ-
able from Eq. (5). Now we obtain (5) for any centers in X and we get(

qn+1
).−1

. ∗
(
pn+1 +

∆t

2

(
pn+1
x − pn+1. ∗ qn+1

x . ∗
(
qn+1

).−1
))

= un − ∆t

2
unx ,(6)

where “. ” is the Hadamard product and p and q are the vectors of evaluating p
and q at the center points. Using RRBF method we get

un =
pn

qn
,

where pn, qn ∈ NΦ(Ω). Assuming q∗ = qn and

un+1 = p∗. ∗ (q∗).−1,(7)

we achieve the semi-implicit RRBFs. So from (6) we assume

p∗ +
∆t

2

(
p∗
x − p∗. ∗ (q∗)x. ∗ (q∗)

.−1
)
= q∗. ∗ (un − ∆t

2
unx).(8)

As p∗ and q∗ are in the Native space of Φ, so we have p∗
x = Dxp

∗ and q∗
x = Dxq

∗,
where Dx is the derivative matrix based on kernel Φ. Let us define R = q∗.∗(un−
∆t
2 unx), so we can rewrite (8) as follows(

IN +
∆t

2
(Dx − Lx)

)
p∗ = R,(9)
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where IN is the identity matrix of dimension N and also Lx is a diagonal matrix
where the vector (Dxq∗). ∗ (q∗)

.−1
is on its diagonal. From (9) we can obtain p∗.

Also directly from Eqs. (7) and (9), un+1 can be calculated, where un+1 is the
approximate solution of evaluating u(x, tn+1) at center points.

3.2. Inviscid Conservative Burgers Equation. Let us consider the one
dimensional inviscid conservative Burgers equation

ut + uux = 0.

Using Crank-Nicolson method to discretize time variable yields

un+1 + 0.5∆t
(
un+1unx + unun+1

x

)
= un.

Let us assume un+1 = p∗.∗(q∗)
.−1

, then with the same calculation mentioned
in Subsection 3.1, we derive[

IN +
∆t

2
(D(unx) +D(un) (Dx − Lx))

]
p∗ = D(q∗)un,

where IN is the identity matrix of dimension N , D(v) is a diagonal matrix, where
vector v is on its diagonal. Also Dx is the derivative matrix based on kernel Φ and
Lx = (Dxq

∗). ∗ (q∗)
.−1

. Assuming q∗ = qn, where un = pn. ∗ (qn).−1
we obtain

p∗ =

[
IN +

∆t

2
(D(unx) +D(un) (Dx − Lx))

]−1

D(q∗)un,

so we can obtain un+1.

4. Numerical Experiments

In this section we present some numerical experiment for solving advection and
Bergurs’ equations with different initial conditions. In all experiments we choose
the multi-quadratic RBF (MQ)

Φi(x) =
√
1 + ε2(x− xi)2,

where ε is the shape parameter, for space variable and we employ the Crank-
Nicolson finite difference formula for time direction discretization.

Example 4.1. We consider the one dimensional advetion equation with 3
discontinuous initial conditions, where they are as follows

u1(0, x) =

{
1, x ≤ 0,

− 1, x > 0,
, u2(0, x) =

{
cos(πx), x ≤ 0,

− sin(πx), x > 0,
,

u3(0, x) =

{
eπx, x ≤ 0,

− e−πx, x > 0.

In this example we consider 100 nodes and ∆t = 0.001. The results have been
shown in Figure 1.

Example 4.2. In this example we consider u1(0, x) = − sin(πx), u2(0, x) =
− sin(0.5πx) and u3(0, x) = − tanh(πx) as initial condition for inviscid Burgers’
equation. Also we consider 101 nodes and ∆t = 0.001. The results of this example
have been shown in Figure 2.
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Figure 1. The result of advection equation at final time τ = 0.5
with initial condition u1 is Left, u2 is center and u3 is right figure.

Figure 2. The result of Burgers equation with initial condition
and final time u1 and τ = 1 is left, u2 and τ = 0.75 is center and
u3 and τ = 0.35 is right figure.

5. Conclusion

Since RRBF is an appropriate tool for approximating functions with poles and
discontinuity, we employed it to descretize the space variable of time-dependent
PDEs. The RRBF is a non-linear approximation approach, so we needed to dis-
cretize time variable with explicit methods to avoid solving non-linear system of
equations. As explicit methods usually have smaller stability range, so we pre-
sented a new method based on semi-implicit approach to discretize time direction.
As shown in Figures 1 and 2, we can see the discontinuity of the solutions which
have been approximated well with RRBFs approach. This ability emphasized the
accuracy and efficiency of RRBFs collocations.
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Abstract. We present here a fractional-order diffusion equation to denoise
the texture images corrupted by the multiplicative noises. The fractional

derivative can preserve texture image features, and the proposed gray level
indicator controls anomalous diffusion and causes more details of the image
to be preserved.
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1. Introduction

Image denoising intends to repair a noisy image to an image with higher quality.
In 1990, Perona and Malik [2] proposed a nonlinear diffusion equation for additive
noise removal. Multiplicative noise removal has attracted much attention in recent
years. Unlike additive noise, multiplicative noise destroys almost all information
of the texture images. Thus, the majority of existing methods are not so suitable
for the reparation of texture images. Denote an observed image by f = f(x),
x := (x, y) ∈ Ω ⊂ R2, where Ω is the bounded domain of the image with two space
dimensions and has a Lipschitz boundary. We assume f = uη, where u is the
free-noise image and η is the gamma noise which possesses distributional function

for η > 0 as p(η) = LLηL−1

Γ(L) exp(−Lη), where L ∈ N and Γ(·) denotes the gamma

function. The mean value of η is 1 and the variance of η is 1
L . A classic way to

solve the problem of multiplicative noise removal is to derive a variational denoising
model based on the total variation. The general approach to implementing these
variational denoising models derives the corresponding evolution equation and then
discretizes the equation to test on the noisy image. Generally, we can obtain the
following evolution equation for a variational model

∂tu = div(a(|∇u|, u)∇u)− λh(f, u), x ∈ Ω, t ∈ (0, T ),(1)
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with the boundary condition ⟨∇u,→n⟩ = 0 and initial condition u(x, 0) = f(x).
Aubert and Aujol [1] derived a multiplicative noise removal model to minimize
energy functional

min
u∈S(Ω)

{∫
Ω

|Du|+ λ

∫
Ω

(
log u+

f

u

)
dx

}
,(2)

where S(Ω) = {u > 0, u ∈ BV(Ω)}, BV(Ω) is the bounded variation on Ω,
∫
Ω
|Du|

is the total variation regularization term, and
∫
Ω
(log u+ f

u )dx is a fidelity term used
for the preservation of details and image edges. The evolution equation associated
with (2) is constructed as follows

∂tu = div
( ∇u
|∇u|

)
+ λ

f − u
u2

, x ∈ Ω, t > 0.(3)

If we define a new fidelity term as
∫
Ω
(−u2 −

√
f log u)dx and place it in (2), in

this case, term of the right-hand side in the evolution Eq. (3) would be changed

as λ( 12 +
√
f
u ). Evolution Eq. (1) is a diffusion equation in which a(|∇u|, u) and

h(f, u) are the diffusion coefficient and source term, respectively.

2. Proposed Model

By inspiration of model (3) introduced by Yao et al. [4] for multiplicative noise

removal for texture images and setting τ(u) = (1+ k|Dαu|2)
1−β
2 , we proposed the

following equation

∂tu = −Dα∗
x

(
b(u)

Dα
xu

τ(u)

)
−Dα∗

y

(
b(u)

Dα
y u

τ(u)

)
+ λ

(1
2
+

√
f

u

)
.(4)

with the boundary condition u(x, y, t) = 0 and initial condition u(x, y, 0) = f(x, y).
Here, (x, y) ∈ Ω ⊂ R2, t ∈ (0, T ], 1 < α < 2, 0 < β < 1, k > 0, and λ is a
positive parameter that controls the fidelity of solution to the input image. In
[3], an adaptive total variation model has been proposed as min

∫
Ω
g(x)|∇u|dx,

where the weight function g controls the speed of diffusion at different points.
Utilizing the idea, we proposed gray level indicator as b(u) = (|Gσ ∗ u|/M)r,
where M = sup (Gσ ∗ u)(x, y) and r > 0 is a parameter, ∗ is the convolution
operator and Gσ for σ > 0 is the gaussian filter, which is considered as Gσ(x, y) =
exp(−(x2+y2)/4σ2)/4πσ. The use of gaussian convolution in the proposed model
has many advantages, not only the robustness in denoising viewpoint but also
the well-posedness in the theoretical perspective. The indicator b(u) has these
properties: b(s) is monotonically increasing, b(0) = 0, b(s) ≥ 0, and b(s) → 1,
as s → supux∈Ω. Besides, Dα denotes the fractional derivative operator defined
by Dαu = (Dα

xu,D
α
y u) in which Dα

x and Dα
y are respectively Grünwald-Letnikov

(GL) fractional-order derivative into x and y, |Dαu|2 = |Dα
xu|2 + |Dα

y u|2, Dα∗
x is

the adjoint of Dα
x and Dα∗

y is the adjoint of Dα
y . The gray level indicator b(u)

is a much smaller value at low gray level (b(u) → 0) than at high gray levels, so
that some small features at low gray levels are much less smooth and therefore are
preserved. In high gray level regions, approximating b(u) to 1 leads to control of

diffusion coefficient by w = 1/
(
1 + k|Dαu|2

)(1−β)/2
. In the regions with the high-

frequency edges, w → 0 (as |Dαu| → ∞), the image gradient is large, and this
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shows that Eq. (4) can preserve edges well; in the relatively smooth regions, w → 1

(as |Dαu|2 → 0), the image gradient is small, and this shows that Eq. (4) is able
to denoise smooth regions well. According to the theory of the diffusion equation,
different choices of parameter β in w leads to different difficulties. Furthermore,
in the limit case β = 0, the Eq. (4) degenerates when |Dαu| → ∞, while in the
limit case β = 1, the Eq. (4) would never degenerate at any point with respect
to |Dαu|. The parameter β controls the speed of degeneracy, as the closer β gets
to 0, the faster the Eq. (4) degenerates. Moreover, for a specific area in the noise
removal process, the closer β gets to 0, the slower the regularization will be.

Theorem 2.1. (Extremum principle) If u is a solution of Eq. (4) in the dis-
tributional sense, which satisfies u ∈ C([0, T ];L2(Ω)) ∩ L2(0, T ;V ) and ∂tu ∈
L2(0, T ;H1(Ω)), where V = {v|v ∈ Wα

2 (Ω), v|∂Ω = 0}, then it fulfills u ≤
u(·, ·, ·) ≤ u, where u = infΩ u and u = supΩ u.

Theorem 2.2. If u is a solution of Eq. (4), then the mean value of it on the
image domain Ω keeps invariant, i.e.,

1

mean(Ω)

∫
Ω

u(x, y, t)dxdy =
1

mean(Ω)

∫
Ω

f(x, y)dxdy.

Most of the existing models for multiplicative noise removal use integer-order
derivatives, which may produce blur edges and not preserve some image details
due to their local property. Unlike the integer derivative operator, the fractional
derivative operator possesses the non-local property because the fractional deriva-
tive at a point depends on the characteristics of the entire function and not just the
vicinity values of the point. A fractional-order based method applying for preserv-
ing image details achieves a good trade-off between eliminating speckle artifacts
and restraining staircase effect in texture images. Because of the non-local prop-
erty and long-rang dependency property of the fractional derivative, the model
can perform well in texture preservation.

3. Numerical Method and Results

We consider a finite difference scheme in the spatial domain to solve the proposed
problem. Let the initial discrete image has N × N pixels, ∆x = ∆y = 1 be the
space size and u(x, y) = u(x∆x, y∆y) for x, y = 0, . . . , N − 1. Left-sided GL
derivative and the adjoint operator of Dα for a real function g respectively defined
as follows

Dαg(x) = lim
h→0+

∑
k≥0(−1)kCαk g(x− kh)

hα
,

Dα∗g(x) = (−1)m lim
h→0+

∑
k≥0(−1)kCαk g(x+ kh)

hα
,

where α > 0 and m is an integer satisfying m− 1 ≤ α < m. Cαk converges to zero
quickly when k → ∞ for fixed α. As usual, h = 1. We define a spatial partition
(xk, yl) (for all k, l = 0, 1, . . . , N − 1) of image domain Ω. Then, we consider
a discretization of the α-order fractional derivative at all points of Ω along the

357



M. Mohammadi, R. Mokhtari and N. Karimi

x-direction by using

Dα
x g(xk, yl) =

k∑
i=0

ωαi g(xk−i, yl),

Dα∗
x g(xk, yl) = (−1)m

N−k−1∑
i=0

ωαi g(xk+i, yl),

where ωαi = (−1)iCαi , i = 0, 1, . . . , N − 1, and ωαi =
(
1− 1+α

i

)
ωαi−1 (for i > 0).

For 1 < α < 2, the coefficients {ωαk }∞k=0 have the following properties

ωα0 = 1, ωα1 = −α < 0, 1 ≥ ωα2 ≥ · · · ≥ 0,
∞∑
k=0

ωαk = 0,

p≥1∑
k=0

ωαk ≤ 0.

By considering fractional derivatives along the x, y-direction as N equations,
fractional derivative can be presented as following matrix form

Dα
xGl :=


Dα

x g(x0, yl)
Dα

x g(x1, yl)
...

Dα
x g(xN−1, yl)

 =


ωα
0 0 · · · · · · 0

ωα
1 ωα

0

. . .
. . . 0

...
. . .

. . .
. . .

...
ωα
N−1 · · · · · · · · · ωα

0




g(x0, yl)
g(x1, yl)

...
g(xN−1, yl)

 = Bα
NGl.

Let U ∈ RN×N be the solution matrix at all nodes (kh, lh), k, l = 0, 1, . . . , N−
1. Then, fractional derivative in x, y-direction is defined as Dα

xU = BαNU and

Dα
yU = U(BαN )

T
, respectively. Similarly, the adjoint operators of fractional deriva-

tives are defined as Dα∗
x U = (−1)m(BαN )

T
U and Dα∗

y U = (−1)mUBαN . The stan-
dard definitions of fractional derivative require a function to have zero Dirichlet
boundary conditions, but these conditions are restrictive and unrealistic in prac-
tice. Since the fractional derivative is non-local, any boundary condition can
influence the whole image. Besides, because of using the left-sided GL derivative,
there is no need to consider boundary conditions. By such an approach, results
would be satisfying to some extent. Inspired by the discrepancy principle, a stop-
ping criterion based on the mean and variance of multiplicative noise is developed
that it is independent of the information of the original image and automatically
controls iterative procedure. Based on this criterion, if the denoised image ap-
proximates the original image sufficiently, the variance of f

u would get close to
1
L . The stopping criterion defined as n∗ = min{n ∈ N : R(f, un) > 1

L}, where
R(f, un) = 1

|Ω|
∫
Ω
( fun − mean[ fu2 ])

2dx, mean[ fu2 ] =
1
|Ω|
∫
Ω

f
u2 dx. We compare the

new equation’s results with the results of the model presented by Yao et al. [4].
To quantify the denoising effect for a noise-free image u0 and its denoised

image u, the denoising performance is measured in terms of peak signal to noise
ratio (PSNR) and mean absolute-deviation error (MAE), i.e.

PSNR (dB) = 10 log10

((
(255)2M ×N

)
/∥u− u0∥2L2

)
,

MAE (dB) = ∥u− u0∥L1/
(
M ×N

)
,

whereM and N are the image dimensions, and 255 is the peak signal with an 8-bit
resolution. The higher value of PSNR, and the lower value of MAE, the closer
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the denoised image is to the original image. For each image, a noisy observation
is generated by multiplying the original image by a realization of noise according
to the proposed model with the choice L ∈ {1, 4, 10}. We set α = 1.1, ∆t = 0.02,
r = 0.9, k = 0.001, β = 0.4, σ = 1, and λ = 0.6. Experimental results demonstrate
that the proposed model’s PSNR and MAE values are higher and lower than Yao’s
results. Also, the mean value of PSNR and mean value of MAE are higher and
lower, respectively.

Table 1. Comparison of PSNR and MAE of the different models.
PSNR MAE
the texture1 image (256×256)

Model L=1 L=4 L=10 L=1 L=4 L=10
Yao 12/5999 15/7955 18/2631 45/9349 31/5961 23/3952
Our 12/7255 15/8659 18/3512 45/2586 31/1592 23/1081

the texture2 image (256×256)
Yao 15/0453 18/2222 20/6703 32/2653 22/1883 16/4697
Our 15/1611 18/3717 20/8467 31/6018 21/7086 16/1003

Figure 1. Results to texture1 and texture2 images (256×256).
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Abstract. In this work, the multi-term time-fractional nonlinear mixed dif-
fusion and diffusion-wave equation is considered. The time-fractional deriva-
tive is defined in Caputos sense. The spatial derivative is discretized based on

finite difference and the numerical solution of nonlinear fractional ordinary
differential equations system is approximated by using the radial basis func-
tions. The numerical results demonstrate the effectiveness of the algorithm.
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1. Introduction

Different sciences use fractional calculus in phenomena modeling to better de-
scribe unusual behaviors of the phenomena. Successful applications of fractional
differential equation models are found in Physics, chemistry, geophysics, rheology,
geology, robotics, engineering, bioengineering, medicine and finance [6]. Although
the analytic solution of kinds of fractional differential equations can be obtained,
it is often complex and difficult to evaluate. Therefore, the presentation of the
numerical solution of such equations is of great importance. In recent years, the
time-fractional mixed diffusion and diffusion-wave equation has been acquired at-
tention [1, 2, 4]. However, to the best of our knowledge, in case of nonlinear with
time-fractional multi-term, there is still no literature on time-fractional mixed dif-
fusion and diffusion-wave equation.

In this work, we consider the following multi-term time-fractional nonlinear
mixed diffusion and diffusion-wave equation

s∑
r=1

ar
c
0D

αr
t u(x, t) +

w∑
l=1

bl
c
0D

βl
t u(x, t) +N (u(x, t))(1)

= △u(x, t) + f(x, t), (x, t) ∈ Ω× I,
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subject to the initial and boundary conditions

u(x, 0) = ζ(x),
∂u(x, 0)

∂t
= ξ(x), x ∈ Ω̄,(2)

u(x, t) = ψ(t), x ∈ ∂Ω,(3)

where ar, bl ≥ 0, r = 1, . . . , s, l = 1, . . . , w, 0 < α1 < α2 < · · · < αs ≤ 1,

1 ≤ β1 < β2 < · · · < βl ≤ 2, Ω = (0, L), I = (0, T ], △u =
∂2u

∂x2
. The nonlinear

term N (u(x, t)) satisfied the assumption |N (u)| ≤ c|u|, the functions ζ(x), ξ(x),
ψ(t) and f(x, t) are sufficiently smooth on a closed and bounded domain Ω, with

Lipschitz boundary ∂Ω. c
0D

α
t and c

0D
β
t denote the Caputo fractional derivative

defined in [1] as follows

c
0D

α
t u(x, t) =


1

Γ(1−α)
∫ t
0
(t− s)−α ∂u(x,s)∂s ds, 0 < α < 1,

du(x, t)

dt
, α = 1,

c
0D

β
t u(x, t) =


1

Γ(2−β)
∫ t
0
(t− s)1−β ∂

2u(x,s)
∂s2 ds, 1 < β < 2,

d2u(x, t)

dt2
, β = 2.

The remaining part of this paper is summarized as follows. In Section 2, a
numerical procedure is presented to calculate approximate solution. In Section 3,
two numerical examples are considered and a conclusion is given in Section 4.

2. Numerical Procedure

In this section, the problem (2)-(3) is discretized in the space direction based on
finite difference [3] and the numerical solution of nonlinear fractional ordinary
differential equations system is approximated by using the radial basis functions
[5] in the time direction. For this purpose, we consider spatial step size h = L

M ,

xi = ih, ui = u(xi, t), i = 0, 1, . . . ,M . Evaluating the operator ∂2u
∂x2 using the

second-order central difference for the space derivative at position xi produces the
nonlinear system of time-fractional equations

∑s
r=1 ar

c
0D

αr
t ui +

∑w
l=1 bl

c
0D

βl
t ui +N (ui)

=
ui−1 − 2ui + ui+1

h2
+ f(xi, t) +O(h2), i = 1, . . . ,M − 1,

u(xi, 0) = ζ(xi),
∂u(xi, 0)

∂t
= ξ(xi),

u(0, t) = u0 = ψ0(t), t ∈ I,

u(L, t) = uM = ψL(t), t ∈ I.

(4)

Now we approximate ui(t) by the radial basis functions (RBFs) method. For
this purpose, we consider

ũ(t) ≃
N∑
j=0

λijφj(t) = ΛTi ϕ(t),(5)

where Λi = [λi0, λi1, . . . , λiN ]T , ϕ(t) = [φ0(t), φ1(t), . . . , φN (t)]T and the RBF
interpolant ũ(t), interpolates the given function u(t) at the interpolation points
{tκ}Nκ=0, contained in sub-domain Ωi = (xi, t) by the radial basis functions φj(t) =
φ(∥t − tj∥). These functions have different types, such as Gaussian functions,
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φj(t) = exp(−εd2j ), inverse quadratic functions, φj(t) =
1

ε+d2j
and multi quadratic

functions, φj(t) =
√
ε+ d2j , where dj = ∥t− tj∥ and ε ≥ 0 is the shape parameter.

We substitute Eq. (5) in the problem (4), collocate at the interpolation points
{tκ}Nκ=0, and express the resulting system in matrix form

AX = b.(6)

The ((M + 1)× (N + 1))× ((M + 1)× (N + 1)) matrix A, column vectors X and
b with (M + 1)× (N + 1) entries in Eq. 6 are defined as follows

A =



ϕ(t) 0 0 · · · · · · 0 0

0 Ξ − 1

h2
ϕ(t) · · · · · · 0 0

0 − 1

h2
ϕ(t) Ξ − 1

h2
ϕ(t) · · · 0 0

...
...

...
...

. . . 0 0

0 0 0 − 1

h2
ϕ(t) Ξ − 1

h2
ϕ(t) 0

0 0 0 0 − 1

h2
ϕ(t) Ξ 0

0 0 0 · · · · · · 0 ϕ(t)


,

X = [Λ0,Λ1, . . . ,ΛM ]T ,

b = [Ψ0(t), f(x1, t) + Ψ0(t), f(x2, t), . . . , f(xM−1, t) + ΨL(t),ΨL(t)]
T ,

where Ξ = Φ +
2

h2
ϕ(t) + N (ϕ(t)), Φ =

∑s
r=1 ar

c
0D

αr
t ϕ(t) +

∑w
l=1 bl

c
0D

βl
t ϕ(t),

Ψ0(t) = [ψ0(t0), ψ0(t1), . . . , ψ0(tN )] and f(xi, t) = [f(xi, t0), f(xi, t1), . . . , f(xi, tN )].
We obtain the numerical solution of problem (2)-(3) by solving the system of

equations AX = b in the MATLAB software.

3. Numerical Examples

For numerical purposes, we consider L = 1, T = 1 and apply the proposed proce-
dure on two test problems by the Gaussian radial basis functions to demonstrate
the efficiency and reliability of the method for problem (2)-(3). The numerical
errors produced due to the performance of the scheme are measured with the root
mean square (RMS) error and the maximum norm of errors (L∞), defined as

RMS(u) =

√√√√ 1

Nt

Nt∑
k=1

(u(xk, tk)− ũ(xk, tk))2,

L∞ = ∥u(x, t)− ũ(x, t)∥∞ = max
0≤x≤L

max
0≤t≤T

|u(x, t)− ũ(x, t)|,

where Nt is the total collocation points number in domain Ω, u(x, t) and ũ(x, t)
are the exact and the numerical values at these points, respectively.

Example 3.1. We consider the following time-fractional nonlinear mixed dif-
fusion and diffusion-wave equation

c
aD

α1
t u(x, t) +

du(x, t)

dt
+ c
aD

β
t u(x, t) + exp(u(x, t)) =

∂2u

∂x2
+ f(x, t),
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the corresponding forcing term, initial and boundary conditions can be obtained
from the analytic solution

u(x, t) = t(3+α+β) exp(−x2).

Figure 1 displays the absolute error function with M = 8, N = 3, ε = 5,
α = 0.1 and β = 1.1 for the specific case of the Example 3.1 (without the term
du(x, t)

dt
).

Example 3.2. In this test problem, we consider the multi-term time-fractional
nonlinear mixed diffusion and diffusion-wave equation

c
aD

α1
t u(x, t) + c

aD
α2
t u(x, t) + c

aD
β1

t u(x, t) +
c
aD

β2

t u(x, t) + u3(x, t)− u(x, t)

=
∂2u

∂x2
+ f(x, t),

with the exact solution

u(x, t) = t3 sin(πx).

The absolute error function with M = 8, N = 3, ε = 5, α1 = 0.2, α2 = 0.8,
β1 = 1.4 and β2 = 1.8 for Example 3.2 is given in Figure 1.

In [1], the maximum norm of errors in the final time has been obtained 3.6989×
10−2 for the specific case of Example 3.2 (without the terms c

aD
α2
t u(x, t) and

c
aD

β2

t u(x, t)) with α1 = 0.05, β1 = 1.6, δt =
T

N
= 0.2, and in this paper, we obtain

it 7.0566× 10−3.

Figure 1. The error function u(x,t) with (a) α = 0.1, β = 1.1 for
Example 3.1 and (b) α1 = 0.2, α2 = 0.8, β1 = 1.4 and β2 = 1.8
for Example 3.2.

The numerical results with different values of αr, βl and same values for other
parameters are reported in Table 1 for Example 3.1 and Example 3.2.
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Table 1. Numerical results of Example 3.1 and Example 3.2.

Example 3.1 Example 3.2
α, β RMS L∞ αr,βl RMS L∞

α1 = 0.1 α1 = 0.3, α2 = 0.8
β = 1.08 5.26e− 2 9.85588e− 2 β1 = 1.3, β2 = 1.5 2.38e− 2 8.48044e− 2
α1 = 0.05 α1 = 0.1, α2 = 0.3
β = 1.2 3.25e− 2 9.52497e− 2 β1 = 1.1, β2 = 1.8 1.68e− 2 7.85724e− 2

4. Conclusion

In this work, we present a meshless method of lines for solving the multi-term
time-fractional nonlinear mixed diffusion and diffusion-wave equation using radial
basis functions on regular domain. Two test problems show the applicability
and practical efficiency of this method for the problem (2)-(3) in terms of RMS
error and the maximum norm of errors. The viewpoint of implementation, it is
not difficult and with a few changes to the coefficient matrix, can be used for
different types of problem (2)-(3) and its expanded forms, including the problem
with higher dimensions, the problem with higher order derivatives with respect to
x, the problem with more time-fractional terms.
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Abstract. In this paper for a given set of real interval numbers σ that

has one positive interval number and nonnegative summation, we find an
interval nonnegative matrix CI such that for each point set δ of given interval
spectrum σ, there exists a point matrix C of CI such that δ is its spectrum.
For this purpose, we use unit lower triangular matrices and specially try to

use binary unit lower triangular matrices. We also study some conditions for
existence solution of the problem.
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1. Introduction

A matrix L is unit lower triangular provided each entry on its main diagonal
equals 1, and each entry above its main diagonal is zero. The inverse of a unit
lower triangular matrix also is unit lower triangular and is easy to calculate. In
Gaussian elimination method and LU factorization unit lower triangular matrices
play a very important role. The binary unit lower triangular matrices is a unit
lower triangular matrices that all entries below its main diagonal are 0 or 1.

An interval matrix is a matrix whose entries are interval numbers. The use of
interval numbers began in the first half of the twentieth century and is expanding
every day. In 1965, logic was fuzzy by Zadeh and interval numbers were used
[1]. In 1993 J. Rohn found the inverse of interval matrices [2]. The problem
of finding the eigenvalue of interval matrices is one of the most pressing issues
for mathematicians, and several papers have been written in recent years, for
example [5, 6, 7, 8]. In 2018 Nazari et al. started the inverse eigenvalue problem
of nonnegative interval matrices, which is briefly denoted by NIIEP [9]. They
solved NIIEP for matrices of order at most 3. In this paper by helping unit lower
triangular matrices and use similarity of matrices we try to solve the problem for
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order greater than 3. Nazari and Nezami solved NIEP for any order via unit lower
triangular matrices [10].

When we say that the interval spectrum σ is realizable by interval matrix CI

or interval set σ is spectrum of interval matrix CI , it means, we can find an interval
nonnegative matrix CI such that for every point set δ of interval set of eigenvalues
σ (for each interval element one point), there exists a point nonnegative matrix C
of CI such that δ is its spectrum.

Now we recall some definition of interval analysis and interval matrices. The
summation, subtraction, multiplication and division of two interval numbers b =
[b, b],a = [a, a] respectively, are defined as:

• a+ b = [a+ b, a+ b],
• a− b = [a− b, a− b],
• a · b = [min{a · b, a · b, a · b, a · b},max{a · b, a · b, a · b, a · b}],
• a

b = a · b′
, b

′
= [ 1

b
, 1b ], and 0 /∈ b,

also the square of a interval number a = [a, a] is as following

• a2 =


[a2, a2], if 0 ≤ a ≤ a,[
a2, a2

]
, if a ≤ a ≤ 0,[

0,max{[a2, a2}
]
, if a ≤ 0 ≤ a.

Definition 1.1. Let A and A be n× n real matrices, the following set

AI = [A,A] = {A : A ≤ A ≤ A},
is called an n × n real interval matrix. The midpoint and the radius of AI are
denoted respectively by

Ac =
A+A

2
, A∆ =

A−A
2

.

If all interval entries of a real interval matrix ≥ 0, then AI is called nonnegative
interval matrix. The set of all real n× n interval matrices denoted by IRn×n and
the set of all n× n nonnegative interval matrices also denoted by NIRn×n.

Definition 1.2. Let AI be an interval square matrix then the set of eigen-
values of AI is defined as follows

Λ(AI) = {λ ∈ R;Ax = λx, x ̸= 0, A ∈ AI}.
The eigenvalue of n × n nonnegative interval matrix AI is called Perron interval
eigenvalue of AI if it is nonnegative and greater than or equal of all absolute value
of eigenvalues of AI and denoted by λ1 = [λ1, λ1]. i.e.,

[λ1, λ1] ≥
∣∣[λi, λi]∣∣ , i = 2, 3, . . . , n,

where
∣∣[λi, λi]∣∣ = [min{

∣∣λi∣∣ , ∣∣λi∣∣},max{
∣∣λi∣∣ , ∣∣λi∣∣}] .

Some necessary conditions for NIIEP on the list of complex interval number

σ =
{
[λ1, λ1], [λ2, λ2], . . . , [λn, λn]

}
,

to be the spectrum of a nonnegative interval matrix are listed below.
(1) The Perron eigenvalue max{|[λi, λi]|; [λi, λi] ∈ σ} belongs to σ (Perron-Frobenius
theorem in interval case).
(2) The list σ is closed under complex conjugation.
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(3) sk =
∑n
i=1

∣∣[λi, λi]∣∣k ≥ 0.

(4) )smk ≤ nm−1skm for k,m = 1, 2, . . . (JLL inequality in interval case)[3, 4].
The paper is organized as follows. First we solve the NIIEP in several cases,

where each element of σ is real, and σ has at least as many negative eigenvalues as
positive eigenvalues. Then we solve the NIIEP in several cases where each element
of σ is real and the number of negative elements of σ is less than the number of
positive elements of σ.

2. Interval Real Spectrum

Let k ≤ 3 and σI =
{
[λ1, λ1], [λ2, λ2], . . . , [λn, λn]

}
be a given spectrum such that

[λ1, λ1] ≥ [λ2, λ2] ≥ · · · ≥ [λk, λk] ≥ 0 > [λn, λn] ≥ · · · ≥ [λk+1, λk+1]. We try

to construct a nonnegative interval matrix CI such that it realizes spectrum σ.
At first we solve the interval spectrurm of Suleimanova. This spectrum has one
positive eigenvalue and negative another eigenvalues with nonnegative summation.
Suleimanova’s Theorem [11] is in the interval case, which is proved below:

Theorem 2.1. Assume that given σI =
{
[λ1, λ1], [λ2, λ2], . . . , [λn, λn]

}
such

that [λ1, λ1] ≥ 0 ≥ [λn, λn] ≥ [λn−1, λn−1] ≥ · · · ≥ [λ2, λ2], and
∑n
i=1[λi, λi] ≥ 0,

then there exists a set of nonnegative interval matrices that σ is its spectrum.

Proof. If characteristic polynomial of interval matrix will be as

P (λ) =
n∏
i=1

(
λ− [λi, λi]

)
= λn−[an−1, an−1]λ

n−1−[an−2, an−2]λ
n−2−· · ·−[a0, a0],

and all [ai, ai] ≥ 0 for i = 0, 1, · · · , n− 1, then it is easy to see that the following
nonnegative interval companion matrix is solution of problem

CI =


0 1 0 · · · 0
0 0 1 · · · 0

. . .

0 0 0 · · · 1[
a0, a0

] [
a1, a1

]
· · ·

[
an−1, an−1

]

 .

On the other hand, we construct the solution via unit lower triangular matrix.
Let n = 2, then consider the upper interval triangular matrix

AI =

( [
λ1, λ1

]
α2

0
[
λ2, λ2

] ) ,
where α2 =

[
α2, α2

]
is interval number and also we consider 2 × 2 unite lower

triangular matrix L =

(
1 0
1 1

)
, therefore by similarity of matrices the following

matrix

CI = LAIL−1 =

( [
λ1, λ1

]
− α2 α2[

λ1, λ1
]
− α2 −

[
λ2, λ2

]
α2 +

[
λ2, λ2

] ) ,
has eigenvalues

[
λ1, λ1

]
and

[
λ2, λ2

]
and if −λ2 ≤ α2 ≤ α2 ≤ λ1 then the matrix

CI is nonnegative.
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For n = 3 we consider

AI =

 [
λ1, λ1

]
α2 α3

0
[
λ2, λ2

]
0

0 0
[
λ3, λ3

]
 ,

where α2 =
[
α2, α2

]
, α3 =

[
α3, α3

]
are interval numbers and assume that

L =

 1 0 0
1 1 0
1 0 1

 ,

then the matrix

CI = LAIL−1 = [
λ1, λ1

]
− α2 − α3 α2 α3[

λ1, λ1
]
− α2 −

[
λ2, λ2

]
− α3 α2 +

[
λ2, λ2

]
α3[

λ1, λ1
]
− α2 − α3 −

[
λ3, λ3

]
α2 α3 +

[
λ3, λ3

]
 ,

is similar to the matrix AI and if −λ2 ≤ α2 and −λ3 ≤ α3 and also α2 + α3 ≤ λ1
then the matrix CI is nonnegative.

To continue the proof, we follow the above process. Consider

AI =



[
λ1, λ1

]
α2 α3 · · · αn

0
[
λ2, λ2

]
0 · · · 0
. . .

0 0 0
. . . 0

0 0 0 · · ·
[
λn, λn

]

 ,

similarly α2 =
[
α2, α2

]
, α3 =

[
α3, α3

]
, . . . , αn =

[
αn, αn

]
are interval numbers

and

L =



1 0 0 · · · 0
1 1 0 · · · 0

. . .

1 0 0
. . . 0

1 0 0 · · · 1

 ,(1)

then the matrix

CI = LAIL−1 =

[
λ1, λ1

]
− t α2 α3 · · · αn[

λ1, λ1
]
−
[
λ2, λ2

]
− t α2 +

[
λ2, λ2

]
α3 · · · αn
. . .[

λ1, λ1
]
−
[
λn−1, λn−1

]
− t α2 α3

. . . αn[
λ1, λ1

]
−
[
λn, λn

]
− t α2 α3 · · · αn +

[
λn, λn

]


,

with t =
∑n
i=2 αi is similar to the matrix AI , and if

−λi ≤ αi, i = 2, 3, . . . , n,

α2 + α3 + · · ·+ αn ≤ λ1,
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then the interval matrix CI is nonnegative and has eigenvalues{[
λ1, λ1

]
,
[
λ2, λ2

]
, · · · ,

[
λn, λn

]}
.

□

Example 2.2. For the following interval set of eigenvalues find an interval
matrix CI such that realize this set.

σI = {[14, 17] , [−4,−3] , [−3,−2] , [−2,−1] , [−1, 0]} .
All of necessary conditions satisfy. At first we find the characteristic polynomial

P (λ) = λ5 − [4, 11]λ4 − [49, 159]λ3 − [104, 589]λ2 − [60, 850]λ− [0, 408] .

Because all coefficients of the above polynomial except λ5 are negative, the follow-
ing nonnegative interval companion matrix realizes the subset of σ

CI =


0
0
0
0

[0, 408]

1
0
0
0

[60, 850]

0
1
0
0

[104, 589]

0
0
1
0

[49, 159]

0
0
0
1

[4, 11]

 .

Also with choosing the interval matrix AI as

AI =


[14, 17]

0
0
0
0

[4, 5]
[−4,−3]

0
0
0

[3, 4]
0

[−3,−2]
0
0

[2, 3]
0
0

[−2,−1]
0

[1, 2]
0
0
0

[−1, 0]

 ,

and the point matrix L from (1) for n = 6, we can find the nonnegative interval
matrix CI = LAIL−1 as following

CI =


[0, 7]
[3, 11]
[2, 10]
[1, 9]
[0, 8]

[4, 5]
[0, 2]
[4, 5]
[4, 5]
[4, 5]

[3, 4]
[3, 4]
[3, 4]
[3, 4]
[3, 4]

[2, 3]
[2, 3]
[2, 3]
[2, 3]
[2, 3]

[1, 2]
[1, 2]
[1, 2]
[1, 2]
[0, 2]

 ,

that σ is its spectrum.
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Abstract. In this work, the partition of unity method based on radial basis
functions as an efficient local meshless technique is examined to solve an inter-
esting electromagnetic scattering problem. In such a problem, the scattering

from infinitely long anisotropic cylinder with circular cross-section embedded
in free space is investigated. The numerical results demonstrate the efficiency
and accuracy of the suggested method.

Keywords: Local meshless method, Radial basis function, Partition
of unity method, Electromagnetic scattering problem.
AMS Mathematical Subject Classification [2010]: 13F55,
05E40, 05C65.

1. Introduction

In recent decades, there has been a significant amount of interest in electromagnetic
interaction with anisotropic materials due to its wide application in various areas
such as radar cross section (RCS) control, certain types of radar absorbers, anten-
nas and optical signal processing. Taflove et al. [1] applied the finite difference time
domain method for computing the electromagnetic scattering by arbitrary-shaped
anisotropic dielectric objects. Graglia et al. [2] formulated integro-differential
equations for the electric and magnetic fields inside scatterers of arbitrary shape
and made of anisotropic materials for two and three dimensional problems. Chen et
al. [3] employed the finite-difference with the measured equation of invariance for
transversally anisotropic, inhomogeneous cylinders. Esfahani et al. [4] employed a
meshless method for the electromagnetic scattering problem by anisotropic cylin-
ders.

In the current work, consider D ⊂ R2 be the cross section of an infinitely
long anisotropic dielectric cylindrical scattering contained by free space as well
as n is outward normal vector on boundary ∂D. The anisotropy of the scat-
terer is described by a symmetric positive definite matrix A, whose entries are
relative magnetic permeability inside the scatterer. Furthermore, the scatterer is
excited by the eiωt time-harmonic incident plane wave with TMz polarization,
where ω demonstrate the angular frequency. The direct scattering problem for
an anisotropic medium with cross section D in R2 is formulated as a system of
complex PDEs:

∇.A∇v + ϵrk
2v = 0 in D,

∇2us + k2us = 0 in R2\D,

∗Speaker
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with boundary conditions

v − us = ui on ∂D,

∂v

∂nA
− ∂us

∂n
=
∂ui

∂n
on ∂D,

∂us

∂n
+ (jk +

1

2r2
)us = 0 on ∂Ω,

where v ∈ C2(C) and u ∈ C2(C) indicate the field inside and the field outside
of the scatterer. Field u can be further decomposed into the incident ui and the
scattered field us, where they are the scalar scattered and incident electric fields
respectively. Moreover, k = ω

√
µ0ϵ0 = 2π

λ is the wave number of the free space
which λ is the wavelength as well as ϵ0 and µ0 are the magnetic permeability
and the constant electric permittivity of free space while ϵr is the relative electric
permittivity of the scatterer. Also, matrix A is defined by:

A =
1

µxxµyy − µ2
xy

[
µxx µxy
µxy µyy

]
.

Let A is a symmetric and positive definite 2×2 matrix whose entries are constants
and demonstrate the relative magnetic permeability inside the scatterer.

2. Spatial Discretization Scheme

In this section, the radial basis function partition of unity method (PUM) is intro-
duced [5]. Therefore it is necessary to review the radial basis function collocation
method firstly. Then the PUM can be investigated by some details. Consider
the entire computational domain Ω ⊆ Rd is covered by a set of scattered points
XN = {xj}Nj=1 ⊂ Ω. According to the mesless collocation method based on radial
basis functions (RBFs), the approximation of function u(x) on the set XN leads
to find an interpolant

S(x) =
N∑
j=1

λjϕ(∥x− xj∥),(1)

where {λj}Nj=1 are unknown coefficients, ϕ : Ω × Ω → R is a smooth strictly
positive definite (SPD) RBFs and ∥.∥ denotes the Euclidean norm. Imposing the
interpolation conditions

S(xi) = u(xi), i = 1, . . . , N,

to determine the coefficients {λj}Nj=1, the linear system of equations is obtained

Aλ = u,(2)

where Aij = ϕ(∥xi − xj∥), i, j = 1, . . . , N , λ = (λ1, . . . , λN )T and

u = (u(x1), . . . , u(xN ))T .

Since the radial kernel ϕ is SPD, the linear algebraic system (2) has a unique
solution.
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In the following, the interpolant (1) is expressed in Lagrange form, i.e.,

S(x) =
N∑
j=1

lj(x)u(x),

where lj(x) are so-called cardinal or Lagrange basis functions. Therefore, the
alternative formulation for the interpolant (1) can be obtained as follows:

S(x) = L(x)Tu,(3)

where L(x)T = (l1(x), . . . , lN (x)). Clearly, from (1), (2) and (3), the following
relation between primary radial basis and cardinal basis is deduced

L(x)T = ϕT (x)A−1,

where ϕT (x) = (ϕ(∥x − x1∥), . . . , ϕ(∥x − xN∥)). This transformation is valid
whenever the matrix A is invertible, i.e. for given distinct data points X and SPD
radial basis functions.

In the following, the RBF-PUM will be discussed. Let Ω be an open bounded
global domain and let Ωj be open and bounded patches covering of Ω such that

Ω ⊆
∪M
j=1 Ωj . Moreover, patches Ωj satisfy some mild overlap condition. This

means that each point of the global computational domain must be in the interior
of at least one local subdomain. Further, the set I(x) = {j : x ∈ Ωj}, for all
x ∈ Ω, is uniformly bounded on Ω, i.e., there is the constant C independent of
the number of patches, such that card(I)(x) ≤ C. For each patch, the PU weight
function ωj is constructed by using the Shepard method given by

ωj(x) =
φj(x)∑

k∈I(x) φk(x)
, j = 1, 2, . . . ,M,

where φj(x) is the compactly supported function on Ωj . The weight functions ωj
are non-negative, compactly supported on Ωj , and satisfy the partition of unity
property, i.e., ∑

j∈I(x)

ωj(x) = 1.

Moreover, to ensure that weight function is non-negative and compactly sup-
port on Ωj , the function φj(x) is defined as follows:

φj(x) = φ(
∥x− ξj∥
Rj

), j = 1, 2, . . . ,M,

where ξj and Rj are the center and radius corresponding to the j−th patch,
respectively. In the current work, the Wendland C2 function is used to construct
the weight function.

The PUM approximation is formed a global approximation function P of func-
tion u(x) in entire domain Ω as follows:

Pu(x) =
M∑
j=1

ωj(x)Sj(x) =
∑

j∈I(x)

ωj(x)Sj(x),

where {Sj}Nj=1 are RBF based local interpolants corresponding to each patch Ωj .
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3. Numerical Results

In this section, a numerical example is considered by using uniform points to show
the efficiency and accuracy of the suggested meshless method. For this purpose,
the root mean square error (RMSE) and absolute error (MAXE) is applied to make
comparison. In numerical implementation, inverse multiquadric (IMQ) radial basis
function is used.

Example 3.1. As an example, consider the two-dimensional electromagnetic
scattering problem of circular cross section object with radius r1 such that kr1 = 1,

ϵr = 1 and anisotropic matrix A = 1
2

[
2 0
0 1

]
.

Also, The incident angle is θi = 0 and the radius of artificial circular domain is
r2 = 2r1. The suggested numerical method is employed to solve the problem. The
resulting error estimates, condition numbers and CPU times for various number
of computational points Nv and NuS is reported in Table 1.

Moreover, all results from PUM have compared with the radial basis function-
finite difference (RBF-FD) method in this table. These results show the conver-
gency and efficiency of the suggested method for solving such problems. Also,
the Figure 1 demonstrates the cross section of the circular dielectric and the com-
putational points on domains. Furthermore, Figure 2 shows the approximated
solution inside and outside of the anisotropic circular object by letting Nv = 50
and Nus = 167.

Table 1. Error estimates, condition numbers (CN) and CPU
times for different number of computational points.

suggested method (PUM) RBF-FD method

Nv cv MAXEv RMSEv CN CPU time MAXEv RMSEv CN CPU time
Nus cus MAXEus RMSEus MAXEus RMSEus

22 1.6 8.9442× 10−3 6.4075× 10−3 1.1034× 105 0.1538 4.1318× 10−2 3.0967× 10−2 3.7512× 107 0.5283
60 2.0 8.9442× 10−3 5.1251× 10−3 2.1661× 10−1 2.7510× 10−2

50 2.0 1.3286× 10−3 6.2108× 10−4 5.8430× 106 0.6047 1.7342× 10−2 1.0139× 10−2 8.9136× 107 1.8645
167 2.5 1.3286× 10−3 3.7167× 10−4 1.5749× 10−1 1.2451× 10−2

82 2.4 5.3038× 10−4 2.6308× 10−4 4.8897× 107 1.5784 3.1954× 10−3 1.9726× 10−3 3.7150× 108 4.7217
245 3.0 5.3038× 10−4 2.3354× 10−4 3.0603× 10−2 1.9795× 10−3

142 2.8 1.9472× 10−5 9.9756× 10−6 1.1135× 1010 5.5564 2.1176× 10−3 1.2371× 10−3 1.3332× 1010 14.2053
420 3.5 1.9472× 10−5 7.1752× 10−6 3.3179× 10−3 1.6737× 10−3

182 3.2 1.2937× 10−5 8.3350× 10−6 4.5436× 1011 30.9125 1.9572× 10−3 1.0861× 10−3 3.3612× 1011 43.4647
558 4.0 1.2937× 10−5 6.5340× 10−6 2.1832× 10−3 1.0916× 10−3
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Figure 1. Cross section of an infinitely long dielectric cylindrical
scattering (a) and computational points on domains (b).

Figure 2. Approximated solution v inside the anisotropic dielec-
tric circular cylinder (a) and approximated solution us outside the
anisotropic dielectric circular cylinder (b).
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Abstract. In this work, we use hybride of Laplace transform and Chelyshkov

wavelets integral operator for solving fractional differential equations and
time-fractional partial differential equations with delay. By using Laplace
transform method, fractional-order differential equations are turned into
integer-order differential equations. Then, Chelyshkov wavelets integral op-

erator and collocation method are applied for solving obtained integer-order
differential equations.
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1. Introduction

Delay differential equations have appeared in the modeling of various problems
in industrial, biological, chemical, electronic and transportation systems. Sev-
eral researchers discussed the properties of the analytic solutions of these equa-
tions and also their numerical solutions such as Adomian decomposition method,
shifted Chebyshev spectral Tau method, Bernstein polynomials, Legendre wavelet
method, Bernoulli wavelet method [1] and so on.

2. Preliminaries and Fundamentals

2.1. Chelyshkov Wavelets. The Chelyshkov wavelets are defined on L2[0, h)
as [2]

ψhn,m,m̂(t) =

{
2

k−1
2 C̃hm,m̂(2k−1t− n̂), n̂

2k−1h ≤ t < n̂+1
2k−1h,

0, otherwise,

with

C̃hm,m̂(t) =
√
2m+ 1Chm,m̂(t),

where m = 0, 1, . . . , m̂, m̂ =M − 1, n̂ = n− 1, n = 1, 2, . . . , 2k−1, ŵ = 2k−1M and
Chm,m̂(t) is Chelyshkov polynomials.

∗Speaker

379



P. Rahimkhani and Y. Ordokhani

2.2. Integral Operator of Chelyshkov Wavelets. Integral operator of
Chelyshkov wavelets Gh(t, 1) is obtained as [2]∫ t

0

Ψh(t)dt = Gh(t, 1),(1)

where

Gh(t, 1) =

[ ∫ t

0

ψh1,0,m̂(t)dt,

∫ t

0

ψh1,1,m̂(t)dt, . . . ,

∫ t

0

ψh2k−1,M−1,m̂(t)dt

]
,

that

∫ t

0

ψh
n,m,m̂(t)dt =



0, 0 ≤ t < n̂
2k−1 h,

δm,k

∑m̂
r=m

∑r
s=0(−1)2r−m−s

(
m̂−m
r −m

)(
m̂+ r + 1
m̂−m

)(
r
s

)
n̂r−s2(k−1)s

hr(s+1)
[ts+1 − ( n̂

2k−1 h)
s+1], n̂

2k−1 h ≤ t < n̂+1
2k−1 h,

δm,k

∑m̂
r=m

∑r
s=0(−1)2r−m−s

(
m̂−m
r −m

)(
m̂+ r + 1
m̂−m

)(
r
s

)
n̂r−s2(k−1)s

hr(s+1)
[( n̂+1

2k−1 h)
s+1 − ( n̂

2k−1 h)
s+1], n̂+1

2k−1 h ≤ t < h.

Also, we have ∫ t

0

∫ t

0

Ψh(t)dtdt = Gh(t, 2).(2)

2.3. Approximation of Fractional Derivative. By using properties of
Laplace transform and inverse Laplace transform for partial differential equations
for 0 < α < 1, we obtain [3]

Dα
t u(x, t) ≈ α

∂u(x, t)

∂t
+ (1− α)[u(x, t)− u(x, 0)].(3)

For 1 < α < 2, we have

Dα
t u(x, t) ≈ (α− 1)

∂2u(x, t)

∂t2
+ (2− α)∂u(x, t)

∂t
− (2− α)ut(x, 0).

Also, for fractional-order ordinary differential equations with 0 < α < 1, we
obtain

Dαu(t) ≈ α∂u(t)
∂t

+ (1− α)[u(t)− u(0)].

For 1 < α < 2, we have

Dαu(t) ≈ (α− 1)
∂2u(t)

∂t2
+ (2− α)∂u(t)

∂t
− (2− α)u′(0).(4)
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3. Numerical Method

Problem a: We consider the fractional differential equations as:

Dαu(t) = f(t, u(at)), u(0) = λ0, u
′(0) = λ1, 1 < α ≤ 2.(5)

Substituting Eq. (4) in Eq. (5), we obtain

(α− 1)
∂2u(t)

∂t2
+ (2− α)∂u(t)

∂t
− (2− α)λ1 = f(t, u(at)),(6)

u(0) = λ0, u
′(0) = λ1.

Now, we solve Eq. (6). For solving this problem, we expand u′′(t) as

u′′(t) = CTΨ(t),(7)

By using Eqs. (2), (6) and (7), we have

u(t) = CTG(t, 2) + λ0 + λ1t,(8)

u(at) = CTG(at, 2) + λ0 + λ1at,(9)

u′(t) = CTG(t, 1) + λ1.(10)

Replacing Eqs. (7)-(10) in Eq. (6) and collocating this equation at the zeros of
shifted Legendre polynomials, we obtain numerical solution by using (8).

Problem b: We consider the following time-fractional partial differential equa-
tions with delay as

Dα
t u(x, t) = F (x, t, u(a0x, b0t), ux(a1x, b1x), uxx(a2x, b2t)),(11)

u(x, 0) = f0(x), u(0, t) = g0(t), u(1, t) = g1(t).

Substituting Eq. (3) in Eq. (11), we obtain

α
∂u(x, t)

∂t
+ (1− α)[u(x, t)− f0(x)](12)

= F (x, t, u(a0x, b0t), ux(a1x, b1x), uxx(a2x, b2t)),

u(x, 0) = f0(x), u(0, t) = g0(t), u(1, t) = g1(t).(13)

Now, for numerical solution of Eqs. (12) and (13), we expand ∂3u(x,t)
∂x2∂t as

∂3u(x, t)

∂x2∂t
≃ ΨT (x)UΨ(t).

By using Eqs. (1), (2), (12) and (13), we obtain

∂2u(x, t)

∂x2
≃ ΨT (x)UG(t, 1) +

∂2f0(x)

∂x2
,(14)

∂u(x, t)

∂t
≃ GT (x, 2)UΨ(t)− xGT (1, 2)UΨ(t) + (1− x)

∂g0(t)

∂t
+ x

∂g1(t)

∂t
,(15)

u(x, t) ≃ GT (x, 2)UG(t, 1)− (x)GT (1, 2)UG(t, 1) + µ(x, t),(16)

µ(x, t) = g0(t)+f0(x)−f0(0)−xf ′0(0)+x(g1(t)−g0(t))+x(−f0(1)+f0(0)+f ′0(0)).
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∂u(x, t)

∂x
≃ GT (x, 1)UG(t, 1)−GT (1, 2)UG(t, 1) + ∂µ(x, t)

∂x
.(17)

Replacing Eqs. (14)-(17) in Eq. (11) and collocating this equation at the zeros of
shifted Legendre polynomials, we obtain numerical solution by using (16).

4. Error Bound

In this part, we get error bound of best approximation in terms of Sobolev norms.

Theorem 4.1. [4] Suppose u ∈ Hτ (0, h) with τ ≥ 0 and M ≥ τ, and ũ is
the best approximation of u which is obtained by applying the Chelyshkov wavelets,
then we get

∥u− ũ∥L2(0,h) ≤ c′(M − 1)−τ (2k−1)−τ∥u(τ)∥L2(0,h),(18)

and for 1 ≤ s ≤ τ we have

∥u− ũ∥Hs(0,h) ≤ c′(M − 1)2s−
1
2−τ (2k−1)s−τ∥u(τ)∥L2(0,h),

where c′ is a positive constant depends on τ and h.

Remark 4.2. This result shows that in the case u is infinitely smooth, the
rate of convergence of ũ to u is faster than 1

2k−1 to the power of M − s and any

power of 1
M−1 , which is superior to that for the classical spectral methods.

Corollary 4.3. Let u ∈ Hτ (0, h) and 2 ≤ s ≤ τ , then we get

∥u′′ − ũ′′∥L2(0,h) ≤ c′(M − 1)2s−
1
2−τ (2k−1)s−τ∥u(τ)∥L2(0,h),(19)

and

∥u′ − ũ′∥L2(0,h) ≤ c′(M − 1)2s−
1
2−τ (2k−1)s−τ∥u(τ)∥L2(0,h).(20)

Proof. By using definition the Sobolev norm for 2 ≤ s ≤ τ , we obtain the
above results. □

Theorem 4.4. Suppose that u ∈ Hτ (0, h) and ũ ∈ Hτ (0, h) be the exact and
the numerical solution of Eq. (5), respectively. Moreover, we consider 2 ≤ s ≤ τ
and function f(t, u) satisfies the Lipschitz condition with constant η, then the error
bound of the mentioned approach is obtained as

∥E∥L2(0,h) ≤ |α− 1|c′(M − 1)2s−
1
2−τ (2k−1)s−τ∥u(τ)∥L2(0,h)

+ |2− α|c′(M − 1)2s−
1
2−τ (2k−1)s−τ∥u(τ)∥L2(0,h)

+ ηc′(M − 1)−τ (2k−1)−τ∥u(τ)∥L2(0,h).

Proof. By considering the Eqs. (5), (18), (19) and (20) and properties of
Sobolev norms, we obtain the above result. □

5. Numerical Results

Example 5.1. Consider the nonlinear fractional pantograph differential equa-
tion

Dαu(t) =
3

4
u(t) + u(

t

2
)− t2 + 2, u(0) = u′(0) = 0.
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Figure 1. Numerical results with k = 1,M = 6, for different
values of α = 1.7, 1.8, 1.9 (Example 5.1).

The exact solution for α = 2 is u(t) = t2. Numerical results for k = 1,M = 6
and different values of α are demonstrated in Figure 1.

Example 5.2. Consider the nonlinear fractional pantograph differential equa-
tion

Dαu(t) = 1− 2u2(
t

2
), u(0) = 1, u′(0) = 0.

The exact solution for α = 2 is u(t) = cos(t). Numerical results for k = 1,M =
10 and different values of α are demonstrated in Figure 2.

Figure 2. Numerical results with k = 1,M = 10, for different
values of α = 1.7, 1.8, 1.9 (Example 5.2).

Example 5.3. Consider the nonlinear fractional differential equation

Dαu(t) = −u2(t)+
Γ(6)

Γ(6− α)
t5−α+

36

Γ(5− α)
t4−α−Γ(3+α)t2+(t5+

3

2
t4−2t2+α)2, u(0) = 0.

The exact solution is u(t) = t5+ 3
2 t

4−2t2+α. Numerical results for k = 1,M =
7 and different values of α are demonstrated in Table 1.

Example 5.4. Consider the time fractional Burgers equation with propor-
tional delay as

Dα
t u(x, t) = uxx(x, t) + u(

x

2
,
t

2
)ux(x,

t

2
) +

1

2
u(x, t),

u(x, 0) = x, u(0, t) = 0, u(1, t) = et.

The exact solution for α = 1 is u(x, t) = xet. Table 2 displays the absolute
error of suggested scheme by choosing k = k′ = 2,M =M ′ = 2 and α = 1 together
with Homotopy perturbation transform method [5].
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Table 1. The absolute error for k = 1,M = 7 and different
values of α for (Example 5.3).

t α = 0.8 α = 0.9 α = 0.99 α = 1
0.1 1.11× 10−3 5.01× 10−4 4.57× 10−5 8.46× 10−18

0.3 1.28× 10−2 6.05× 10−3 5.74× 10−4 0
0.5 2.31× 10−2 1.10× 10−2 1.04× 10−3 0
0.7 1.97× 10−3 1.73× 10−5 1.04× 10−4 2.50× 10−16

0.9 8.94× 10−2 4.65× 10−2 4.83× 10−3 2.12× 10−15

Table 2. Comparison of absolute error for k = k′ = 2,M =
M ′ = 2, α = 1 for (Example 5.4).

x t Ref. [5] Our method
0.25 0.25 2.122401× 10−6 0

0.50 7.094268× 10−5 0
0.75 5.634807× 10−4 0
1.00 2.487124× 10−3 0

0.5 0.25 4.244802× 10−6 0
0.50 1.418854× 10−4 0
0.75 1.126961× 10−3 0
1.00 4.974248× 10−3 0

0.75 0.25 6.369688× 10−6 0
0.50 2.128250× 10−4 0
0.75 1.690020× 10−3 0
1.00 7.461370× 10−3 0

CPU times − 0.921
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Abstract. Here, we propose a numerical method for solving linear distributed-
order fractional differential equations. Distributed order fractional derivative

operational matrix and fractional derivative operational matrix for Fibonacci
polynomials are presented. Using the operational matrices and Galerkin
method, the problem is converted into a system of algebraic equations. Sev-
eral examples are tests to investigate the efficiency of the technique.
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1. Introduction

Firstly, distributed-order of fractional derivative is presented by Caputo [3]. Next,
this concept is developed by himself and some mathematicians. This concept is
used in mathematical modeling of some phenomena, then this has been considered
by several researchers. Torvik and Bagley [1] investigated on the existence of
the solution of distributed-order equations. The authors in [5] perused stability
analysis of distributed-order of fractional differential equations. However, there is
a difficult task to analytically treat these problems. Thus, it is required that a
numerical scheme is established. Therefore, some numerical method for solving this
class of equations have been proposed. A method based on Legendre polynomials
[6] and a modified method proposed in [9] are samples of computational methods
presented by some researchers.

2. Preliminaries

Definition 2.1. The Riemann-Liouville fractional integration operator of or-
der γ ≥ 0 of f ∈ Cη, η > −1 is defined as [7]

Iγu(t) =

{
1

Γ(γ)

∫ t
0
u(s)(t− s)γ−1ds, γ > 0, t > 0,

u(t), γ = 0.
(1)
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Definition 2.2. The Caputo fractional derivative of order γ of f ∈ Cη, η > −1
is defined as [7]

Dγu(t) =

{
1

Γ(n−γ)
∫ t
0
u(n)(s)(t− s)n−γ−1ds, n− 1 < γ ≤ n, n ∈ N,

u(t), γ = 0.
(2)

Also, we have

1) Dγc = 0, where c is constant.

2) IγDγu(t) = u(t)−
∑n−1
i=0 u

(i)(0) t
i

i! .

3) Dγtk =

{
Γ(k+1)

Γ(k+1−γ) t
k−γ , k ≥ γ,

0, k < γ.

2.1. Fibonacci Polynomials and Their Properties. Fibonacci polyno-
mials defined as the following form [8]

Fm(x) =

⌊m/2⌋∑
i=0

(
m− i
i

)
xm−2i, m ≥ 0.(3)

Here, the first m-terms of the Fibonacci polynomials are used to proposed an
approximation. Then, an arbitrary function u(t) ∈ L2[0, 1] may be approximate
as follows

u(t) ≃
M∑
j=0

ujFj(t) = UTΨ(t),(4)

subject to

U = [u0, u1, . . . , uM ]T , Ψ(t) = [F0(t), F1(t), . . . , FM (t)]T .(5)

The coefficient vector U = (uj) is given by UT = ∆TD−1, where D = ⟨Ψ,Ψ⟩,
∆ = ⟨u,Ψ⟩.

2.2. Caputo Derivative Operational Matrix of Fibonacci Polynomi-
als. This subsection is devoted to construct the Caputo derivative operational
matrix for Fibonacci polynomials. The Caputo derivative of the vector Ψ(t) can
be expressed by

DγΨ(t) ≃ D(γ)Ψ(t).(6)

D(γ) is the (M +1)× (M +1) operational matrix of Caputo fractional derivative.
Now, we obtain this operational matrix. Using Eq. (3) and considering the

properties of Caputo derivative, we have

DγFm(t) =

⌊m/2⌋∑
i=0

(
m− i
i

)
Dγtm−2i(7)

=

⌊m/2⌋∑
i=0

(
m− i
i

)
ηm−2i−γ(t),

where

ηm−2i−γ(t) =

{
Γ(m−2i+1)

Γ(m−2i+1−γ) t
m−2i−γ , m− 2i ≥ γ,

0, m− 2i < γ.
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and m ≥ 0.
Now, by expanding the above equation regarding Fibonacci polynomials, we

have

DγFm(t) ≃ ϕTm,γΨ(t).(8)

Then, we achieve the following relation:

D(γ) = [ϕTm,γ ], m = 0, 1, . . . ,M.

2.3. Distributed-Order Fractional Derivative Operational Matrix of
Fibonacci Polynomials. Here, the methodology of obtaining the distributed-
order fractional derivative operational matrix is presented. This operational ma-
trix is presented as follows:

Dτ(γ)Ψ(t) ≃ Θτ(γ)Ψ(t),(9)

where Dτ(γ)u(t) =
∫ b
a
τ(γ)Dγu(t)dγ. Considering definition of Dτ(γ)u(t) and Eq.

(8) and utilizing the Gauss-Legendre numerical integration for evaluating the ex-
isting integration, we derive

Dτ(γ)Fm(t) =

∫ b

a

τ(γ)DγFm(t)dγ ≃
∫ b

a

τ(γ)ϕTm,γΨ(t)dγ(10)

= (

∫ b

a

τ(γ)ϕTm,γdγ)Ψ(t)

≃ b− a
2

( N∑
j=1

ωjτ(
b− a
2

ϑj +
a+ b

2
)ϕT
m,( b−a

2 ϑj+
a+b
2 )

)
Ψ(t)

= χTm,τ(γ)Ψ(t).

Hence, we have

Θτ(γ) = [χTm,τ(γ)], m = 0, 1, . . . ,M.

3. Description of the Method

Here, we consider the following distributed-order fractional differential equation
(DFDE): ∫ b

a

τ(γ)Dγu(t)dγ = G(t), t ∈ [0, 1],(11)

subject to the following constraints

u(l)(0) = u0,l, l = 0, 1, . . . , ⌈b⌉ − 1,(12)

and Dγ denotes the fractional derivative in the Caputo type of order γ. a and b
are positive numbers. We approximate the function u(t) by Fibonacci polynomials
as follows u(t) ≃ UTΨ(t), where U is an unknown vector and Ψ is defined in Eq.
(5). Then, concerning distributed-oredr fractional derivative operational matrix,
the considered problem can be written as

Y (t) = UTΘτ(γ)Ψ(t)−G(t),(13)

Now, we use the Galerkin method which is convergent [2]

⟨Y, Fm⟩ = 0, m = 0, 1,M − l,(14)
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Table 1. Comparison of the L2 errors in Example 4.1.

Methods L2 errors

Ref. [6]
m = 6 2.73× 10−5

m = 10 1.84× 10−6

Present method
M = 3 2.22507× 10−7

and for the initial conditions, we get

UTDγΨ(0)− u0,l = 0, l = 0, 1, . . . , ⌈b⌉ − 1.(15)

Considering the above relations, the problem translates to a system of alge-
braic equations. The system is solved by applying the “Find Root” package in
Mathematica software to obtain the unknown coefficients vector.

4. Illustrative Examples

Example 4.1. Consider the following DFDE [6]∫ 1

0

Γ(72 − γ)
Γ( 72 )

Dγu(t)dγ =
t
3
2 (t− 1)

ln(t)
,

subject to u(0) = 0. The exact solution of this problem is u(t) = t
5
2 . Table 1

reports the maximum absolute errors of the proposed technique for M = 5 and
the results using method based on Legendre polynomials [6].

Example 4.2. Consider the following DFDE as∫ 2

0

Γ(6− γ)
120

Dγu(t)dγ =
t5 − t3

ln(t)
,

subject to u(0) = u
′
(0) = 0, and the exact solution of this problem is u(t) = t5.

L∞ error achieved using the method for M = 5 is 3.75597 × 10−8 and this error
for [9] for N = 5 is 1.06× 10−7.

Example 4.3. Consider the following DFDE∫ 1.5

0.2

Γ(3− γ)Dγu(t)dγ = 2(
t1.8 − t0.5

ln(t)
),

with the initial conditions u(0) = u
′
(0) = 0. The exact solution is u(t) = t2. by

applying the described method, we solve this problem, numerically. The absolute
errors of the present method M = 2 is displayed in Figure 1. Also, Table 2 lists
the relative errors in u(0.9) (|uex(t)−uap(t)|/|uex(t)|) obtained by impelement the
present method and method in [4].
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Figure 1. The comparison of absolute error of the present
method for M = 2 in Example 4.3.

Table 2. Comparison of the relative errors in u(0.9) for Example 4.3.

Methods Relative errors

Ref. [4]
k = 32, h = 0.0001 7.34× 10−5

k = 64, h = 0.0001 1.26× 10−5

Present method
M = 4 2.96394× 10−11
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1. Introduction

Backward differentiation formulas (BDFs) are the popular implicit methods for
solving ordinary differential equations. These methods were first used for the
solution of stiff problems by Curtis and Hirschfelder [7]. Over the years several
implicit methods have been developed and discussed extensively in literature, see
[3, 4, 5]. The block methods were first introduced by Milne [10] and since then
several block methods have been developed by researchers such as [6] and the
references therein. Akinfenwa and Jator [1] have shown that the stability regions
of continuous block backward differentiation formulas (CBBDFs) of orders 2, 3 and
4 are large. Also recently Akinfenwa, Jator and Yao [2] check out the CBBDFs of
orders 4 and 6 and their stability regions. Our aim is to investigate the stability
region of CBBDFs of orders up to 9.

In this paper, the concern has to do with implicit BDFs for the numerical
solution of Initial Value Problems (IVPs) for first-order ODEs of the form

y′ = f(t, y), t ∈ (t0, Tn), y(t0) = y0,(1)

which is generally written as

k∑
j=0

αjyn+j = hβkfn+k,

where h is the step size, αk = 1, αj , j = 1, 2, . . . , k, βk are unknown constants
which are uniquely determined such that the formula is of order k.
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A block-by-block method is a method for computing vectors Y0, Y1, . . . in se-
quence [8]. Let the v-vector (v is the number of points within the block) for
n = mv,m = 0, 1, . . . be given as Yω = (yn+1, . . . , yn+v)

T , Fω = (fn+1, . . . , fn+v)
T ,

then the l-block v-point method for solving (1) are given by

Yω =

l∑
i=1

A(i)Yω−i + h

l∑
i=0

B(i)Fω−i,

where A(i), B(i), i = 0, 1, . . . , l are v by v matrices [8].
Our aim is obtaining the CBBDF7, CBBDF8 and CBBDF9 and compare the

stability regions of them with stability regions of CBBDF2, . . . , CBBDF6, so we
will have next sections.

2. Derivation of the Method

The block algorithm proposed in this paper is based on interpolation and collo-
cation [9]. We proceed by seeking an approximate of the exact solution y(t) by
assuming a continuous solution Y (t) of the form

Y (t) =

q+r−1∑
j=0

mjϕj(t), t ∈ [t0, Tn].

Such that t ∈ [t0, Tn], mj are unknown coefficients and ϕj(t) are polynomial basis
functions of degree q + r − 1, where the number of interpolation points q and the
collocation point r are respectively chosen to satisfy q = k and r = 1. The integer
k ≥ 1 denotes the step number of the method. We thus, constructed a k-step
block methods with ϕj(t) = tjn+i by imposing the following conditions

Y (tn+i) =

q+r−1∑
j=0

mjt
j
n+i = yn+i, i = 0, . . . , k − 1,(2)

Y ′(tn+i) =

q∑
j=0

mjj(tn+i)
j−1 = fn+i, i = k,(3)

where yn+j is the approximation for the exact solution y(tn+j), fn+j = f(tn+j , yn+j),
n is the grid index and tn+j = tn + jh. It should be noted that equations (2) and
(3) leads to a system of q + 1 equations of the form AM = C, where

A =



1 tn t2n . . . tqn
1 tn+1 t2n+1 . . . tqn+1

1 tn+2 t2n+2 . . . tqn+2

...
...

...
. . .

...
1 tn+k−1 t2n+k−1 . . . tqn+k−1

0 1 2tn+k . . . qtq−1
n+k


, M =



m0

m1

m2

...
mk−1

mk


, C =



yn
yn+1

yn+2

...
yn+k−1

fn+k


,
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which must be solved to obtain the coefficients mj . After some algeraic compu-
tation we generated the block method as follow:

fn+i =
1

cih

bihfn+k + k−1∑
j=0

aijyn+j

 , i = 1, 2, . . . , k − 1,

yn+k =
1

ck

bkhfn+k + k−1∑
j=0

akjyn+j

 .
The parameters ci, bi and aij for i = 1, 2, . . . , k and j = 0, 1, . . . , k−1 are presented
in Tables 1, 2 and 3 for k = 7, 8 and 9 respectively.

Table 1. The parameters ci, bi and aij for k = 7.

i ci bi ai0 ai1 ai2 ai3 ai4 ai5 ai6
1 65340 -600 -9420 -94043 193500 -158100 -42705 101900 8868

2 13068 48 318 -4412 -10035 21360 3852 -10330 -753

3 5445 -15 -54 562 -3330 -1230 -1476 5270 258

4 65340 240 501 -4636 20610 -67440 36684 19135 -4854

5 65340 -600 -708 6145 -24300 59700 57483 -115900 17580

6 65340 3600 2070 -17268 64125 -140400 -233820 205350 119943

7 1089 420 60 -490 1764 -3675 -4410 4900 2940

Table 2. The parameters ci, bi and aij for k = 8.

i ci bi ai0 ai1 ai2 ai3 ai4 ai5 ai6 ai7
1 45660 300 -5745 -72387 158410 -156450 -74305 127925 27762 -5210

2 958860 -2100 17385 -276360 -901117 1894200 600040 -1161825 -210315 37922

3 63924 84 -391 46627 -32354 -27825 -30394 78435 9478 -1611

4 159810 -210 597 -6328 32942 -130200 123928 3675 -29022 4408

5 958860 2100 -3687 36645 -169610 502950 470687 -1235325 450030 -51690

6 319620 -2100 2165 -20664 89705 -236600 -678440 436275 333039 74520

7 319620 14700 -7545 70070 -292334 723975 1393070 -1189475 -132440 626709

8 2283 840 -105 960 -3920 9408 15680 -14700 -11760 6720

3. Stability Analysis

In what follows, the k-step continuous block BDF rearranged and rewritten as a
matrix finite difference equation of the form

A(1)Yω+1 = A(0)Yω + hβ(1)Fω, ω = 0, 1, . . . ,(4)

where A(1), A(0) and B(1) are k by k matrices and

Yω+1 = (yn+1, yn+2, . . . , yn+k)
T , Yω = (yn−k+1, yn−k+2, . . . , yn)

T ,

Fω = (fn+1, fn+2, . . . , fn+k)
T , n = 0, 1, . . . , N − k.
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Table 3. The parameters ci, bi and aij for k = 9.

i ci bi ai0 ai1 ai2 ai3 ai4 ai5 ai6 ai7 ai8
1 748545 -3675 -835805 -1281759 2975280 -3441760 -2504145 3400600 1294384 -432880 73860

2 855480 1200 12015 -215220 -928746 1979320 960260 -1466850 -465430 149496 -24845

3 2994180 -2100 -12115 162765 -1294020 -1817011 -2179485 44038350 939260 -283005 45261

4 1197672 672 2451 -29272 174552 -807856 1176504 -222600 -380408 101968 -15339

5 1497090 -1050 -2493 27915 -147980 513730 332493 -1523550 968660 -194970 26195

6 5988360 8400 12815 -137772 684810 -2113720 -9247140 4702950 3928022 2415240 -245205

7 2994180 -14700 -13515 141295 -674436 1952405 5702865 -3863650 -7398020 3536811 616245

8 5988360 235200 109305 -1120080 5201840 -14471072 -35354480 26886300 34531280 -28187040 12403947

9 7129 2520 280 -2835 12960 -35280 -793805 63504 70560 -45360 220680

Figure 1. Stability regions of CBBDFs for k = 2, 3, . . . , 9.

3.1. Zero Stability. As h→ 0, the method (4) tends to the difference system

A(1)Yω+1 −A(0)Yω = 0,

with first characteristic polynomial ρ(R) = det(RA(1) − A(0)). Following Fatunla
[8], the block by block method (4) is zero-stable, since ρ(R) = 0 satisfies |Rj | ≤ 1
for j = 1, 2, . . . , k and for those roots with |Rj | = 1, the multiplicity does not
exceed 1.
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1. Introduction

Shape-preserving interpolation is defined to be a method of constructing an inter-
polant curve (surface) which also preserves the shape implied by the data points.
It is known as an essential curve/surface design technique in CAD/CAM and geo-
metric design. Convexity, monotonicity, positivity and boundedness are the most
important shape features which has extensively been studied in literature. When
we recreate the underlying entity by interpolation from sampled values, we need
to ensure that the interpolating curve adheres to these known properties.

In this work a Bézier-like curve is studied from shape-preserving point of view
and it is proven that the curve preserves monotonicity and boundedness of the
data.

Monotone data could be seen in many scientific phenomenon; the uric acid
level in patients suffering from gout [4], erythrocyte sedimentation rate (E.S.R.)
in cancer patients, rate of dissemination of drug in the blood [3] are examples of
entities in medicine which only have meaning when they are monotone. To count
some other cases we can refer to design of aggregation operators in multi-criteria
decision making and fuzzy logic, the approximation of copulas and quasi copulas
in statistics, empirical option pricing models in finance [1].

One of the hidden features in a data set may be its boundedness. This happens,
for example, when the data comes from a sampling of a bounded function or they
reflect the probability or efficiency of a process. Actually any quantity which is
expressed as a percentage of another quantity will necessarily lie between 0 and
100. In this case, it is natural to expect the interpolant to lie between the imposed
bounds.
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2. Preliminary

Definition 2.1. [5] Let λ ∈ [−1, 1], for t ∈ [0, 1], the functions

b2,0(t) =
(
1− 2λt+ λt2

)
(1− t)2 ,

b2,1(t) = 2t (1− t)
(
1 + λ− λt+ λt2

)
,(1)

b2,2(t) =
(
1− λ+ λt2

)
t2,

are called the Bernstein-like basis functions of order 2. One can define the corre-
sponding order n basis functions with a recursion

bn,i(t) = (1− t)bn−1,i(t) + tbn−1,i−1(t), t ∈ [0, 1] , n ≥ 3 & i = 0, 1, 2, . . . , n.(2)

Definition 2.2. Given control points Vi ∈ Rd (i = 0, 1, . . . , n;n ≥ 2), we call

pn(t) =
n∑
i=0

bn,i(t)Vi, t ∈ [0, 1] ,

the Bézier-like curve of order n, where bn,i(t)(i = 0, 1, . . . , n) are the Bernstein-like
basis functions.

The Bézier-like curve has the following properties [5]:

(a) Convex hull property: The entire curve lies inside the convex hull of its
control polygon.

(b) Geometric invariance: Because pn(t) is an affine combination of the con-
trol points, the shape of the Bézier-like curve is independent of the choice
of coordinate system.

(c) Symmetry:

pn(t;V0, V1, . . . , Vn) =
n∑
i=0

bn,i(t)Vi =
n∑
j=0

bn,j(1−t)Vn−j = pn(1−t;Vn, Vn−1, . . . V0).

(d) End point conditions:

pn(0) = V0, pn(1) = Vn, p
′
n(0) = (n+2λ) (V1 − V0) , p′n(1) = (n+2λ) (Vn − Vn−1) .

3. Monotonicity Preservation of the Bernstein-Like Basis Functions

In this section we revisit the main results on the monotonicity preservation of
curves and present a proof in the case of Bernstein-like basis functions.

Definition 3.1. A system of functions (u0, . . . , un) is monotonicity preserving
if for any α0 ≤ α1 ≤ · · · ≤ αn in R, the function

∑n
i=0 αiui is increasing.

The following result, which characterizes monotonicity preserving systems,
appears in [2, Proposition 2.3].

Proposition 3.2. Let (u0, . . . , un) be a system of functions defined on an
interval [a, b]. Let vi :=

∑n
j=i uj for i ∈ {0, 1, . . . , n}. Then (u0, . . . , un) is

monotonicity preserving if and only if v0 is a constant function and the functions
vi are increasing for i = 1, . . . , n.

As a consequence of the previous proposition, we derive the following result.
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Theorem 3.3. The Bernstein-like basis functions (bn,0, bn,1, . . . , bn,n) defined
by (1), (2) is monotonicity preserving.

Proof. We use an induction on n, the order of basis functions. For n = 2,
the basis, (b2,0, b2,1, b2,2), is obviously monotonicity preserving according to the
following calculations:

v0 =
2∑
j=0

b2,j(t) = 1,

v1 =
2∑
j=1

b2,j(t) = b2,1(t) + b2,2(t) = −λt4 + 4λt3 − (5λ+ 1) t2 + 2 (λ+ 1) t,

⇒ v′1(t) = −4λt3 + 12λt2 − 2 (5λ+ 1) t+ 2 (λ+ 1) ≥ 0,

v2 =
2∑
j=2

b2,j(t) = b2,2(t) =
(
1− λ+ λt2

)
t2 ⇒ v′2(t) = 4λt3 + 2t (1− λ) ≥ 0.

Suppose that the Bernstein-like basis functions of order n− 1, i.e.

(bn−1,0, bn−1,1, . . . , bn−1,n−1),

is monotonicity preserving, for the basis, (bn,0, bn,1, . . . , bn,n) to be monotonicity
preserving one needs v0 to be constant, which is true according to partition of
unity of basis functions. Moreover functions vi must be increasing for i = 1, . . . , n.

vi =

n∑
j=i

bn,j(t)⇒ v′i(t) =

n∑
j=i

b′n,j(t).(3)

Using the recursion relation, (2) we can rewrite (3) as follows:

v′i(t) = −
n∑
j=i

bn−1,j(t) + (1− t)
n∑
j=i

b′n−1,j(t) +
n∑
j=i

bn−1,j−1(t) + t
n∑
j=i

b′n−1,j−1(t)

= bn−1,i−1(t) + (1− t)
n−1∑
j=i

b′n−1,j(t) + t
n−1∑
j=i−1

b′n−1,j(t),

which is non-negative in view of induction hypothesis and non-negativity of basis
functions. □

The Bézier-like curve is a curve in R2 plane, so we need the following statement
to cover this case. The proof is straightforward.

Proposition 3.4. Let (u0, . . . , un) be a system of functions that is monotonic-
ity preserving, if {Pi}ni=0 ⊆ R2 be a monotone data then the function

∑n
i=0 Piui

is increasing.
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4. Shape Preserving Interpolation

4.1. Monotone Interpolation. Let {(xi, fi)}ni=0 be a monotone data de-
fined over the interval [0, 1], we wish to find a smooth interpolant p(x) on [x0, xn]
which preserves monotonicity.

We present a piece-wise Bézier-like curve as a solution to our monotone inter-
polation problem. For each sub-interval [xi, xi+1], two auxiliary points are added
and a Bézier-like curve is constructed using the control points

{(xi, fi) , (hi, gi) , (ti, zi) , (xi+1, fi+1)} ,

where hi, ti, gi, zi are unknown values. We need the piece-wise Bézier-like curve to
be C1, so in any two consecutive sub-intervals a continuity condition is imposed.
Moreover we need the restrictions xi < hi < ti < xi+1 and fi ≤ gi ≤ zi ≤ fi+1 for
having a monotone curve in each interval [xi, xi+1], in this way the overall curve
will be monotone. These constraints could be represented in the following system

zi + gi+1 = 2fi+1, i = 0, . . . , n− 2,

ti + hi+1 = 2xi+1, i = 0, . . . , n− 2,

xi < hi < ti < xi+1, i = 0, . . . , n− 1,

fi ≤ gi ≤ zi ≤ fi+1, i = 0, . . . , n− 1.

This system is feasible and to present a solution, for any g0 ∈ [f0, f1] and
zn−1 ∈ [fn−1, fn], we assume

zi = gi+1 = fi+1, ti = xi+1 − s, i = 0, . . . , n− 2,

hi = xi + s, i = 1, . . . , n− 1,

tn−1 = xn−1 + 2s, h0 = x1 − 2s.

Then it suffices to choose the parameter s according to

0 < s < min

{
x1 − x0

2
,
x2 − x1

2
, . . . ,

xn−1 − xn−2

2
,
xn − xn−1

2

}
.(4)

4.2. Bounded Interpolation. Consider {(xi, fi)}ni=0 as a data set, where
{xi} are distinct points in real line and {fi} are bounded values, say fi ∈ [m,M ].
Without loss of generality, we assume that m = 0 and M = 1, so we wish to find
a smooth interpolant p(x) on [x0, xn] with 0 ≤ p(x) ≤ 1. For a given set of control
points {Pi} ⊆ R2, the curve which is presented as rn(t) =

∑n
i=0 bn,i(t)Pi, is a curve

which passes through the end points P0 and Pn and also will always be completely
contained inside of the convex hull of the control points. We get use of this fact
and present a piece-wise Bézier-like curve as a solution to our bounded interpo-
lation problem. For each sub-interval [xi, xi+1], a Bézier-like curve is constructed
using the control points {(xi, fi) , (hi, gi) , (ti, zi) , (xi+1, fi+1)}, where hi, ti, gi, zi
are unknown values. We need C1 continuity and moreover we need the restriction
zi, gi ∈ [0, 1], so the overall curve would be smooth and bounded into [0, 1]. These
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constraints are illustrated as follows
zi + gi+1 = 2fi+1, i = 0, . . . , n− 2,

ti + hi+1 = 2xi+1, i = 0, . . . , n− 2,

fi ≤ zi, gi ≤ fi+1, i = 0, . . . , n− 1,

xi ≤ hi, ti ≤ xi+1, i = 0, . . . , n− 1,

According to the convex hull property, this system always have a feasible solution
which could be obtained similar to the monotone case, (4), so we would have a
bounded piece-wise curve which interpolates the given data.

4.3. Demonstration. We illustrate the proposed methods in previous sec-
tions through numerical examples. Let us take the monotone data given in Table 1
and bounded data given in Table 2, that presents data sampled from known func-
tions, we tried to use extreme cases to show the validity and reliability of proposed
techniques. Figure 1-A demonstrates the monotone case and one can see a spec-
trum of curves for different values of free parameter λ = −1,−0.9, . . . , 0.1, 0.2, . . . , 1.
From Figure 1-B, it is clear that the shape of the bounded data have been pre-
served.

Table 1. Monotone data.

x 1 1.5 2 2.5 3 3.5
f(x) 2 3 3.2 4 4.3 5

Table 2. Bounded data.

x 1 1.5 2 2.5 3 3.5
f(x) 0.1 1 0 0 0.2 1

Figure 1. Shape preserving interpolations with different shape
parameters.
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1. Introduction

In this work, we propose a numerical scheme for the solution of two dimensional
variable-order Galilei invariant advection diffusion equation [2]

ut +∇u = D
1−γ(x,t)
0,t ∆u(x, t) + f(u,x, t), (x, t) ∈ Ω× (0, T ],

u(x, 0) = φ(x), x ∈ Ω,

u(x, t) = h(x, t), (x, t) ∈ ∂Ω× (0, T ],

(1)

where Ω ⊂ R2, 0 < γmin ≤ γ(x, t) ≤ γmax < 1 and D
1−γ(x,t)
0,t u(x, t) is the variable-

order Riemann-Liouville fractional partial derivative of order 1−γ(x, t) for u(x, t)
defined by [5]

D
1−γ(x,t)
0,t ∆u(x, t) =

1

Γ(γ(x, t))

d

dt

∫ t

0

(t− s)−γ(x,t)−1
u(x, s)ds.

The radial basis function is one of common meshless method. This method was
used to interpolate scatter data by Roland Hardy [3]. In 1990, Kansa developed
the radial basis function method to solve the partial differential equations [4]. This
method is used to diversity of the partial differential equations [6, 7, 8].

In this work, we use a WSGD scheme to approximate the variable-order
Riemann-Liouville derivative in Eq. (1). In general, we approximate Eq. (1)
with finite difference scheme in the temporal direction and we apply thin plate
spline radial basis functions to discretize this equation in spatial direction. Then
we obtain a scheme of order O(τ) for defining nonlinear Eq. (1).
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The layout of this paper is as follows: In Section 2, we explain the radial basis
functions approximation method. In Section 3, we present a numerical scheme
which one order of accuracy in time variable and use thin plate spline radial
basis functions in space components to obtain the fully discrete scheme. The
numerical results of the proposed method are given in Section 4. In Section 5,
a brief conclusion is expressed. Some references that are used in this work are
introduced at the end of this paper.

2. Thin Plate Spline Approximation

An unknown function u(x) at node x in domain Ω can be approximated as

u(x) ≃
M∑
j=1

ηjϕ(rj) + ψ(x), x ∈ Ω ⊂ Rd,(2)

where M is the number of nodes in Ω, ηj are unknown coefficients, ϕ(rj) is the
radial basis function, rj = ||x− xj || is Euclidean norm and ψ(x) is the additional
polynomial which can be omitted if ϕ(rj) be unconditionally positive definite.

Let p1, p2, . . . , pl be the basis of P dq (the space of d−variate polynomials of
order not exceeding q), then ψ can be written as

ψ(x) =
l∑
i=1

ξipi(x),(3)

where l =
(q − 1 + d)!

d!(q − 1)!
.

To determine unknown coefficients η1, . . . , ηM and ξ1, . . . , ξl, the collocation
method is used. Then l equations are needed. The required equations can be
achived by putting

M∑
j=1

ηjpi(xj) = 0.(4)

Now let L be the linear partial differential operator, then we have

Lu(x) ≃
M∑
j=1

ηjLϕ(rj) + Lψ(x), x ∈ Ω ⊂ Rd.(5)

At the present work, we use thin plate spline radial basis functions which are
the following form

ϕ(rj) = r2mj log(rj), j = 1, 2, 3, . . . .(6)

In the numerical simulation we get m = 6.

3. The Proposed Numerical Scheme

In this section, we use WSGD scheme to approximate the variable order Riemann-
Liouville derivative as [1]

D
α(x,t)
0,t u(x, tn) =

1

τα(x,tn)

n∑
j=0

w
α(x,tn)
j un−j +O(τ2),
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where 0 < α(x, t) < 1 and

w
α(x,tn)
0 =

2 + α(x, tn)

2
, w

α(x,tn)
j =

2 + α(x, tn)

2
gj −

α(x, tn)

2
gj−1,

and

g
α(x,tn)
0 = 1, g

α(x,tn)
j = (1− α(x, tn) + 1

j
)gj−1.

We use the mentioned scheme and Crank-Nicolson idea to Eq. (1), then we
get

δtu
n+1/2 +

1

2
(∇un+1 +∇un) =

1

2
(

1

τβn+1

n∑
j=0

wβn+1

j ∆un+1−j(7)

+
1

τβn

n∑
j=0

wβn

j ∆un−j) + f(un) +O(τ),

where un = u(x, tn), δtu
n+1/2 = (un+1 − un)/τ and βn = 1 − γn. We can

approximate un(x) for M interpolation nodes using relations (2)-(6). Then we
have the matrix form of approximation of un as

[u]n = B[η]n.

We can splite the matrix B into B = Bd +Bb +Be, where

Bd = [bdij ] =

{
bij , xi ∈ Ω,

0, xi ∈ ∂Ω,
, Bb = [bbij ] =

{
bij , xi ∈ ∂Ω,
0, xi ∈ Ω,

Be = [beij ] =

{
bij , i =M + 1 :M + 3,

0, elsewhere.

Now we omit the small term in Eq. (7) and approximate un(x) for M inter-
polation nodes using (2)-(6). Then we apply the collocation method to determine
the interpolation coefficients. Finally we obtain the matrix equation as

C[η]n+1 = (Bd −
τ

2
∇Bd)[η]n + En + τ [f ]n + [H]n+1,

where

C = Bd +
τ

2
∇Bd −

1

2
[τ1−βn+1w

αn+1

0 ] ∗∆Bd +Bb +Be,(8)

[H]n+1 =

{
hn+1(xi), xi ∈ ∂Ω,
0, xi ∈ Ω,

En =
1

2
[τ1−βn+1 ] ∗

n+1∑
j=1

[w
βn+1

j ] ∗∆un+1−j
d +

1

2
[τ1−βn ] ∗

n∑
j=0

[wβn

j ] ∗∆un−jd ,

and ∇und = ∇Bd[η]n. The vectors [τ1−β
n+1

w
βn+1

0 ], [w
βn+1

j ], [wβn

j ], [τ1−βn ], [f ]n

are calculated using the collocation nodes xi ∈ Ω = Ω ∪ ∂Ω. The symbol ∗ in Eq.
(8) represents the multiplication of component by component.
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4. Numerical Results

In this section, we report the numerical experiment of TPS-RBF method for a 2D
test problem. Let E1 and E2 are error correspond to time steps τ1 and τ2, then
computational order of the presented method can be calculate as

C-order=
log E1

E2

log τ1
τ2

.

Example 4.1. Consider the Eq. (1) with the exact solution u(x, t) = t2ex+y

[2]. We use TPS-RBF method on square and circle domains with γ(x, t) =
10− xyt

300
and present the L∞ norm of errors and computational order of the pro-

posed method in Table 1. The graphs of numerical solution and absolute error for
this problem are presented in Figure 1.

Table 1. Errors and computational orders for test problem 1.

square domain with M=441 circle domain with M=476
τ L∞ C-order L∞ C-order
1/25 2.1481× 10−2 8.2985× 10−3

1/50 1.0603× 10−2 1.0186 4.0631× 10−3 1.0303
1/100 5.2842× 10−3 1.0047 2.0180× 10−3 1.0000
1/200 2.6380× 10−3 1.0022 1.0060× 10−3 1.0043
1/400 1.3182× 10−3 1.0009 5.0228× 10−4 1.0021

Figure 1. Numerical solution (left side) and absolute error (right
side) with τ = 0.005.
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5. Conclusion

In this article, we studied the TPS-RBF method for the solution of two dimensional
variable-order Galilei invariant advection diffusion equation with nonlinear source
term. A finite difference scheme of orderO(τ) is presented for discretizing temporal
direction. The accuracy of the present method is shown by an example.
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Abstract. Providing a suitable method for solving stochastic Black-Scholes-
Merton model and investigating the efficiency of the proposed method are the
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Keywords: Stochastic differential equations, Operational matrix
method, Hat functions.
AMS Mathematical Subject Classification [2010]: 60H10,
65L05.

1. Introduction

Recently, stochastic differential equations (SDEs) are employed as a widely used
mathematical tool for modelling various problems in reactor dynamics, the growth
of populations, financial markets, and etc. Solving SDEs exactly due to stochastic
factors is very complicated or even impossible and in recent decade the attention of
researchers have been attracted into numerical methods to estimate their numerical
solution. For instance, Runge-Kutta method [7], collocation method [2], Wong-
Zakai method [6], and meshless method [1] have been applied to provide the
numerical solution of different SDEs.

The aim of this paper is approximating the solution of stochastic Black-
Scholes-Merton model, which is one of the most important SDEs in financial mar-
ket. The stochastic Black-Scholes-Merton model with uncertain interest rate r is
formulated as follows [3]{

dX (τ) = rX (τ)dτ + σX (τ)dB(τ), τ ∈ [0, T ],

X (0) = X0,
(1)

where r, σ and X0 are known real numbers, B(τ) denotes standard Brownian
motion and X (τ) is an unknown stochastic process which should be approximated.
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2. Preliminaries

Definition 2.1. [5] Consider a vector of modified hat functions ϕ(τ) =
[φ0(τ), φ1(τ), . . . , φn(τ)]

T , such that its components are defined as follows

φ0(τ) =

{
1

2h2 (τ − h)(τ − 2h), 0 ≤ τ ≤ 2h,

0, otherwise.

If 1 ≤ i ≤ n− 1 be an odd number, then

φi(τ) =

{
−1
h2 (τ − (i− 1)h)(τ − (i+ 1)h), (i− 1)h ≤ τ ≤ (i+ 1)h,

0, otherwise.

If 2 ≤ i ≤ n− 2 be an even number, then

φi(τ) =


1

2h2 (τ − (i− 1)h)(τ − (i− 2)h), (i− 2)h ≤ τ ≤ ih,
1

2h2 (τ − (i+ 1)h)(τ − (i+ 2)h), ih ≤ τ ≤ (i+ 2)h,

0, otherwise,

and

φn(τ) =

{
1

2h2 (τ − (T − h))(τ − (T − 2h)), T − 2h ≤ τ ≤ T,
0, otherwise,

where n ≥ 2 is an even integer number and h = T
n .

Theorem 2.2. The ordinary and stochastic integrals of vector ϕ(τ) can be
estimated as follows∫ τ

0

ϕ(ς)dς ≃ Poϕ(τ),
∫ τ

0

ϕ(ς)dB(ς) ≃ Psϕ(τ),(2)

where Po and Ps denote ordinary and stochastic operational matrices of integration
based on modified hat functions, respectively and have been calculated in paper [4].

3. Numerical Method

The given SDE in Eq. (1) can be written as the following stochastic Volterra
integral equation

X (τ) = X0 + r

∫ τ

0

X (ς)dς + σ

∫ τ

0

X (ς)dB(ς).(3)

The unknowm process X (τ) and initial condition X0 in Eq. (3) are approxi-
mated via modified hat functions as follows

X (τ) ≃ Xn(τ) =
n∑
i=0

xiφi(τ) = XTϕ(τ), X0 ≃ ΥTϕ(τ),(4)

where

X = [x0, x1, . . . , xn]
T , ϕ(τ) = [φ0(τ), φ1(τ), . . . , φn(τ)]

T ,

Υ = [X0,X0, . . . ,X0]
T .

By inserting Eq. (4) into Eq. (3) and using operational matrices given in Eq. (2),
we have

XTϕ(τ) ≃ ΥTϕ(τ) + rXTPoϕ(τ) + σXTPsϕ(τ).(5)
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Figure 1. Investigating the effect of initial value X0 on numerical
solution.

Deleting ϕ(τ) from both sides of Eq. (5) and rewriting it results

XT (I − rPo − σPs) = ΥT .(6)

After solving obtained linear system (6) and computing unknown vector XT , the
numerical solution of SDE (1) is calculated from Eq. (4).

4. Numerical Experiments

In this section, Black-Scholes-Merton model, which has been introduced in Eq. (1),
is numerically solved via presented method to demonstrate accuracy of explained
method. Using Itô formula, it is proved that the strong solution of this SDE is
given by a geometric Brownian motion as follows

X (τ) = X0 exp
(
(r − σ2

2
)τ + σB(τ)

)
.

The accuracy of the proposed method are measured by the max-error and
RMS-error criterions which are defined as follows

max-error = max
i=0,1,...,n

∣∣X (τi)−Xn(τi)
∣∣, RMS-error =

√√√√ 1

n+ 1

n∑
i=0

∣∣X (τi)−Xn(τi)
∣∣2.

Computation time (CPU time) and condition number (cond) of obtained co-
efficient matrix are also reported in Tables to confirm the efficiency of our method.

The effect of the initial value X0 on the numerical solution has been inves-
tigated in Table 1 and Figure 1. In this situation, we solve mentioned SDE
for T = 1, n = 100, r = 0.15, σ = 0.5 and X0 = 0.01, 0.001, and we obtain
more accurate results for smaller value of X0. Also, we solve this model for
T = 1, r = 0.18, σ = 1,X0 = 0.001 and n = 50, 100 and we obtain more accu-
rate results for n = 100 (See Table 2 and Figure 2). This experiment shows that a
more accurate solution is obtained by considering more hat functions. In the third
expriment, which its results have been reported in Table 3 and Figure 3, we con-
sider T = 1, r = 0.2, n = 50,X0 = 0.01 and three different values σ = 0.1, 0.3, 0.5.
These results show that better results are obtained by reducing the amount of σ.
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Table 1. The effect of initial value X0 on numerical solution.

max-error RMS-error CPU time (s) cond
X0 = 0.010 3.9343e-04 2.9394e-04 4.044362 10.8771
X0 = 0.001 8.0705e-05 4.0064e-05 2.944271 9.7762
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Figure 2. Investigating the effect of parameter n on numerical
solution.

Table 2. The effect of parameter n on numerical solution.

max-error RMS-error CPU time (s) cond
n=50 2.2497e-04 1.3561e-04 3.582896 12.3072
n=100 6.3561e-05 4.2029e-05 3.516834 32.2248
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Figure 3. Investigating the effect of parameter σ on numerical
solution.

5. Conclusion

In this paper, an efficient algorithm has been applied to solve stochastic Black-
Scholes-Merton model, which is one of the most important mathematical models
in financial markets. To provide more accurate numerical results, we proceed some
different ways:

• increasing the number of used hat functions n,
• reduce the amount of parameter σ,
• reduce the value of initial condition X0.
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Table 3. The effect of parameter σ on numerical solution.

max-error RMS-error CPU time (s) cond
σ = 0.5 1.2568e-03 6.8702e-04 2.673566 6.1187
σ = 0.3 4.9705e-04 2.5713e-04 3.365316 3.7837
σ = 0.1 6.3564e-05 3.2254e-05 3.418961 1.5294
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Abstract. In this paper, we present a generalized Newton Gauss-Seidel it-
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1. Introduction

Consider the absolute value equation (AVE)

Ax+ B|x| = b,

where A,B ∈ Rn×n,b ∈ Rn and |x| indicates absolute value of each component
of vector x, when det(B) ̸= 0 the above equation can be simplified to

Ax− |x| = b.(1)

There exists a large body of literature in mathematics, physics, and engineering in
the form of linear complementary problem (LCP) which can be written as AVE.
It includes many programming problems as linear programming, convex quadratic
programming, etc [7]. These programming problems are intensively used in many
fields, e.g. modeling contact force, fluid in computational mechanic [1] and in
finding Nash equilibrium of Bimatrix game [3]; Also it is proven NP-hard knapsack
feasibility problems are AVE [6]. AVE unavoidably appears in solving interval
systems of linear equations [8].

In recent decades many efforts have been devoted to showing the existence and
numerical solution of AVE. We refer to some of them below. Mangasarian and
Meyer discussed the existence and nonexistence of solution for (1) [7]. Prokopyev
studied unique solvability of AVE and its relations with LCP and mixed it with
integer programming [9]. Mangasarian generalized the Newton method (GN) to
solve (1) when the singular values of A exceed 1 [10]. Salkuyeh proposed Picard-
HSS (PHSS) iterative method to solve (1) when A is a nonsymmetric positive
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matrix [11]. Also Edalatpour et al. presented generalized Gauss-Seidel (GGS)
and its Preconditioned (PGGS) methods [5].

In this paper, we use the Gauss-Seidel method for solving the linear system
that occurs at each iteration of Newton method for the solution of (1). Since the
GN method is efficient and easy to code also it needs to calculate inverse of matrix
(A − diag(sign(x)), that’s not constant, in each iteration that takes too long.
Therefore to overcome this draw back, we introduce generalized Newton Gauss-
Seidel (NGS) method, where in each iteration of GN we estimate xk+1 using the
Gauss-Seidel method in lk iteration. Next, for improving the rate of convergence
we solve (1) with an extrapolated version of NGS (ENGS), also convergence of
them and finding upper bound for the extrapolation parameter is studied.

We organized the reminder of this paper as follows. In Section 2, some pre-
requisites are given. A generalized Newton Gauss-Seidel iterative method and it’s
convergence are described in Section 3, Section 4 is assigned to extrapolated gen-
eralized Newton-Gauss-Seidel iterative method, eventually numerical results are
given in Section 5.

2. Preliminaries

To present the NGS method and its convergence we give some necessary lemma.

Proposition 2.1. [7]

i) The AVE (1) is uniquely solvable for any b ∈ Rn if ∥A−1∥2 < 1.

ii) The AVE (1) is uniquely solvable for any b ∈ Rn if the singular values
of A exceed 1.

Lemma 2.2. [4] Let M be nonsingular matrix and D is an arbitrary matrix
and ∥M−1D∥2 < 1. Then, (M −D) is invertible.

Lemma 2.3. [4] Let ∥M−1D∥2 < 1, then (I − M−1D) is nonsingular and
∥(I − (M−1D))−1∥2 ≤ 1

1−∥M−1D∥2
.

Lemma 2.4. [2] Let M be a nonsingular matrix and D = diag(di), where
di ∈ [−1, 1], i = 1, 2, . . . , n and ∥M−1∥2 < 1 then (M −D) is nonsingular and

∥(M −D)−1∥2 ≤
∥M−1∥2

1− ∥M−1D∥2
.

3. The Generalized Newton Gauss-Seidel Method

In this paper, for solving (1) or (A−D(x))x = b, that D(x) = diag(sign(x)), we
have

Mkx
(k,l+1) = Nx(k,l) + b, l = 0, 1, 2, . . . , lk − 1,

where A−D(xk) = A−Dk =Mk −N , Mk = tril(A)−Dk, N = triu(−A, 1) and
x(k+1) = x(k,lk).

Let ∥M−1∥2 < 1, according to Lemma 2.4, Mk is nonsingular. By considering
{lk} as nonnegative integer numbers, at each iteration we have

x(k+1) = Glkk x
(k) + (G

lk−1

k +G
lk−2

k + · · ·+Gk + I)M−1
k b,
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where Gk =M−1
k N . So

x(k+1) = Glkk x
(k) + (I −Glkk )(A−Dk)

−1b.(2)

Theorem 3.1. Let matrix A in (1) be nonsingular, suppose ∥G∥2+∥M−1∥2 <
1 and η = 2∥A−1∥2

1−∥A−1∥2
. If η < 1 then for nonnegative integer numbers lk, k =

0, 1, 2, . . . and any initial value such x(0) ∈ Rn, the iteration sequence produced by
NGS method converges to an exact solution of (1), provided that lim infk→∞ lk ≥
L, where L ∈ N satisfying

∥Grk∥2 <
1− η
1 + η

∀r ≥ L.

Proof. Considering ∥A−1∥2 < ∥M−1∥2

1−∥G∥2
, assumption ∥G∥2+ ∥M−1∥2 < 1 and

Lemma 2.2 yields (1) is uniquely solvable. Let x̃ be an exact solution of Eq. (1),
therefore

(A− D̃)x̃ = (A−Dk − Ck)x̃ = b,(3)

where D̃ = D(x̃), Ck is a diagonal matrix and D̃ = Dk − Ck. Substituting (3)
in (2) gets

x(k+1) = Glkk x
(k) + (I −Glkk )(I − (A−Dk)

−1Ck)x̃.

Then we have Ckx̃ = Dk(x̃− x(k)) + |x(k)| − |x̃|, so

x(k+1) − x̃ = Glkk (x
(k) − x̃) + (I −Glkk )(A−Dk)

−1(Dk(x̃− x(k)) + |x(k)| − |x̃|)).

Since ∥|x| − |y|∥2 ≤ ∥x− y∥2, where x, y ∈ Rn, therefore

∥x(k+1) − x̃∥2 ≤ ∥Glkk ∥2∥x
k − x̃∥2 + 2(1 + ∥Glkk ∥)∥(A−Dk)

−1∥∥x(k) − x̃∥2,

using Lemma 2.4 we have

∥x(k+1) − x̃∥2 ≤ µ∥x(k) − x̃∥2,(4)

where µ = (∥Glkk ∥2 + 2
∥A−1∥2(1+∥Glk

k ∥2)

1−∥A−1∥2
).

Since ∥Gk∥2 ≤ ∥G∥2

1−∥M−1∥2
, ∥G∥2 + ∥M−1∥2 < 1 and η < 1 so

lim
r→∞

∥Gk∥r2 ≤ lim
r→∞

(
∥G∥2

1− ∥M−1∥2
)r = 0 k = 0, 1, . . . ,

therefore

∃L ∈ N,∀k = 0, 1, . . . s.t ∥Grk∥ <
1− η
1 + η

∀r ≥ L.

So if we set lim infk→∞ lk ≥ L, using the above inequality and (4) give µ < 1
and this completes the proof. □
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4. Extrapolated Generalized Newton Gauss-Seidel Iterative Methods
for AVE

In this part we introduce an extrapolated version of NGS method in order to
increase the rate of convergence of it. In each outer iteration of NGS method, we
replace x(k+1) by the extrapolated value

αx(k+1) + (1− α)x(k),

where α ∈ R− {0}.
Let {lk} be arbitrary nonnegative integer numbers, in extrapolated generalized

Newton Gauss-Seidel, we calculate x(k) in each step using

x(k+1) = (αGlkk + (1− α)I)x(k) + α(I −Glkk )(A−Dk)
−1b.

If we assume ∥G∥2 + ∥M−1∥2 < 1 and 0 < α < 2(1−∥M−1∥2)
∥G∥2−∥M−1∥2+1 , we will have

ρ(αGlkk + (1− α)I) ≤ |α|∥Glkk ∥2 + |1− α| ≤ α
∥G∥2

1− ∥M−1∥2
+ |1− α| < 1.

Theorem 4.1. Let (1) be solvable, ∥G∥2+∥M−1∥2 < 1 and also η = 2∥A−1∥2

1−∥A−1∥2
.

If η < 1 then there exists an α0 > 1 such that for all 0 < α < α0, any initial value
x(0) and arbitrary nonnegative integer numbers lk, k = 0, 1, 2, . . . , ENGS method
converges to an exact solution, provided that lim infk→∞ lk ≥ L, where L ∈ N
satisfy

∥Grk∥2 <
2− α(1 + η)

α(1 + η)
, ∀r ≥ L.

Proof. Since the proof is exactly the same as previous ones, rewriting it
would be redundant. □

5. Numerical Experiments

In this section, we are going to check and compare experimentally presented theo-
ries with GN, GGS and PGGS methods by several test problems. All the numerical
experiments have been carried out by MATLAB R2015b (64-bit) and tested on
PC with quad-core 4.2 GHz Intel Core i7 processor and 8GB Memory running by
Windows 10. The process is followed by using zero vector as an initial value and
the stopping criterion is

∥Ax(k) − |x(k)| − b∥
∥b∥

≤ 10−7,

and we set a maximum number of iterations 2000. In all examples the vector
x = (x1, x2, . . . , xn)

T with xi = (−1)ii, i = 1, 2, . . . , n, is the exact solution. The
optimal parameters of PGGS and ENGS methods and interval boundary of α have
been found empirically. Notice that MATLAB backslash is used to solve system
of equations in each iteration of generalized Newton method.
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Example 5.1. Let

A =



B −I 0 0 . . . 0 0
−V B −I 0 . . . 0 0
0 −V B −I . . . 0 0
...

...
. . .

. . .
. . .

. . .
...

...
...

. . .
. . .

. . . B −I
0 0 0 0 0 −V B


∈ Rn×n,

where V = tridiag(−3, 1,−2) ∈ Rm×m, B = tridiag(1, 4,−1) ∈ Rm×m, I ∈
Rm×m is identity matrix and n = m2.

We consider (1), with above matrix A and present the numerical results in
Table 1.

Notice that for α ∈ (0, 1.3), ENGS method in this example is convergent.

Table 1. Numerical result for Example 5.1.

Method n 400 900 1600 2500 10000

NGS Iter. 20 29 38 58 203
CPU 0.008 0.016 0.030 0.063 1.014

ENGS Iter. 14 20 27 36 89
CPU 0.004 0.009 0.019 0.038 0.444
α 0.76 0.76 0.76 0.76 0.76

GN Iter. 4 7 9 12 –
CPU 0.009 0.022 0.056 0.118 –

GGS Iter. 112 – – – –
CPU 0.017 – – – –

PGGS Iter. 68 – – – –
CPU 0.012 – – – –
β 1.6 – – – –

Example 5.2. Let in (1), A = M + νI, where M is defined as bellow and
ν = 0,−.5,

M =



B −I 0 . . . 0 0
−I B −I . . . 0 0
0 −I B . . . 0 0
...

...
. . .

. . .
...

...

0 0
. . .

. . . B −I

0 0
. . .

. . . −I B


∈ Rm

2×m2

,

where B = trdiag(−1, 4,−1) ∈ Rm×m. It is considerably that in example 5.2
ENGS method for α ∈ (0, 1.4) with ν = 0 and ν = −.5, is convergent. Numerical
results is presented in Table 2.
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Table 2. Numerical result for Example 5.2.

ν Method n = m2 10, 000 40, 000 90, 000 160, 000

0 NGS Iter. 13 12 12 12
CPU 0.035 0.158 0.433 0.949

ENGS Iter. 10 9 9 9
CPU 0.026 0.114 0.308 0.623
α 1.2 1.2 1.2 1.2

GN Iter. 5 5 5 5
CPU 0.051 0.235 0.594 1.232

GGS Iter. 122 168 – –
CPU 0.244 1.768 – –

PGGS Iter. 18 17 17 16
CPU 0.053 0.269 0.693 1.254
β 1.3 1.3 1.3 1.2

-.5 NGS Iter. 16 16 16 16
CPU 0.045 0.241 0.632 1.230

ENGS Iter. 12 12 12 12
CPU 0.031 0.158 0.431 0.849
α 1.2 1.2 1.2 1.2

GN Iter. – – – –
CPU – – – –

GGS Iter. 77 – – –
CPU 0.155 – – –

PGGS Iter. 20 20 20 20
CPU 0.059 0.302 0.737 1.377
β 1.1 1.1 1.1 1.1

6. Conclusion

In this paper we presented the generalized Newton Gauss-Seidel iteration method
to solve AVE and proved it’s convergence, then for improving convergence rate
we proposed it’s extrapolated version. At the end, multiple examples have shown
that the proposed iteration methods are feasible, robust and effective for AVE.
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Abstract. Recently, Dehghan et al. presented the diagonal and off-diagonal
splitting (DOS) iteration method for solving the linear systems Ax = b. In

this paper, we present a refinement for this method (RDOS) which increases
its rate of convergence up to the rate of convergence of DOS method. Few nu-
merical examples are considered to show the efficiency of the RDOS method.
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1. Introduction

In many scientific and engineering applications, one often comes across with a
problem of finding the solution of a system of linear equations are written as the
following equation in matrix form:

Au = g,(1)

where A ∈ Cn×n is a nonsingular matrix with non-vanishing diagonal entries and
x, b ∈ Cn. In iteration method

u(p+1) = T u(p) + C, p = 0, 1, 2, . . . ,(2)

T is called the iterative matrix depending on matrix A. The iteration system (2)
is converge if and only if the spectral radius of T is less than unity. For solving
(1), we usually split the coefficient matrix A, as

A = D + E + F ,

where D is a diagonal matrix, E is a strictly lower triangular matrix and F is
a general matrix. In [2], authors introduced a new splitting iteration method
for solving (1) based on the diagonal and off-diagonal splitting (DOS) iterative
method, as follows:
The DOS Iterative Method: Given an initial guess u(0) ∈ Cn×n for p =
0, 1, 2, . . . until {u(p)} converges, compute the next iterate u(p+1) according to the
following procedure:{

Du(p+ 1
2 ) = [θ1D + (θ1 − 1)E + (θ1 − 1)F ]u(p) + (1− θ1)g,

(D + θ2E)u(p+1) = [(1− θ2)D − θ2F ]u(p+
1
2 ) + θ2g,

(3)
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where θ1 and θ2 are given constants. We can rewrite the DOS method as

u(p+1) = Tθ1,θ2u(p) + Cθ1,θ2 ,

where

Tθ1,θ2 = (D + θ2E)−1[(1− θ2)D − θ2F ]D−1[θ1D + (θ1 − 1)E + (θ1 − 1)F ],
Cθ1,θ2 = (D + θ2E)−1[(1− θ1)[(1− θ2)D − ω2F ]D−1 + θ2I]g.

Since the convergence rate of the stationary iterative process depends on the
spectral radius of the iterative matrix, so any reasonable refinement of the iterative
matrix will reduce the spectral radius and increases the convergence rate of the
method. Dafchahi [1] proposed the refinement of Jacobi (RJ) method for the
solution of linear system equations. Kumar Vatti et al. [5] presented a refinement
of Gauss-Seidel method and studied a refinement of AOR method [6]. Salkuyeh
[4] proposed a new iterative refinement of the solution of an ill-conditioned linear
system of equations.

In this work, refinement of DOS method, called RDOS iterative method. Our
method accelerates the convergence of the DOS iterative method. We study some
theories about the convergence of RDOS iteration method. Finally, the RDOS is
compared with the DOS method. By numerical experiment and theoretic analysis,
we conclude that the proposed method is superior to some existence methods.

2. The RDOS Iterative Method

In this section, we consider a refinement of DOS iterative method and obtain the
following RDOS iterative method as follows.
The RDOS Iterative Method: Given an initial guess u(0) for p = 0, 1, 2, . . .
until {u(p)} converges, compute the next iterate u(p+1) according to the following
procedure:

Du(p+ 1
2 ) = [θ1D + (θ1 − 1)E + (θ1 − 1)F ]u(p) + (1− θ1)g,

(D + θ2E)ũ(p+1) = [(1− θ2)D − θ2F ]u(p+
1
2 ) + θ2g,

u(p+1) = ũ(p+1) + (D + θ2E)−1(g −Aũ(p+1)).

(4)

At each step of the RDOS iteration method, we require solutions of two systems
whose coefficient matrices are D and D + θ2E . The first linear subsystem is easy
to implement since D is a diagonal matrix, and in the second system, it is a lower
triangular matrix we can use the forward substitution methods. Where ũ(p+1)

appeared in the right hand side is as given in (3). So far (4) takes the form
u(p+1) = Tr,θ1,θ2u(p) + Cr,θ1,θ2 , where

Tr,θ1,θ2 = (D + θ2E)−1[(1− θ2)D − θ2F ]D−1[θ1D + (θ1 − 1)E + (θ1 − 1)F ],
Cr,θ1,θ2 = (I + Tθ1,θ2)(D + θ2E)−1[(1− θ1)[(1− θ2)D − ω2F ]D−1 + θ2I].

On the other hand

u(p+1) = T 2
θ1,θ2u

(p) + (I + Tθ1,θ2)Cθ1,θ2 .(5)

Here Tr,θ1,θ2 = T 2
θ1,θ2

is the iterative matrix of RDOS method. We observe that the
iterative matrix of RDOS is the square of the DOS iterative matrix. The resulting
algorithm is summarized as follows:
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Algorithm 1. RDOS Iterative Algorithm
Let 0 ≤ θ1 ≤ 1 and 0 < θ2 ≤ 1 are constant.

1. Choose an initial guess u(0).
2. For p = 0, 1, 2, . . . until convergence, Do
3. Solve (3) to compute ũ(p+1).
4. Compute u(p+1) = ũ(p+1) + (D + θ2E)−1(g −Aũ(p+1)).
5. End for.

3. Convergence Analysis of the RDOS Method

In this section, we indicate that the RDOS iterative method converges to the
unique solution of the system (1).

Theorem 3.1. If the DOS method converges, then the RDOS iterative method
is convergent to the exact solution of the linear system (1) or equivalently, ρ(Tr,θ1,θ2)
< 1.

Proof. We have ρ(Tθ1,θ2) < 1. Let u be the exact solution of (1). Then the
DOS iterative method can be written as u = (I − Tθ1,θ2)−1Cθ1,θ2 . Using Eq. (5)
we have

u(p+1) = T 2
θ1,θ2u

(p) + [I + Tθ1,θ2 ]Cθ1,θ2 ,

u(p+1) = T 4
θ1,θ2u

(p−1) + [I + Tθ1,θ2 + T 2
θ1,θ2 + T 3

θ1,θ2 ]Cθ1,θ2 ,

u(p+1) = T 6
θ1,θ2u

(p−2) + [I + Tθ1,θ2 + T 2
θ1,θ2 + T 3

θ1,θ2 + T 4
θ1,θ2 + T 5

θ1,θ2 ]Cθ1,θ2 ,

...

u(p+1) = T 2(p+1)
θ1,θ2

u(0) + [I + Tθ1,θ2 + T 2
θ1,θ2 + T 3

θ1,θ2 + T 4
θ1,θ2 + T 5

θ1,θ2 + · · ·+ T 2p+1
θ1,θ2

]Cθ1,θ2 ,

u(p+1) = T 2(p+1)
θ1,θ2

u(0) +Σ∞
i=0T i

θ1,θ2Cθ1,θ2 ,

lim
p→∞

u(p+1) = lim
p→∞

T 2(p+1)
θ1,θ2

u(0) + (I − Tθ1,θ2)−1Cθ1,θ2 ,

lim
p→∞

u(p+1) = 0 + (I − Tθ1,θ2)−1Cθ1,θ2 ,

lim
p→∞

u(p+1) = u.

Therefore, RDOS method converges to the solution of linear system (1). □

Theorem 3.2. The RDOS method converges faster than the DOS method
when DOS method is convergent.

Proof. Let ũ be the solution of (1) obtained by (5) and u be the solution of
(1) obtained by (3). From (5), we have

ũ = Tr,θ1,θ2u+ Cr,θ1,θ2 ⇒ ũ = T 2
θ1,θ2u+ Cr,θ1,θ2 .
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So

u(p+1) − ũ = T 2
θ1,θ2u

(p) + Cr,θ1,θ2 − ũ,

u(p+1) − ũ = T 2
θ1,θ2(u

(p) − u) + Cr,θ1,θ2 − ũ+ T 2
θ1,θ2u,

u(p+1) − ũ = T 2
θ1,θ2(u

(p) − u)− ũ+ (T 2
α u+ Cr,θ1,θ2),

u(p+1) − ũ = T 2
θ1,θ2(u

(p) − u)− ũ+ ũ,

u(p+1) − ũ = T 2
θ1,θ2(u

(p) − u).
Now,

∥u(p+1) − ũ∥∞ = ∥T 2
θ1,θ2(u

(p) − u)∥∞ ≤ ∥T 2
θ1,θ2∥∞∥u

(p) − u∥∞,

∥u(p+1) − ũ∥∞ ≤ ∥Tθ1,θ2∥2∞∥u(p) − u∥∞,

∥u(p+1) − ũ∥∞ ≤ ∥Tθ1,θ2∥2n∞∥u(1) − u∥∞.

According to Theorem 3.1, ∥Tθ1,θ2∥2∞ < 1. Hence, ∥u(p+1) − ũ∥∞ ≤ ∥u(1) − u∥∞
this is equivalent to the refinement of RDOS method converge faster than the DOS
method. □

Using the singular value decomposition we can convert a nonsingular matrix A
to a strictly diagonally dominant matrix. We can find nonsingular matrices P and
Q using the SVD decomposition such that PAQ is strictly diagonally dominant
[7, 8]. Also, Yuan showed that there exists a nonsingular matrix P such that PA
is strictly diagonally dominant.

As said in [2], the DOS iteration method converges unconditionally when A
is strictly diagonally dominant, for 0 ≤ θ1 ≤ 1 and 0 < θ2 ≤ 1. It is obvious that
after finding P and Q such that PAQ is strictly diagonally dominant, instead of
solving (1) we can solve PAQv = Pg, u = Qv.

Special Cases: When F is strictly upper triangular matrix, we observe that
for specific values of the parameters θ1, θ2 the RDOS iterative reduces to refine-
ment well-known methods, for instance:

• If θ1 = 0, θ2 = 0, then Tr,0,0 is the iteration matrix of the refinement
Jacobi (RJ ) method [3].
• If θ1 = 1, θ2 = 1, then Tr,1,1 is the iteration matrix of the refinement
Gauss-Seidel (RGS) method [5]. Tr,1−θ1,0 is the iteration matrix of the
refinement Simultaneous Over-relaxation method,
• If θ1 = 1, θ2 = free, then Tr,1,free is the iteration matrix of the refine-
ment Successive Over-relaxation (RSOR) method [6].

RJ method is as fast as SOR method but, in compare with SOR method is
easier because we don’t require finding optimal parameter ω.

4. Numerical Experiments

In this section, numerical example is considered to exhibit the effectiveness of our
method. We also compare the performance of the RDOS method with the DOS
method from the point of view of the iteration counts (denoted as “IT”), CPU
times (denoted as “CPU”) and the spectral radius (denoted as “ρ”). The numer-
ical experiment was computed in double precision in MATLAB R2016b on a PC
computer with Intel(R) Core (TM) i7-7700k CPU 4.20GHz, 8.00 GB memory with
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machine precision and Windows 10 operating system. In our implementations, the
initial guess u(0) is chosen zero vector. In all examples, the stopping criterion is
∥g−Au(p)∥2

∥g∥2
< 10−5.

In our tests, we take h = 1
m+1 , n = m2, θ1 = 0.25, θ2 = 1 and for the tests

reported in this section, F is strictly upper triangular matrix.

Example 4.1. [2] Consider the linear system (πKV + KH)u = g, where KV
and KH are the viscous and hysteretic damping matrices, respectively. Here,
KV = 10In, KH = 0.02W,W = Im⊗Vm+Vm⊗Im, Vm = h−2tridiag(−1, 2,−1) ∈
Rm×m. We take g = (−π2In +W + πKV +KH)B, where B = (1, 1, . . . , 1)T .

Table 1. Numerical results of Example 4.1.

DOS RDOS
m IT CPU ρ(Tθ1,θ2) IT CPU ρ(Tr,θ1,θ2)
10 4 0.0052 0.03080 3 0.0048 0.0009479
20 7 0.0081 0.1935 4 0.0032 0.0374
30 12 0.0102 0.4010 7 0.0074 0.1608
40 17 0.0124 0.5661 10 0.0095 0.3204
50 24 0.0209 0.6808 14 0.0164 0.4635

Numerical result shows that the refinement of Jacobi method as fast as SOR
method with optimal parameter ω, but in the refinement of Jacobi method there
is no exist problem of finding ω. Also, it shows that the iteration numbers and
CPU times with RGS and RDOS (θ1 = 1, θ1 = 1) are the same.

5. Conclusion

For solving the non-singular linear system, we present a refinement of DOS method
and demonstrate that RDOS method converges to the unique solution of (1). We
have compared the numerical result of the RDOS iterative method with the DOS
iteration method. Numerical result shows that the RDOS method is superior to
the DOS method in terms of the iteration counts, the CPU times and spectral
radius.
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1. Introduction

A barrier option is a financial derivative that plays important role in managing risk
in financial markets. A call (put) option is a financial contract that gives the holder
right to buy (sell) the underlying asset at a specific price, that is called exercise
price. Depending on whether we have one or two barriers, we have two types of
barrier options: single and double. If the barrier option is activated (deactivated)
when the stock price hits the barrier, It is called knock-in (knock-out). If the
touching of barrier with stock price is checked only on fixed times, for example
weakly or monthly, the barrier option is called a discrete barrier option. Various
numerical and analytical methods have been proposed in recent decades for pricing
barrier options. Fusai et al. obtained an analytical solution for single barrier option
with the aid of z-transform [5]. In [2, 3], Fourier-cosine expansion method is used
for pricing barrier options. Milev and Tagliani presented a numerical method
based on quadrature method for pricing double barrier option in [6]. A numerical
method for pricing barrier options based on projection methods has been presented
in [4]. In [7], a numerical method with the aid of Legendre multiwavelet has been
proposed. Let r, σ and S0 are the risk-free rate, the volatility, and the initial
stock price respectively. Also, assume that the stock price St follows geometric
Brownian motion

dSt = rSt + σStdBt.

We concern in pricing knock-out discrete double barrier call option on stock,
i.e. a call option that becomes worthless if the stock price hits lower barrier L or
upper barrier U at the specific monitoring dates 0 = t0 < t1 < · · · < tM = T . If
the barriers are not touched in monitoring dates by underlying asset price, the pay
off at maturity time T is max(ST −E, 0), where E is exercise price. According to
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the well-known Black-Scholes framework, the price of discretely monitored double
barrier call option as a function of stock price at time t ∈ (tm−1, tm), namely
P (S, t,m− 1), is obtained from forward solving the following partial differential
Eqs. [1]:

−∂P
∂t

+ rS
∂P
∂S

+
1

2
σ2S2 ∂

2P
∂S2

− rP = 0,(1)

with the following initial conditions:

P (S, t0, 0) = (S − E)1(max(E,L)≤S≤U),

P (S, tm, 0) = P (S, tm,m− 1)1(L≤S≤U); m = 1, 2, . . . ,M − 1,

where P (S, tm,m− 1) := lim
t→tm

P (S, t,m− 1). By implementing change of vari-

able z = ln
(
S
L

)
and denoting C(z, t,m) := P(S, t,m) PDE (1) is converted to:

−Ct + µCz +
σ2

2
Czz = rC,(2)

C (z, t0, 0) = L(ez − eE
∗
)1(δ≤z≤θ),

C (z, tm,m) = C (z, tm,m− 1)1(0≤z≤θ) ; m = 1, 2, . . . ,M − 1,

where E∗ = ln
(
E
L

)
; µ = r − σ2

2 ; θ = ln
(
U
L

)
and δ = max {E∗, 0} . Finally, second

transformation C (z, tm,m) = eαz+βth(z, t,m), where

α = − µ

σ2
; c2 = −σ

2

2
; β = αµ+ α2σ

2

2
− r,

is applied and PDE (2) is reduced to the following heat equation:

−ht + c2hzz = 0,

h (z, t0, 0) = Le−αz
(
ez − eE

∗
)
1(δ≤z≤θ), m = 0,

h (z, tm,m) = h (z, tm,m− 1)1(0≤θ≤z), m = 1, . . . ,M − 1.

The above equation has analytical solution as below:

h(z, t,m) =

{
L
∫ θ
δ
k (z − ξ, t) e−αξ

(
eξ − eE∗)

dξ, m = 0,∫ θ
0
k (z − ξ, t− tm)h (ξ, tm,m− 1) dξ, m = 1, 2, . . . ,M − 1,

where

k(z, t) =
1√

4πc2t
e−

z2

4c2t .(3)

We consider monitoring dates of equally spaced, i.e, tm = mτ , where τ = T
M .

In this way h (z, tm,m− 1) is a function of two variables z, m. Therefore from
fm (z) := h(z, tm,m− 1), the following relations will be obtained:

fm(z) =

∫ θ

0

k(z − ξ, τ)fm−1 (ξ) dξ, m = 2, 3, . . . ,M,(4)

where f0 (ξ) = Le−αz
(
ez − eE∗)

1(δ≤ξ≤θ).
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2. CAS Wavelet

Let m ∈ Z and CASm(t) = cos(2mπt) + sin (2mπt), then CAS wavelets ψn,m(t)
for any non-negative integer k are defined on [0, 1) as follows:

ψn,m(t) =

{
2

k
2CASm

(
2kt− n

)
, n

2k
≤ t < n+1

2k
,

0, otherwise,

where n = 0, 1, 2, . . . , 2k − 1. These functions construct an orthonormal basis
functions for L2 ([0, 1]) [8], so we can expand any function f(t) ∈ L2 ([0, 1)) as

f(t) =
∞∑
n=1

∑
m∈Z

am,nψn,m(t),

where am,n = ⟨f, ψn,m⟩ =
1∫
0

f(t)ψn,m(t)dt. If we define ψ̃n,m(t) =
√
θ
−1
ψn,m(t/θ)

then {ψ̃n,m(t);n = 1, . . . ,∞,m ∈ Z} is an orthonormal basis for L2([0, θ]). Now,
let

XJ = span
{
ψ̃n,m(t);n = 1, . . . , 2J ,m = −M, . . . ,M

}
,

then the orthogonal projection operator PJ : L2([0, θ])→ XJ is defined as follow:

∀f ∈ L2([0, θ]) PJ (f) =
2J∑
n=1

M∑
m=−M

am,nψ̃n,m(t) = a⃗′ΨJ ,

where

a⃗ = [a−M,1, a−M,2, . . . , a−M,2k , a−M+1,1,

a−M,2, . . . , a−M+1,2k , . . . , aM,1, aM,2, . . . , aM,2J ],

Ψ = [ψ̃−M,1, ψ̃−M,2, . . . , ψ̃−M,2k , ψ̃−M+1,1,

ψ̃−M,2, . . . , ψ̃−M+1,2k , . . . , ψ̃M,1, ψ̃M,2, . . . , ψ̃M,2J ].

3. Pricing by CAS Wavelet

Consider the compact operator K : L2([0, θ])→ L2([0, θ]) as follows:

K (f) (z) :=

∫ θ

0

κ(z − ξ, τ)f(ξ)dξ,

where κ is defined in (3). With attention to the definition of operator K, Eq. (4)
can be rewritten as below:

fm = Kfm−1 m = 1, 2, 3, . . . ,M.(5)

Now, we define f̃m,J = PJK
(
f̃m−1,J

)
= (PJK)m (f0), m ≥ 2, where (PJK)(f) =

PJ (K(f)). Since the continuous projection operators PJ converge pointwise to
identity operator I, then operator PJK is also a compact operator and it could be
shown that [4]

lim
n→∞

∥(PJK)m −Km∥ = 0.
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Since, f̃m,J ∈ VJ for m ≥ 1, we can write

f̃m,J =

r2J∑
i=0

amiψi(z) = Ψ′
J (x)Fm,

where Fm = [am0, am1, . . . , am2j ]
′. From Eq. (5) we obtain

f̃m,J = (PJK)m−1
(
f̃1,J

)
.(6)

Because XJ is a finite dimensional linear space, so the linear operator PJK on
XJ could be considered as a (2M + 1)2J × (2M + 1)2J matrix K. Consequently
Eq. (6) can be written as following matrix operator form

f̃m,J = Ψ′
JK

m−1F1.(7)

For computation of the option price by (7), it is enough to calculate the matrix
operator K and the vector F1. By denoting ψi(x) as the i-th element of Ψ we have
(See [4])

F1 = [a11, a12, . . . , a1r2J ]
′, K = (kij)(2M+1)2J×(2M+1)2J ,

where

a1i =

∫ θ

0

∫ θ

δ

ψi(η)κ(η − ξ, τ)f0(ξ)dξdη , 0 ≤ i ≤ (2M + 1)2J ,

kij =

∫ θ

0

∫ θ

0

ψi(η)ψj(ξ)κ(η − ξ, τ)dξdη .

Therefore, the price of the knock-out discrete double barrier option can be
estimated as follows:

P (S0, tM ,M − 1) ≃ eαz0+βtf̃M,J (z0),(8)

where z0 = log
(
S0

L

)
and f̃M,n from (7). The matrix form of relation (7) implies

that the computational time of presented algorithm be nearly fixed when moni-
toring dates increase. Actually, if we set N = (2M + 1)2J the complexity of our
algorithm is O(N2) that dose not depend on number of monitoring dates.

4. Numerical Result

In this section we consider a knock-out discrete double barrier option with maturity
time T = 0.5, risk-free rate r = 0.05, volatility σ = 0.25, exercise price E = 100,
different spot price S0, upper barrier U = 110 and different lower barrier L. we
price this option by using the presented method and the numerical results are
given and compared with projection method [4] with 16 Legendre basis functions
as benchmark. Table 1 shows efficiency and accuracy of presented method in
comparison with the benchmark. Furthermore, we can see that CPU time of
our method increases insignificantly against increases of monitoring dates. The
numerical results are obtained from relation (8) with (2M + 1)2J CAS wavelets
basis functions. Source code of this method was written in MATLAB 2015 on a
3.2 GHz Intel Core i5 PC with 8 GB RAM.
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Table 1. Double barrier option pricing with parameters:
T = 0.5, r = 0.05, σ = 0.25, E = 100, U = 110 and L = 95.

M s0
CAS wavelets
(M = 1, J = 6)

∥Error∥ CAS wavelets
(M = 1, J = 7)

∥Error∥ Benchmark

95 0.176305 1.800e-03 0.175404 9.0600e-04 0.174498
100 0.232373 1.3500e-04 0.232526 1.8000e-05 0.232508

5 105 0.225881 1.8000e-04 0.226143 8.2000e-05 0.226061
107 0.20748 7.5700e-04 0.206866 1.4300e-04 0.206723
110 0.16912 1.700e-03 0.168259 8.6600e-04 0.167393

CPU 2 s 3.5 s 5.5 s
95 0.020119 5.9100e-04 0.019824 2.9600e-04 0.019528
100 0.04288 -7.7000e-05 0.04296 3.0000e-06 0.042957

25 105 0.040819 -9.7000e-05 0.040947 3.1000e-05 0.040916
107 0.033305 2.9900e-04 0.033061 5.5000e-05 0.033006
110 0.01925 5.6200e-04 0.018971 2.8300e-04 0.018688

CPU 2 s 3.5 s 5.5 s

5. Conclusion and Remarks

In this paper, we have implemented orthogonal projection method with the aid
of CAS wavelets basis functions for pricing discrete double barrier options and
obtained a matrix relation (7) for approximation solution of this problem. The
numerical results shows the efficiency and validity of this method.
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Abstract. In this paper, a numerical method is proposed to approximate
the solution of the nonlinear inverse Kawahara equation. We apply B-spline

for spatial variable and derivatives which produce a system. We solve this
system by using the Tikhonov regularization method. The aim of this paper is
to show that the method based on B-spline is also suitable for the treatment
of the nonlinear inverse parabolic partial differential equations. Numerical

example also verified the efficiency and accuracy of the method that can be
obtained in the MATLAB 7.10 (R2017b) and is tested on a personal computer
with intel(R) core(TM)2 Duo CPU and 4GB RAM.

Keywords: B-spline method, Inverse problems, Noisy data.
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1. Introduction

A wide range of inverse problems for the heat equation are today extensively
studied, because of their clear importance in applied sciences. Inverse problems
of parabolic type arise from various fields of engineering. These kind of problems
have been investigated by many researchers [2, 5].

Inverse problems are often ill posed, with solutions that depend sensitively on
data. In any numerical approach to the solution of such problems, regularization
of some form is needed to counteract the resulting instability [6]. In this paper,
we consider the nonlinear inverse Kawahara equation with forcing term

ut + au2ux + buxxx − duxxxxx = 0, (x, t) ∈ [0, 1]× [0, tf ],(1)

where a, b and d are real constants and the following initial condition

u(x, 0) = p(x), x ∈ [0, 1],(2)
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with boundary conditions

u(0, t) = f1(t), t ∈ [0, tf ],(3)

ux(0, t) = f2(t), t ∈ [0, tf ],(4)

u(1, t) = g1(t), t ∈ [0, tf ],(5)

ux(1, t) = g2(t), t ∈ [0, tf ],(6)

uxx(1, t) = g3(t), t ∈ [0, tf ],(7)

where p(x), g1(t), g2(t), and g3(t) are continuous known functions and tf represents
the final time, while the functions f1(t), f2(t) and u(x, t) are unknown which
remain to be determined.

2. B-Spline Method

In this section we solve the nonlinear inverse problem (1)-(7) with the over-specified
conditions

u(a∗, t) = h1(t), t ∈ [0, tf ],

ux(a
∗, t) = h2(t), t ∈ [0, tf ],

where 0 < a∗ < 1 is a fixed point. The solution domain x ∈ [0, 1] is partitioned into
a mesh of uniform length h = xi+1 − xi by the knots xi, where i = 0, 1, . . . , N − 1
such that ∆ = 0 = x0 < x1 < · · · < xN = 1 be the partition in [0, 1]. B-splines are
the unique nonzero splines of smallest compact support with knots at x0 < x1 <
· · · < xN . We define the B-spline Bi(x) for i = −3, 0, . . . , N + 2 by the following
relation [4]

Bi(x) =
1

h6



(x− xi + 3h)6, x ∈ [xi−3, xi−2),

(x− xi + 3h)6 − 7(x− xi + 2h)6, x ∈ [xi−2, xi−1),

(x− xi + 3h)6 − 7(x− xi + 2h)6

+21(x− xi + h)6, x ∈ [xi−1, xi),

(x− xi + 3h)6 − 7(x− xi + 2h)6

+21(x− xi + h)6 − 35(x− xi)6, x ∈ [xi, xi+1),

(x− xi − 4h)6 − 7(x− xi − 3h)6

+21(x− xi − 2h)6, x ∈ [xi+1, xi+2),

(x− xi − 4h)6 − 7(x− xi − 3h)6, x ∈ [xi+2, xi+3),

(x− xi − 4h)6, x ∈ [xi+3, xi+4),

0, otherwise.

(8)

It can be easily seen that the set of functions Γ = {B−3(x), B−2(x), B−1(x),
. . . , BN+2(x)} are linearly independent on [0, 1], thus Θ = Span(Γ) is a subspace
of C2[0, 1] and Θ is N + 6-dimensional. Let us consider Um(x, t) ∈ Θ be the
B-spline approximation to the exact solution u(x, t) in the form

Um(x, t) =
m+2∑
i=−3

ci(t)Bi(x),(9)

where ci(t) are time-dependent quantities to be determined from the boundary
and over-specified conditions and collocation from of the differential equations.
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Using approximate function (9) and B-spline (8), the approximate values at
the knots of U(x) and its derivatives up to fifth order are determined in terms of
the time parameters cm as

Um =cm−3 + 57cm−2 + 302cm−1 + 302cm + 57cm+1 + cm+2,

U ′
m =(6/h)(−cm−3 − 25cm−2 − 40cm−1 + 40cm + 25cm+1 + cm+2),

U ′′
m =(30/h2)(cm−3 + 9cm−2 − 10cm−1 − 10cm + 9cm+1 + cm+2),

U ′′′
m =(120/h3)(−cm−3 − cm−2 + 8cm−1 − 8cm + cm+1 + cm+2),

U (4)
m =(360/h4)(−cm−3 + 3cm−2 − 2cm−1 + 2cm − 3cm+1 + cm+2),

U (5)
m =(720/h5)(cm−3 − 5cm−2 + 10cm−1 − 10cm + 5cm+1 − cm+2).

Therefore, we have a system which solve by using Tikhonov regularization method,
the coefficients ci are obtained and using these coefficients, we can obtain the
approximate solution.

3. Main Results

The purpose of this section is to illustrate the applicability of the present method
described in Section 2 for solving the nonlinear inverse problem (1)-(7). We com-
pare the exact and the approximate solutions by considering the total error S
defined by [1]

Sf1 =

[
1

N − 1

N∑
z=1

(
f1(tz)− f∗1 (tz)

)2] 1
2

,

Sf2 =

[
1

N − 1

N∑
z=1

(
f2(tz)− f∗2 (tz)

)2] 1
2

,

where N is the number of estimated values, f1 and f2 are the exact values, f∗1 and
f∗2 are the estimated values.

Example 3.1. In this example we solve the nonlinear inverse Kawahara prob-
lem (1) and the comparisons are made with the exact solutions given in [3], a = 1,
b = −0.001 and d = 1 in the Tables refex1tab1 and refex1tab2 with the noisy data
(input data+0.1×rand(1)).

u(x, 0) =
3b√
10da

sec2(µx), µ =
1

2

√
−b
5d
,
b

d
< 0, 0 ≤ x ≤ 1,

u(1, t) = g1(t) =
3b√
10da

sec2(µ(1− 4b2

25d
t)), 0 ≤ t ≤ 1,

ux(1, t) = g2(t) = 2µ
3b√
10da

sin(µ(1− 4b2

25d
t))

cos3(µ(1− 4b2

25d
t))

, 0 ≤ t ≤ 1,

uxx(1, t) = g3(t) = 2µ2 3b√
10da

(
2

cos2(µ(1− 4b2

25d
t))

+
6 sin2(µ(1− 4b2

25d
t))

cos4(µ(1− 4b2

25d
t))

), 0 ≤ t ≤ 1.
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The exact solutions of this problem are,

u(x, t) =
3b√
10da

sec2(µ(x− 4b2

25d
t)), 0 ≤ x ≤ 1, 0 ≤ t ≤ 1,

f1(t) = u(0, t) =
3b√
10da

sec2(µ(
4b2

25d
t)), 0 ≤ t ≤ 1,

f2(t) = ux(0, t) = −2µ
3b√
10da

sin(µ(
4b2

25d
t))

(cos(µ(
4b2

25d
t)))3

, 0 ≤ t ≤ 1.

Table 1. The values of f1(t) and f2(t) when h = 0.01, k = 0.001,
a∗ = 0.2.

t
f1(t) f2(t)

Exact B − spline Exact B − spline

0.1 −9.486832980505137e− 04 −2.166096298056512e− 19 1.517893276880822e− 15 −3.317595801594114e− 17

0.2 −9.486832980505137e− 04 −2.166096298231290e− 19 3.035786553761644e− 15 −3.317595801866043e− 17

0.3 −9.486832980505137e− 04 −2.166096298406067e− 19 4.553679830642466e− 15 −3.317595802137971e− 17

0.4 −9.486832980505137e− 04 −2.166096298580845e− 19 6.071573107523287e− 15 −3.317595802409900e− 17

0.5 −9.486832980505137e− 04 −2.166096298755623e− 19 7.589466384404110e− 15 −3.317595802681830e− 17

0.6 −9.486832980505137e− 04 −2.166096298930401e− 19 9.107359661284932e− 15 −3.317595802953759e− 17

0.7 −9.486832980505137e− 04 −2.166096299105178e− 19 1.062525293816575e− 14 −3.317595803225687e− 17

0.8 −9.486832980505137e− 04 −2.166096299279956e− 19 1.214314621504657e− 14 −3.317595803497616e− 17

0.9 −9.486832980505137e− 04 −2.166096299454734e− 19 1.366103949192740e− 14 −3.317595803769546e− 17

1 −9.486832980505137e− 04 −2.166096299629512e− 19 1.517893276880822e− 14 −3.317595804041474e− 17

S - 9.4923e− 04 - 3.9511e− 05

Table 2. The values of u(0.8, t) when h = 0.01, k = 0.001, a∗ = 0.2.

t
u(0.8, t)

Exact B − spline

0.1 −9.487136565624832e− 04 −1.074955673593789e− 19

0.2 −9.487136565612688e− 04 −1.074955673640052e− 19

0.3 −9.487136565600545e− 04 −1.074955673686315e− 19

0.4 −9.487136565588401e− 04 −1.074955673732578e− 19

0.5 −9.487136565576257e− 04 −1.074955673778841e− 19

0.6 −9.487136565564114e− 04 −1.074955673825104e− 19

0.7 −9.487136565551969e− 04 −1.074955673871367e− 19

0.8 −9.487136565539826e− 04 −1.074955673917629e− 19

0.9 −9.487136565527682e− 04 −1.074955673963892e− 19

1 −9.487136565515539e− 04 −1.074955674010155e− 19

S - 9.5352e− 04
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Abstract. In this paper, a general procedure to develop some two-parametric
with-memory methods to find simple roots of nonlinear equations is pro-

posed.The new methods are improved extensions of without memory itera-
tive methods.We used two self-accelerating parameters to boost up the con-
vergence order and computational efficiency of the proposed methods without

using any additional function evaluations.Numerical examples are presented
to support the theoretical results of the methods.
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1. Introduction

According to Kung’s and Traub’s conjecture, an optimal iterative method without
memorybased on k+1 evaluations can achieve an optimal convergence order of 2k

[6]. One of the best known optimal second order methods based on two evaluations
for solving the equation f(x) = 0 is the Steffensen method,which is given as follows
(SM):

xk+1 = xk −
f(xk)

f [xk, wk]
, wk = xk + f(xk), k = 0, 1, 2, . . . .

Methods satisfying the Kung-Traub conjecture are called optimal methods. Following
Traub’s work (Traub, 1964), we first expose a natural classification of iterative
methods relied on the required information from the current and previous itera-
tions:

(1) Without memory methods. This type of iterative method (I.M.) is
constructed by introducing the expressions w1(xk), w2(xk), . . . , wn(xk),
where xk is the common argument. The I.M. φ, defined as

xk+1 = φ(xk, w1(xk), . . . , wn(xk)),
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is called a multipoint iteration method without memory.We see from (1)
that the new approximation xk+1 is obtained by the use of only previous
approximation xk, but through the n expressions wi.

(2) With memory methods. Let the I.M. have arguments zj , where each such
argument represents n+1 quantities xj , w1(xj), . . . , wn(xj)(n ≥ 1). Then
this I.M. can be represented in the general form as

xk+1 = φ(zk; zk−1, . . . , zk−n).

Such iteration function is called a multipoint iteration function with
memory. Namely, in each iterative step we must preserve information
of the last n approximations xj , and for each approximation we must
calculate n expressions w1(xj), . . . , wn(xj).

The aim of this paper is to develop a two parameters derivative-free optimal
family of eighth-order convergent methods.With memory methods with the same
number of function evaluations have a higher efficiency index than without memory
methods.

2. Construction and Convergence of New Three-Point Root Solvers

2.1. Without Memory Methods. In this section, we construct a new class
of third-step with memory methods. Let us consider the following iterative formula
[5]: 

wk = xk + γf(xk), yk = xk − f(xk)
f [xk,wk]

, γ ∈ R− {0}, k = 0, 1, 2, . . . ,

zk = yk − f(yk)
f [xk,yk]+f [yk,wk]−f [xk,wk]+β(yk−xk)(yk−wk)

, β ∈ R,
tk = f(yk)

f(xk)
, uk = f(yk)

f(wk)
, vk = f(zk)

f(yk)
, sk = f(zk)

f(wk)
, pk = f(zk)

f(xk)
,

xk+1 = zk − f(zk)(H1(tk)+H2(uk)+H3(vk)+H4(sk)+H5(pk))
f [xk,zk]+f [zk,yk]−f [xk,yk]+β(zk−yk)(zk−xk)

.

(1)

The following theorem indicates underwhat conditions on the weight functions
in (1) the order of convergence is eight.

Theorem 2.1. Let I ⊆ R be an open interval, f : I → R be a differentiable
function, and has a simple zero, say α. If x0 is an initial guess to α, then method (1)
has eight-order convergence, when the weight functions H1(tk), H2(uk), H3(vk),
H4(sk) and H5(pk) satisfy the following conditions:

H1(0) = 1, H ′
1(0) = H ′′

1 (0) = H ′′′
1 (0) = 0, |H(4)

1 (0)| ≤ 0,

H2(0) = H ′
2(0) = H ′′

2 (0) = 0, H
(3)
2 (0) = −(6 + 6γf [xk, wk]), |H(4)

2 (0)| ≤ 0,

H3(0) = H ′
3(0) = 0, |H ′′

3 (0)| ≤ 0,

H4(0) = 0, H ′
4(0) = 1, |H ′′

4 (0)| ≤ 0,

H5(0) = H ′
5(0) = 0, |H ′′

5 (0)| ≤ 0.

Also the error equation of the method (1) is given by

ek+1 = (1 + γf ′(α))3c22(β + f ′(α)c22 − f ′(α)c3)(−f ′(α)(3 + γf ′(α)c32 + c2(β(4 + 3γf ′(α))

−2f ′(α)(1 + γf ′(α))c3) + f ′(α)(1 + γf ′(α))c4)f ′(α)
−2e8k +O(e9k).(2)
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Proof. First, we define the Taylor series of f(x) as follows:

In [1] : f [e−] = fla(e+ c2e
2 + · · ·+ c8e

8),

where e = x − α, fla = f ′(α). Note that since α is a simple zero of f(x), the
f ′(α) ̸= 0, f(α) = 0.We define

In [2] : f [x−, y−] =
f [x]− f [y]

x− y
;

In [3] : ew = e+ γf [e];

In [4] : ey = e− Series[
f [e]

f [e, ew]
, {e, 0, 8}];

In [5] : ez = ey

− Series[
f [ey]

f [e, ey] + f [ey, ew]− f [e, ew] + β(ey − e)(ey − ew)
, {e, 0, 8}];

In [6] : ek+1 = ez

− Series[f [ez](1− (1 + γf [e, ew]) ∗ ( f [e]
f [ew]

)3 + 0 + 0 +
f [ez]

f [ew]
)/(f [e, ez]

+ f [ez, ey]− f [e, ey] + β(ez − ey)(ez − e)), {e, 0, 8}]//Full Simplify;
Out [6] : ek+1 = (1 + γfla)3c22(β + flac22 − flac3)(−fla(3 + γflac32 + c2(β(4 + 3γfla)

− 2fla(1 + γfla)c3) + fla(1 + γfla)c4)fla
−2e8 +O(e9),

and thus proof is completed. □

2.2. New Families of Iterative Methods with Memory. It is clear from
error equations (2) that the order of convergence of the family (1) is eight, when
(1 + γf ′(α)) ̸= 0 and (β + f ′(α)c22 − f ′(α)c3) ̸= 0. Therefore, it is possible to
increase the convergence speed of the proposed class (1), if (1 + γf ′(α)) = 0 and
(β+f ′(α)c22−f ′(α)c3) = 0 of f ′(α), f ′′(α) and f ′′′(α) are not available in practice
and such acceleration is not possible. Instead of that, we could use approxima-
tions f̃ ′(α) ≈ f ′(α), f̃ ′′(α) ≈ f ′′(α) and ˜f ′′′(α) ≈ f ′′′(α), calculated by already

available information.Therefore, by setting γ = 1
f̃ ′(α)

and β =
˜f ′′′(α)
6 − f̃ ′′(α)2

4f̃ ′(α)
con-

vergence order without using any new functional evaluation.Hence, the main idea
in constructing methods with memory consists of the calculation of the parame-
ters γ = γk and β = βk as the iteration proceeds by the formula γk = 1

f̃ ′(α)
and

βk =
˜f ′′′(α)
6 − f̃ ′′(α)2

4f̃ ′(α)
for k = 2, 3, . . . . Therefore, we approximate

γk = − 1
f̃ ′(α)

= − 1
N ′

4(xk)
,

βk =
˜f ′′′(α)
6 − f̃ ′′(α)2

4f̃ ′(α)
=

N ′′′
6 (yk)
6 − (N ′′

6 (yk))
2

4N ′
6(yk)

,

where N ′
4(xk), N

′′
6 (yk) and N ′′′

6 (yk) are Newton’s interpolation polynomials go
through the nodes {xk, xk−1, wk−1, yk−1, zk−1}, {yk, wk, xk, xk−1, wk−1, yk−1, zk−1},

443



V. Torkashvand, M. Azimi and M. Kazemi

and {yk, wk, xk, xk−1, wk−1, yk−1, zk−1}, respectively. Now, we obtain the new it-
erative method with memory as follows:

γk = − 1
N ′

4(xk)
, βk =

N ′′′
6 (yk)
6 − (N ′′

6 (yk))
2

4N ′
6(yk)

, k = 1, 2, 3, . . . ,

wk = xk + γkf(xk), yk = xk − f(xk)
f [xk,wk]

, γk ∈ R− {0}, k = 0, 1, 2, . . . ,

zk = yk − f(yk)
f [xk,yk]+f [yk,wk]−f [xk,wk]+βk(yk−xk)(yk−wk)

, βk ∈ R,

xk+1 = zk −
f(zk)(1−(1+γkf [xk,wk])∗(

f(xk)

f(wk)
)3+0+0+

f(zk)

f(wk)
)

f [xk,zk]+f [zk,yk]−f [xk,yk]+βk(zk−yk)(zk−xk)
.

(3)

Theorem 2.2. If an initial guess x0 is sufficiently close to the zero α of f(x)
and the parameters γk and βk in the iterative scheme (3) is recursively calculated
then the R-order of convergence of with memory methods (3) is at least 1

2 (13 +√
137) ≈ 12.3523.

Proof. Firstly, we assume that the R-orders of convergence of the sequences
wk, yk, zk and xk are at least r1, r2, r3 and r, respectively.Hence

ek+1 ∼ erk ∼ er
2

k ,

ek,z ∼ er3k ∼ e
rr3
k ,

ek,y ∼ er2k ∼ e
rr2
k ,

ek,w ∼ er1k ∼ e
rr1
k .

(4)

Also, we desist from retyping the widely practiced approach in the before and
put forward the self-explained Mathematica code used to supply a way that the
proposed family with-memory (3) achieves R-order equal 12.3.

ClearAll[“Global’*”];
A[t−]:=InterpolatingPolynomial[{{e, fx}, {ew, fw}, {ey, fy}, {e1, fx1}}, t];
Approximation=-1/A’[e1]//Simplify;
fx = fla ∗ (e+ c2 ∗ e2 + c3 ∗ e3 + c4 ∗ e4 + c5 ∗ e5 + c6 ∗ e6 + c7 ∗ e7 + c8 ∗ e8);
fw = fla∗(ew+c2∗ew2+c3∗ew3+c4∗ew4+c5∗ew5+c6∗ew6+c7∗ew7+c8∗ew8);
fy = fla∗ (ey+c2∗ey2+c3∗ey3+c4∗ey4+c5∗ey5+c6∗ey6+c7∗ey7+c8∗ey8);
fz = fla∗ (ez+c2∗ez2+c3∗ez3+c4∗ez4+c5∗ez5+c6∗ez6+c7∗ez7+c8∗ez8);
fx1 = fla∗(e1+c2∗e12+c3∗e13+c4∗e14+c5∗e15+c6∗e16+c7∗e17+c8∗e18);
γ = Series[Approximation, {e, 0, 2}, {ew, 0, 2}, {ey, 0, 2}, {e1, 0, 0}]//Simplify;
Collect[Series[1 + γ ∗ fla, {e, 0, 1}, {ew, 0, 1}, {ey, 0, 1}, {ez, 0, 1}, {e1, 0, 0}],
{e, ew, ey, ez, e1},Simplify],

which results in

c5eeweyez.

Therefore, one may obtain

1 + γkf
′(α) ∼ c5ek−1ek−1,wek−1,yek−1,z.(5)

We also have similarly

βk + f ′(α)c22 − f ′(α)c3 ∼ c5ek−1ek−1,wek−1,yek−1,z.(6)
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Using relations (4), (5), and (6), we have

ek+1 ∼ (1 + γkf
′(α))3(βk + f ′(α)c22 − f ′(α)c3)e8k ∼ (ek−1ek−1,wek−1,yek−1,z)

4e8k
∼ e

4(1+r1+r2+r3)+8r
k−1 ,

ek,z ∼ (1 + γkf
′(α))2c2(βk + f ′(α)c22 − f ′(α)c3)e4k ∼ (ek−1ek−1,wek−1,yek−1,z)

3e4k
∼ e

3(1+r1+r2+r3)+4r
k−1 ,

ek,y ∼ (1 + γkf
′(α))c2e2k ∼ ek−1ek−1,wek−1,yek−1,ze

2
k ∼ e1+r1+r2+r3+2r

k−1 ,

ek,w ∼ (1 + γkf
′(α))ek ∼ ek−1ek−1,wek−1,yek−1,zek ∼ e1+r1+r2+r3+r

k−1 .

(7)

Comparing the exponents of ek−1 in four expressions (4) and (7) of ek+1, ek,z,
ek,y, ek,w, we have four equations in the following system:

rr1 − (1 + r1 + r2 + r3)− r = 0,

rr2 − (1 + r1 + r2 + r3)− 2r = 0,

rr3 − 3(1 + r1 + r2 + r3)− 4r = 0,

r2 − 4(1 + r1 + r2 + r3)− 8r = 0.

The positive answer to the above equations system as follows:

r1 =
1

8
(5 +

√
137), r2 =

1

8
(13 +

√
137), r3 =

1

8
(23 + 3

√
137), r =

1

2
(13 +

√
137),

which specifies the R-order of convergence of the derivative-free scheme with mem-
ory (3) is r = 1

2 (13 +
√
137) (denoted by TAKM). □

Remark 2.3. The new three-step derivative-free methods (3) require four
function evaluations and have the order of convergence 12.3523.Hence, the effi-
ciency index of the proposed methods is 12.3523

1
4 = 1.87472 which is much bet-

ter than optimal one untill four-point optimal methods without memory having
efficiency indexes EI = 21/2 ≃ 1.41421, EI = 41/3 ≃ 1.58740, EI = 81/4 ≃
1.68179, EI = 161/5 ≃ 1.74110, respectively.

3. Numerical Results and Discussions

Now,we further want to check the efficiency of the proposed scheme and validate
the theoretical results. For this purpose, we use the following test functions [7] and
display the approximate.

f1(x) = x log(1 + x sin(x)) + e−1+x2+x cos(x) sin(πx), α = 0, x0 = 0.6,

f2(x) = 1 +
1

x4
− 1

x
− x2, α = 1, x0 = 1.4.

Now,we choose our proposed scheme (3) (for β = 0.1 and γ = 0.1), called by
TM for comparison with the existing robust optimal eighth-order schemes which
were proposed by Lotfi et al. in [3], Kung and Traub in [2] (for γ = 0.1), Sharma
and Arora (for Method 1) [4], Soleymani in [5] (for β = γ = 0.1), Bi et al. (for β =
0, γ = −2, λ = −2.5) [1] and respectively, called by LSSSM,KTM, SAM,BRWM
and SM.For better comparisons of our proposed methods with other existing
ones, we have given two types of comparison tables in each test function:

(a) Absolute error between the two consecutive iterations |xn+1 − xn|,
(b) Absolute residual error in the corresponding function (|f(xn)|).
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The errors of approximations to the corresponding zeros of test functions
are displayed in Table 1, where A(h) denotes A × 10−h and D stands for diver-
gent. These tables include the values of the computational order of convergence
COC calculated by the formula [7]

COC =
log |f(xn)/f(xn−1)|

log |f(xn−1)/f(xn−2)|
.

Table 1. Comparison of the absolute error of the proposed
method with other methods.

f1(x) = x log(1 + x sin(x)) + e−1+x2+x cos(x) sin(πx), α = 0, x0 = 0.6

Methods |x1 − α| |x2 − α| |x3 − α| COC EI

BRWM (39) [1] 0.39745(−2) 0.23663(−18) 0.38370(−148) 8.00000 1.68179

KTM [2] 0.23230(−1) 0.33730(−13) 0.13863(−107) 8.00000 1.68179

LSSSM (14) [3] 0.42171(−2) 0.77543(−18) 0.10331(−143) 8.00000 1.68179

SAM [4] 0.94733(−1) 0.44063(−8) 0.59502(−67) 8.00000 1.68179

SM [5] 0.22337(−1) 0.15109(−12) 0.00000(0) 8.00000 1.68179

TAKM (3) 0.22337(−1) 0.80542(−18) 0.26722(−216) 12.00000 1.86121

f2(x) =
1

x4
− x2 − 1

x
+ 1, α = 1, x0 = 1.4

Methods |x1 − α| |x2 − α| |x3 − α| COC EI

BRWM (39) [1] 0.54274(−3) 0.12998(−23) 0.13984(−188) 8.00000 1.68179

KTM, γ = 1 [2] 0.10721(−1) 0.45584(−12) 0.50318(−95) 8.00000 1.68179

LSSSM (14) [3] 0.70023(−3) 0.18630(−22) 0.46761(−179) 8.00000 1.68179

SAM [4] 0.39080(−3) 0.38443(−26) 0.33692(−210) 8.00000 1.68179

SM [5] 0.18638(−3) 0.00000(−1) 0.00000(0) 8.00000 1.68179

TAKM (3) 0.18638(−3) 0.27205(−41) 0.76931(−497) 12.00000 1.86121

It was observed that the proposed method can be competitive to methods
[1, 2, 3, 4, 5, 6] and also improve the existing methods [5]. Our approach can be
continuously applied in order to improve any existing iteration formula.
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1. Introduction

We consider a nonsymmetric saddle point problem as

Au =

(
A B
−BT 0

)(
x
y

)
=

(
f
−g

)
≡ b,(1)

where A ∈ Rm×m is nonsymmetric positive definite, B ∈ Rm×n has full column
rank, f ∈ Rm and g ∈ Rn, with m ≥ n. Here, BT is the transpose of B.

In a variety of engineering and scientific applications, such as computational
fluid dynamics, optimal control, and networks computer graphics [2] solving the
linear system (1) is required. When the matrices of coefficient matrix A, i.e. A
and B are large and sparse, iterative methods are better suited for solving saddle
point problems compared to direct methods [4]. If B in (1) has full column rank,
then the coefficient matrix A is nonsingular, in this case, the problem will be called
a nonsingular saddle point problem and when B has a rank deficiency, Eq. (1) is
called the singular saddle point problem and the coefficient matrix A is singular. In
recent years, various authors have proposed a number of useful iterative methods
to solve (1). Cao et al. [5] presented the SS preconditioner as

PSS =
1

2

(
αI +A B
−BT αI

)
,

where α ≥ 0 and I is the unit matrix with suitable dimension. Cao et al. [6]
and Chen et al. [7] introduced parameter β instead of α in last block of PSS and
provided the generalized shift-splitting (GSS) preconditioner. Huang and Su [8]
utilized a modified shift-splitting (MSSP ) preconditioner in order to increase the

∗Speaker
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rate of convergence of the GSS method for solving the saddle-point problem with
a full ranked B matrix and symmetric positive definite (1,1) part of the form

PMSSP =

(
αI + 2A 2B
−2BT αI

)
.

Huang et al. [8] substituted parameter α in the final block of PMSSP by
parameter β and constructed a new preconditioner from the saddle point matrix
A as

PMGSS =

(
αI + 2A 2B
−2BT βI

)
,

where α ≥ 0, β > 0.
These studies led us to introduce the new modified generalized shift-splitting

(NMGSS) preconditioner in order to improve the convergence rate of (1) problems.
In the current study the convergence of the proposed iteration method, and the
spectral properties of NMGSS preconditioned matrix are investigated. We carry
out a numerical example in order to show the efficiency of NMGSS method and
the GMRES method with the NMGSS preconditioner for solving (1).

This paper is structured as follows: Section 2 will introduce the new general-
ized shift-splitting preconditioner and its implementation. Section 3 presents the
convergence properties of the NMGSS iteration method. Finally, the numerical
results are provided in Section 4.

2. The New Modified Generalized Shift-Splitting Preconditioner

In this Section, using idea of [8, 9], a new splitting of matrix A is presented as

A = PNMGSS −QNMGSS

=

(
αH + 2A2B
−2BTβI

)
−
(
αH +AB
−BTβI

)
,(2)

where α ≥ 0, β > 0 and H = A+AT

2 . Therefore, using (2), we present a new
method as follows:
The NMGSS Iteration Method. Let α ≥ 0 and β > 0. Assume (x(0)

T

, y(0)
T

)T

be an initial guess for k = 0, 1, 2, ..., until (x(0)
T

, y(k)
T

)T converges, compute

PNMGSS

(
x(k+1)

y(k+1)

)
= QNMGSS

(
x(k)

y(k)

)
+

(
f
−g

)
,(3)

The iteration scheme (3) can be rewritten as follows(
x(k+1)

y(k+1)

)
= Γ(α, β)

(
x(k)

y(k)

)
+

(
αH + 2A 2B
−2BT βI

)−1(
f
−g

)
,(4)

where

Γ(α, β) =

(
αH + 2A 2B
−BT βI

)−1(
αH +A B
−BT βI

)
,

is the iteration matrix of the NMGSS method, and

PNMGSS =

(
αH + 2A 2B
−2BT βI

)
,
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is called the NMGSS preconditioner for A. At each step of (4) or applying
PNMGSS within the Krylov subspace methods, we have to solve a linear system
in the following form (

αH + 2A 2B
−2BT βI

)
z = r,

where z = (zT1 , z
T
2 )

T , r = (rT1 , r
T
2 )
T and z1, r1 ∈ Rm, z2, r2 ∈ Rn. By decomposi-

tion of PNMGSS a linear system with the coefficient matrix (αH+2A+ 4
βBB

T )x =

b needs to be solved. Since the matrix (αH+2A+ 4
βBB

T )x = b for all α ≥ 0 and β

is positive definite, in inexact manner, we can use the GMRES method for solving
this sub-linear system by a prescribed accuracy. Also, they can be solved exactly
by the LU factorization in combination with AMD or column AMD reordering.

3. The Convergence of the NMGSS Iteration Method

To present the convergent properties of the NMGSS iteration method, we give
some necessary lemma.

Lemma 3.1. [3] Both roots of the complex quadratic equation x2−ϕx+ψ = 0
are less than one in modulus if and only if |ϕ − ϕ̄ψ| + |ψ|2 < 1, where ϕ̄ denotes
the conjugate complex of ϕ.

Lemma 3.2. Assum A ∈ Rm×m be a positive definite matrix, B ∈ Rm×n has
full column rank, α ≥ 0 and β > 0. If λ is an eigenvalue of the Γ(α, β), then
λ ̸= ±1.

Lemma 3.3. Assume λ be an eigenvalue of Γ(α, β) and (u∗, v∗)∗ ∈ Cm×n, be
the corresponding eigenvector and all the conditions in Lemma 3.2 are satisfied,
then u ̸= 0. Moreover, if v = 0, then |λ| < 1.

Theorem 3.4. By the satisfaction conditions of the Lemma 3.2 and letting
(λ, (u∗, v∗)∗) be an eigenpair of Γ(α, β) of the NMGSS. Then the NMGSS
iteration method converges to the exact solution of the saddle point problem (1).

4. Numerical Experiments

We provide an example to explain the feasibility and effectiveness of the NMGSS
method for solving (1). In this example, the linear system (αI+2H+ 1

βBB
T )x = b

contained in the GMSS is solved inexactly by the CG method and for MGSS,
NMGSS iteration methods, we solve linear subsystems (αI +2A+ 4

βBB
T )x = b,

(αH + 2A + 4
βBB

T )x = b respectively, in an inexact manner using the GMRES

methods. The inner CG and GMRES methods are terminated if the current resid-

ual of the inner iteration satisfies ∥r(k)∥
∥r(0)∥ < 10−7, where r(k) denotes the residual

of the kth CG and GMRES iteration. Moreover, the run will be terminated when
RES < 10−6 or the number of iterations exceeds κmax = 500, where

RES =

√
∥f −Ax(k) −By(k)∥22 + ∥g −BTx(k)∥22√

∥f∥22 + ∥g∥22
< 10−6.

All the methods were solved using MATLAB (version R2015b 64-bit) and all
the experiments implemented on a PC with windows system and Intel (R) Core
(TM) i7-7700k CPU @ 4.20 GHz and 8.0 GB of RAM.
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Example 4.1. The problem structured as (1) was considered with the follow-
ing coefficient sub-matrices [1]

A =

(
I ⊗ T + T ⊗ I 0

0 I ⊗ T + T ⊗ I

)
∈ R2p2×2p2 ,

B =

(
I ⊗ F
F ⊗ I

)
∈ R2p2×p2 ,

and

T =
µ

h2
.tridiag(−1, 2,−1) + 1

2h
.tridiag(−1, 0, 1) ∈ Rp×p,

F =
1

h
.tridiag(−1, 1, 0) ∈ Rp×p,

where h = 1
p+1 and ⊗ denotes the Kronecker product.

Table 1 shows the efficiency of the NMGSS method by selecting small values
for α and β.
Table 1 gives the numerical experiments for the different iteration methods whose

Table 1. Numerical results for the example with µ = 0.1.

Method p 16 32 64
α 22 36 38
β 16 8.3 5.9

GMSS IT. 66 73 89
CPU 0.038 0.16 0.97
RES 8.447e− 07 9.086e− 07 9.48e− 07
α 0.2 0.5 0.2
β 0.1 0.1 0.1

MGSS IT. 21 21 21
CPU 0.25 0.11 0.53
RES 9.88e− 07 9.85e− 07 9.57e− 07
α 0.01 0.01 0.01
β 0.2 0.2 0.2

NMGSS IT. 21 21 21
CPU 0.17 0.072 0.39
RES 9.622e− 07 9.67e− 07 9.734e− 07

optimal parameters have been found experimentally based on the minimizing of the
iterations when µ = 0.1 for different grids. Compared to the other two methods,
the NMGSS iteration method for solving Example 4.1 requires less processing
time. The IT of the GMSS in comparison the MGSS and NMGSS methods
shows more sensitivity to p. We present numerical experiments of the GMSS,
MGSSand NMGSS preconditioned GMRES methods on different uniform grids
with µ = 0.1 in Tables 2. Note that I in Table 2 indicates GMRES method
without preconditioning. The GMRES method with PNMGSS preconditioning
has been shown to be both feasible and efficient in Table 2. The parameters which
were considered for the selected preconditions in the two Table 2 are as follows [6]:

αGMSS = µ, βGMSS =
∥B∥22
2∥H∥2

, αMGSS = µ, βMGSS =
2∥B∥22
∥A∥2

,

αNMGSS = µ, βNMGSS =
∥B∥22
∥H∥2

.
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Table 2. Numerical of results for the three preconditioned GM-
RES methods.

Method p 16 32 64
IT. 115 240 495

I CPU 0.1326 3.4868 81.8770
RES 9.50e− 07 9.34e− 07 9.73e− 07
α 0.1 0.1 0.1
β 4.9974 4.9996 5

PGMSS IT. 23 24 25
CPU 0.24 0.56 3.17
RES 6.78e− 07 8.45e− 07 6.72e− 07
α 0.1 0.1 0.1
β 19.9861 19.9983 19.9998

PMGSS IT. 14 15 15
CPU 0.077 0.36 1.65
RES 4.457e− 07 3.123e− 07 5.859e− 07
α 0.1 0.1 0.1
β 9.9947 9.9993 9.9999

PMGSS IT. 12 13 14
CPU 0.056 0.18 1.44
RES 3.9784e− 07 5.005e− 07 6.909e− 07
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1. Introduction

In this paper, we consider the following distributed-order anomalous sub-diffusion
equation

∂

∂t
u(x, t) =

1∫
0

ϖ(γ) 0D
1−γ
t K△u(x, t) dγ + f(x, t), (x, t) ∈ Λ× I,(1)

where K is positive constant and the operator 0D
1−γ
t is the Riemann-Liouville

derivative of order 1− γ, with the initial and boundary conditions

u(x, 0) = u0(x), x ∈ Λ,

Bu(x, t) = ub(x, t), x ∈ ∂Λ× I,
where Λ = [0, L] ([0, L]2 in 2D) is a bounded domain, I = (0, T ] and ϖ(γ) satisfies
the following conditions

0 ≤ ϖ(γ), ϖ(γ) ̸= 0, γ ∈ [0, 1],

1∫
0

ϖ(γ)dγ =W > 0.

Lang [6] considered problem (1) with the homogenous boundary condition by
the backward finite difference scheme in time and Galerkin finite element method
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in space. Fakhar-Izadi [2] proposed the space-time Petrov-Galerkin (PG) spec-
tral method for a distributed-order time-fractional fourth-order partial differential
equations (PDEs) with mixed boundary conditions. Abbaszadeh and Dehghan [1]
developed the meshless Galerkin method based upon the shape functions of RKPM
for solving the fractional modified distributed-order anomalous sub-diffusion equa-
tion.

In most papers, the finite difference method (FDM) is applied for discretizing
time-fractional derivative because it is straightforward, but using FDM leads to
algebraic convergence and limited accuracy. Also, due to the nonlocal nature of
fractional operators, the cost of computing FDM is high. So in this paper, a global
PG spectral method is applied for time discretization. Also, the modal spectral
element method (SEM) is considered for approximation of the space variables.
The proposed approach leads to obtain the approximate solution of the problem
(1) through solving a Silvester matrix equation that can be solved efficiently by
the QZ algorithm [4].

2. Implementation of the Proposed Method

For discretizing problem (1), first, we should approximate the distributed-order
fractional derivative operator by a proper Gauss-Legendre quadrature formula.
So, the following multi-term fractional sub-diffusion equation is obtained

∂u(x, t)

∂t
≃ K

2

Q∑
s=0

ϖ

(
βs + 1

2

)
0D

1−βs
2

t △u(x, t) ωs + f(x, t), (x, t) ∈ Λ× I,(2)

u(x, 0) = u0(x), x ∈ Λ,

Bu(x, t) = ub(x, t), x ∈ ∂Λ× I,

where distinct nodes β0 < β1 < · · · < βQ are roots of (Q+ 1)th Legendre polyno-

mial and {ωs}Qs=0 are corresponding weights.
By multiplying a proper test function ν and integrating over the computational

domain Ω = Λ× I, the variational form of (2) is given by(
∂u

∂t
, ν

)
Ω

−K
Q∑
s=0

ds

[
0D

1−βs
2

t (△u, ν)Ω
]
∼= (f, ν)Ω,

where ds =
1
2 ϖ

(
βs + 1

2

)
ωs and (·, ·)Ω denotes the standard L2-inner product.

We use the eigenfunctions of the regular fractional Sturm-Liouville problem
(FSLP) as trial and test basis functions in time [7]. The eigenfunctions of the first
and second kind FSLP on [-1,1] are obtained respectively

(1)ρα,β,µ
k (τ) = (1 + τ)−β+µ−1Pα−µ+1,−β+µ−1

k (τ), −1 ≤ α < 2− µ, −1 ≤ β < µ− 1,
(2)ρα,β,µ

k (τ) = (1− τ)−α+µ−1P−α+µ−1,β−µ+1
k (τ), −1 ≤ α < 1− µ, −1 ≤ β < 2µ− 1.

We employ the fractional eigenfunctions for α = β = −1

ϕµk(τ) = (1 + τ)µP−µ,µ
k−1 (τ), τ ∈ [−1, 1],

φµk(τ) = (1− τ)µPµ,−µk−1 (τ), τ ∈ [−1, 1],
as trial and test basis functions.
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In the following, we examine the structure of operational temporal matrices
for 1 ≤ m,n ≤ N .

Mµ
mn = (ϕµn(t) , φ

µ
m(t) )I ,(3)

Cµ
mn = (

d

dt
ϕµn(t) , φ

µ
m(t) )I ,(4)

Sµmn =

Q∑
s=0

ds

(
RL
0 D

1−βs
2

t ϕµn(t) ,
RL
t D

1−βs
2

T φµm(t)

)
I

.(5)

Remark 2.1. It must be noted that, the weighted inner products in (3),
(4) and (5) can be computed exactly by Gauss-quadrature formulas because the
integrands are polynomials.

Let the physical domain Λ be partitioned in to ne conforming non-overlapping

elements Λe, e = 1, . . . , ne such that Λ =
ne∪
e=1

Λe. We define the local spatial basis

functions on each element such that the C0-continuty condition of basis in the
interfaces of elements is stablished. For this purpose, we use the following modal
basis function on the reference element [−1, 1] [5].

ψp(ξ) =


1−ξ
2 , p = 0,(
1−ξ
2

)(
1+ξ
2

)
P 1,1
p−1(ξ), 0 < p < P,

1+ξ
2 , p = P.

In the following the operational matrices on the reference element [−1, 1] are
computed. So that local mass and stiffness matrices on each element Λe are ob-
tained as follow

M(e)
mn = J (e)

∫ 1

−1

ψn(ξ)ψm(ξ)dξ,

S(e)
mn =

1

J (e)

∫ 1

−1

d

dξ
ψn(ξ)

d

dξ
ψm(ξ)dξ,

in which J (e) = xe−xe−1

2 .

Remark 2.2. The entries of these matrices can be computed exactly using
the orthogonal property of the Jacobi polynomials [3].

The elements of load vector F(e) on each element Λe is obtained as follows

F(e)
mn = (f(x, t), ψn(x) φ

µ
m(t))Λe×I .

Let uM be the approximate solution of problem in Λe × I. The fully discrete
weak form in a matrix form is given by(

Cµ ⊗M(g) + Sµ ⊗ S(g)
)
α = F(g), in 1D,(6)

(
Cµ ⊗

(
M(g) ⊗M(g)

)
+ Sµ ⊗

(
S(g) ⊗M(g) +M(g) ⊗ S(g)

))
α = F(g), in 2D,(7)

where α is vector of unknown expansion coefficients and M(g) and S(g) are global

mass and stiffness matices, respictively. Also, F(g) is global version of F(e).

457



A. Yazdani and F. Fakhar-Izadi

1 2 3

N

10-15

10-10

10-5

100

105

L
2

 = 0.1
 = 0.5
 = 0.9

1 2 3 4 5 6

N

10-10

10-5

100

L
2

 = 0.1
 = 0.5
 = 0.9

Figure 1. L2 norm of error for Example 3.1 with respect to
temporal refinement for (left) p = 1, (right) p = 3 with ne = 2
and M = 10, various ρ.

It must be noted that, (6) and (7) are a kind of Sylvester matrix equation. So,
we can solve them by the proposed algorithm in [4] which employs QZ factorization
to structure the equation in such a way that it can be solved column-wise by a
back substitution technique.

3. Numerical Results

Example 3.1. In this example, we consider problem (2) with the exact solu-
tion

u(x, t) = tp+ρ cos(πx),

where ρ is singularity order of solution, and p is an integer value. Also, the dis-

tributed weight function is taken ϖ(γ) = Γ(γ+p+ρ)
π2Γ(1+p+ρ) and source function f(x, y, t)

is defined accordingly.
In this case, we can select the fractional parameter of temporal basis, such

that the singularity order of the solution is accurately captured. When we set
µ = ρ, a few number of temporal basis functions are needed to achieve exponential
convergence.

In the left graph of Figure 1, the L2 norms of error are presented for different
values of N and ρ with M = 10, p = 1. In the right graph of Figure 1, the L2

norms of error are presented for different values of N with M = 10, p = 3.
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Example 3.2. We consider Eq. (2) in 2D. The analytical solution is

u(x, y, t) = t2 sin(πx) sin(πy).

Also, the distributed weight function is taken ϖ(γ) = Γ(γ+2) and source function
f(x, y, t) is defined accordingly.

In Table 1, the numerical solution’s errors are presented with L∞, L2 norms
for the different values of µ, N , and M . It is observed that the choice of µ has
an essential effect on the accuracy of the scheme. It can be concluded that in all
examples with smooth solutions in term of the time variable (especially polynomial
in time), the exponential convergence is recovered when µ → 1. In this case, the
temporal basis also tends to a polynomial, and higher smoothness is achieved.
Table 1 reports a comparison between the used errors obtained by the meshless
Galerkin method and the present method with ne = 4 for solving two-dimensional
fractional modified distributed-order anomalous sub-diffusion equations.

Table 1. L∞ and L2 errors for Example 3.2 with ne = 4 and
different values of µ, N , and M .

Present Method Method of [1]

(N,M) µ = 0.2 µ = 0.8 µ = 1− 10−15 h = τ = 0.01

L2 L∞ L2 L∞ L2 L∞ L2 L∞

(2,5) 5.6e-1 5.6e-2 2.05e-1 2.05e-2 1.78e-3 2.01e-4 - -
(2,10) 5.6e-1 5.6e-2 2.05e-1 2..05e-2 1.41e-9 1.41e-10 - -
(3,5) 1.31e-2 1.46e-3 2.97e-2 3.11e-3 1.78e-3 2.01e-4 - -
(3,10) 1.28e-2 1.28e-3 2.95e-2 2.94e-3 2.13e-9 2.13e-10 2.54 e-5 1.80e-6
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1. Introduction

Many practical problems give rise to a linear system of equations of the form

Ax ≈ b, A ∈ Rm×n, m ≥ n, b ∈ Rm,(1)

where A is an ill-conditioned matrix whose singular values “cluster” at the origin,
and the vector b is contaminated by an unknown error. Such systems are com-
monly referred to as discrete ill-posed problems, because they usually stem from
the discretization of ill-posed problems such as Fredholm integral equations of the
first kind [2]. Tikhonov regularization is a popular approach to obtain a mean-
ingful approximate solution of such problems. In this method, the linear system
Ax ≈ b (or the linear least squares problem associated with it) is replaced by the
minimization problem

min
x∈Rn

Jλ(x) = ∥Ax− b∥2 + λ∥Lx∥2,(2)

where L ∈ Rk×n(k ≤ n), is referred to as a regularization matrix and the scalar
λ > 0 as a regularization parameter. The problem (2) is called regularized least
squares (RLS) and its objective function is called Tikhonov functional.

We assume that N (A) ∩N (L) = {0}, where N denotes the null space of ma-

trices. Then the problem (2) has the unique solution xλ = (ATA+ λLTL)
−1
AT b,
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for any λ > 0. Typically, L is chosen as the identity matrix or a discrete ap-
proximation of the first or second order derivative operators. The regularization
parameter λ plays an important role in computing a reliable solution xλ. A proper
choice of the regularization parameter λ is critical since if λ is too small, then xλ is
very close to the solution of original ill-posed problem. On the other hand, if λ is
too large, then the connection between the problem (2) and the original problem
(1) will be reduced. In this paper, we present an efficient method for choosing an
appropriate regularization parameter. This method utilizes the basic concepts of
multi-objective optimization. The main idea of this method is to scale the residual
norm ∥Axλ − b∥2 and the penalty term ∥Lxλ∥2 by a suitable method and then
minimizing the sum of them.

2. RLS from Multi-Objective Optimization Point of View

In this section, we investigate the RLS problem from multi-objective optimization
point of view. We refer the reader to [1, 4] for more details related to multi-
objective optimization problems.

A multi-objective optimization problem can be formulated as

min f(x) = [f1(x), f2(x), . . . , fk(x)]
T such that x ∈ S,

where S ⊆ Rn is a non-empty set and fi : Rn → R, i = 1, . . . , k, are the conflicting
objective functions to be minimized simultaneously. The set S is called the feasible
region and the set

Z = {f(x)|x ∈ S} ⊆ Rk,
is called the feasible objective region. Given two objective vectors z and z′, we say
that z ≤ z′ if and only if zi ≤ z′i for all i = 1, 2, . . . , k. Also, for given vectors
x, x′, x∗ in the feasible region S, we say that:

• x ⪯ x′ (x weakly dominates x′) if and only if f(x) ≤ f(x′).
• x ≺ x′ (x dominates x′) if and only if x ⪯ x′ and at least one component
of f(x) is strictly less than the corresponding one of f(x′).
• x ∼ x′ (x is indifferent to x′) if neither x dominates x′ nor x′ dominates
x.
• x∗ is a Pareto minimizer of f , if there is no other point in S that domi-
nates it.

The set of all Pareto minimizers of f is denoted by P. The ideal objective vector
is defined as z∗ = (z∗1 , . . . , z

∗
k), where z

∗
i = min fi(x) and x ∈ S. In general, because

of conflicts among the objectives, z∗ /∈ Z. However, it can be used as a reference
point. Finally, the nadir objective vector is defined as znad = (znad1 , . . . , znadk )
where znadi = max fi(x) and x ∈ P.

The problem of finding an appropriate regularization parameter can be con-
sidered as a multi-objective optimization problem with two objectives. In fact,
our purpose is to find a regularization parameter λ∗ > 0 such that xλ∗ makes
both ∥Ax− b∥ and ∥Lx∥ small, to the extent possible. This idea yields the multi-
objective optimization problem

min
λ>0

g(λ) =

[
g1(λ)
g2(λ)

]
,(3)
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where g1(λ) = ∥Axλ − b∥, g2(λ) = ∥Lxλ∥ and xλ = (ATA+ λLTL)
−1
AT b. The

following theorem gives the lower and the upper bounds of the two objectives g1(λ)
and g2(λ). They will be applied later to normalize the objectives g1(λ) and g2(λ)
so that their values are of approximately the same magnitude.

Theorem 2.1. [6, Theorem 2] Given two functions g1(λ) = ∥Axλ − b∥ and
g2(λ) = ∥Lxλ∥, the following statements hold:

a) for 0 < λ1 < λ2 we have g1(λ1) < g1(λ2) and g2(λ2) < g2(λ1). In other
words, g1 is a strictly increasing function of λ whereas g2 is a strictly
decreasing function of λ.

b) g1(λ)→ ∥AxLS − b∥ and g2(λ)→ ∥LxLS∥ as λ→ 0.
a) g2(λ) → 0 and g1(λ) →

∥∥(A(APL)† − I)b∥∥ as λ → ∞, where PL =

I − L†L and † denotes the Moore–Penrose pseudoinverse.

From the above theorem, we see that the vectors

[∥AxLS − b∥ ,0]T and
[∥∥∥(A(APL)† − I)b∥∥∥ , ∥LxLS∥]T

are the ideal objective vector and the nadir objective vector for the problem (3),
respectively. It can be easily shown that composing each objective of the problem
(3) with an strictly increasing function, does not change the set of its Pareto
minimizers, as is described in the following theorem.

Theorem 2.2. Let

ĝ =

[
T1(g1)
T2(g2)

]
,

where T1, T2 : R→ R are two strictly increasing real functions. Then λ̃ is a Pareto
minimizer of ĝ if and only if it is a Pareto minimizer of g. In other words the two
problems min

λ>0
g(λ) and min

λ>0
ĝ(λ) are equivalent.

One general approach for solving a multi-objective optimization problem such
as (3), is converting the problem to the single-objective problem

min
λ>0
∥g(λ)∥pp = g1(λ)

p + g2(λ)
p, p > 0,(4)

and then solving this problem by using a standard optimization method. It can
be easily seen that if λ̃ is a global minimizer for the single-objective problem (4),

then λ̃ is a Pareto minimizer for the multi-objective problem (3). The problem (4)
is useful for our purpose, because it minimizes the distance between the feasible
objective region of the problem (3) and the reference point (0, 0), which is near to
the ideal objective vector.

3. Description of The New Technique and Numerical Examples

We note that when the regularization parameter λ is chosen very small, the value
of ∥Lxλ∥ is very large whereas the value of ∥Axλ − b∥ is very small. Moreover,
when λ is gradually increasing, the value of g1(λ) = ∥Axλ − b∥ increases slowly,
while the value of g2(λ) = ∥Lxλ∥ rapidly tends to zero. Also, the functions g1 and
g2 have very different ranges. Therefore, it is not easy to minimize

g(λ) =

[
g1(λ)
g2(λ)

]
,
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without suitable transformations. To overcome these difficulties, we firstly intro-
duce an increasing function T : R+∪{0} → R to reduce the range of the functions
g1, g2 at the same time. In [6], the authors suggested the use of T (x) = arctan(x).
Another possible choice for T is T (x) = 1/(1+e−x) with the range [1/2, 1). Hence,
we consider the following function:

ĝ(λ) =

[
ĝ1(λ)
ĝ2(λ)

]
=

[
T (g1(λ))
T (g2(λ))

]
.

According to Theorem 2.2, the problems min
λ>0

g(λ) and min
λ>0

ĝ(λ) are equivalent. In

the next step, we scale ĝ1 and ĝ2 such that the scaled functions have a same range
of values. The scaled functions are given by

ĝs(λ) =

[
S(ĝ1)
S(ĝ2)

]
,

where S is the following scaling function

S(ĝi(λ)) =
ĝi(λ)−min ĝi
max ĝi −min ĝi

,

and min ĝi and max ĝi are lower and upper bounds, respectively, for the objective
function ĝi. Note that by using this scaling, the values of ĝi lie in the interval
[0, 1]. Again, according to Theorem 2.2, the two problems min

λ>0
g(λ) and min

λ>0
ĝs(λ)

are equivalent. Finally, we choose the regularization parameter λ∗ by finding the
global minimizer of problem min

λ>0
∥ĝs(λ)∥pp. Let T (x) = 1/(1 + e−x) and p = 1.

Then we need to minimize the following function

E(λ) =
T (g1(λ))− 1/2

maxT (g1(λ))− 1/2
+

T (g2(λ))− 1/2

maxT (g2(λ))− 1/2
.(5)

Notice that minT (g1(λ)) and minT (g2(λ)) are considered as 1/2 in the above equa-
tion, because according to Theorem 2.1, g1(λ)→ ∥AxLS − b∥ ≈ 0 and g2(λ)→ 0,
as λ → 0 and λ → ∞, respectively. To minimize the objective function (5), we
need the values of maxT (g1(λ)) and maxT (g2(λ)). Since g1 is a strictly increas-
ing function of λ, by considering Theorem 2.1, the value of maxT (g1(λ)) can be
approximated by evaluating T (g1(λ)) at a sufficiently big number. In a similar
way, since g2 is a strictly decreasing function of λ, one may get an approximation
of maxT (g2(λ)) by evaluating T (g2(λ)) at a sufficiently small number. One of the
best characteristics of the proposed objective function (5) is its uni-modality over
a sufficiently big interval containing the minimizer. Thus, the minimizer of (5) can
be easily obtained by using a bracketing search procedure such as golden section
search method [5].

The following table gives a sample comparison of the L-curve method, GCV
method and presented method for three test problems taken from the Hansen’s
“Regularization tools” package [3]. For each problem, we generate the noise con-
taminated vector b as b ← b + σ(e/ ∥e∥), where the elements of the noise e are
created by the MATLAB “randn” function and σ is the level of the noise. We use
the noise levels σ = 10−j , j = 1, 2, 3, which are more compatible with real world
problems. The regularization matrix L is chosen as the identity matrix I. The
dimensions 40, 100, 200 and 400 are selected for each problem. Each experiment
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has been executed 10 times, and the average of relative errors in the computed
solutions has been demonstrated.

Table 1. Numerical results for L = I.

Problem Size
L-curve Method GCV Method Presented Method

σ = 0.1 σ = 0.01 σ = 0.001 σ = 0.1 σ = 0.01 σ = 0.001 σ = 0.1 σ = 0.01 σ = 0.001

FOXGOOD

40 0.131 0.162 0.066 40.853 6.866 0.039 0.077 0.058 0.018
100 0.056 0.047 0.044 0.055 0.312 0.021 0.050 0.035 0.011
200 0.049 0.020 0.019 0.062 0.052 0.103 0.047 0.017 0.007
400 0.027 0.014 0.014 0.101 0.022 0.115 0.027 0.006 0.003

PHILLIPS

40 0.184 0.277 0.211 5.840 0.209 0.137 0.163 0.076 0.023
100 0.087 0.243 0.379 0.041 0.179 1.777 0.082 0.054 0.018
200 0.097 0.111 0.188 0.208 0.050 0.014 0.092 0.031 0.011
400 0.058 0.093 0.108 0.145 0.037 0.005 0.055 0.025 0.006

SHAW

40 0.161 0.107 0.055 0.167 0.237 7.793e+6 0.153 0.059 0.045

100 0.112 0.091 0.054 0.129 6.770e+4 2.051 0.111 0.061 0.040
200 0.058 0.051 0.039 0.235 0.048 0.121 0.056 0.045 0.031
400 0.047 0.066 0.041 0.069 1.345 0.037 0.045 0.059 0.033

4. Conclusion

We presented a new method based on multi-objective optimization to find an
appropriate value of the Tikhonov regularization parameter. This method does
not require any information about the error in the given right-hand side and can
be applied to a wide variety of discrete ill-posed problems. As numerical examples
show, the presented method, in comparison with the two other methods, generally
gives smaller errors on average.
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Abstract. In this paper, we propose direct method to solve a class of
Volterra delay-integro-differential equations (VDIDEs) based on vector forms
of Block-Pulse Functions (BPFs). Operational matrix of integration of BPFs
is applied to transform a VDIDE to a linear set of algebraic equations.
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1. Introduction

Volterra delay-integro-differential equations have various applications in different
sciences like biology, ecology, medicine and physics and etc. [2, 3] and [5]. The
basic idea in this paper is using BPFs for solving the following VDIDE

y
′
(x) = f(x, y(x− τ),

∫ x
x−τ k(s, x, y(s)) ds), x ⩾ 0,

y(x) = ψ(x), x ⩽ 0,
(1)

where initial function ψ is known.
The approach simplifies the VDIDE to a set of algebraic equations. To do

this, we expand the unknown function with respect to Block-Pulse functions. The
operational matrix of integration and products are used to evaluate the coefficients
of BPFs for the solution of Eq. (1). However, we do not use the operational matrix
of delay. The paper is organized as follows: a review of BPFs and its application
for resolving Eq. (1) is given in Section 2. In Section 3, an example is illustrated
to show the accuracy of the method and finally, the convergence analysis is given
in Section 4.

2. Block-Pulse Functions

The choice of basis functions is one of the most important steps in any numerical
solution. Block-Pulse functions have been used for various problems; for instance,
see [1, 6].
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2.1. Properties of BPFs. BPFs are defined on [0,1) as

φi(x) =

{
1, x ∈ [ih, (i+ 1)h),
0, elsewhere,

for i = 0, 1, . . . ,m − 1, a positive integer m and h = 1
m . We refer to properties

of the BPFs as disjointness, orthogonality, completeness and partition of unity,
respectively. For disjointness

φi(x)φj(x) =

{
φi(x), i = j,
0, i ̸= j,

(2)

where i, j = 0, 1, . . . ,m− 1. For orthogonality, we have∫ 1

0

φi(x)φj(x) dx = hδij ,

where δij is the Kronecker delta.
Finally, for every function f in L2([0, 1)), Parseval’s identity holds∫ 1

0

|f(x)|2 dx =
∞∑
i=0

f2i ∥ φi(x)∥ 2,

where

fi =
1

h

∫ 1

0

f(x)φi(x) dx.(3)

Also, from the definition of BPFs, these functions form a partition of unity, i.e.

m−1∑
i=0

φi(x) = 1.(4)

2.2. Vector Forms. An m-vector of BPFs on [0,1) is presented by

Φ(x) = [φ0(x), φ1(x), . . . , φm−1(x)]
T ,

where T stands for transpose.
Using relations (2) and (4) for all x ∈ [0, 1) we have

Φ(x)ΦT (x) =


φ0(x) 0 · · · 0
0 φ1(x) · · · 0
...

...
. . .

...
0 0 · · · φm−1(x)


m×m

,

ΦT (x)Φ(x) = 1,

Φ(x)ΦT (x)W = W̃Φ(x),

where W is an m-vector and W̃ = diag(W ). In addition, one can conclude that
for each m×m matrix V

ΦT (x)V Φ(x) = V̂ TΦ(x),

where V̂ is a column vector consisting of the diagonal components of the matrix
V .
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2.3. Expansion of Functions by BPFs. An arbitrary function f ∈ L2([0, 1))
can be approximated as

f(x) ≃
m−1∑
i=0

fiφi(x) = FTΦ(x) = ΦT (x)F,(5)

where F = [f0, f1, . . . , fm−1]
T and for i = 0, 1, . . . ,m − 1, the coefficient fi is

defined by (3). Also, for two square integrable functions f and h, using h(x) ≃
ΦT (x)H we have

f(x)h(x) ≃ FTΦ(x)ΦT (x)H = FT H̃Φ(x),

where H̃ = diag(H).

2.4. Operational Matrix of Integration. The integration of the function
f defined by (5) can be approximately obtained as∫ x

0

f(s) ds ≃
∫ x

0

FTΦ(s) ds ≃ FTPΦ(x),(6)

where P is operational matrix of integration of BPFs as

P =
h

2


1 2 2 · · · 2
0 1 2 · · · 2
0 0 1 · · · 2
...

...
...

. . .
...

0 0 0 · · · 1


m×m

.

3. Considering an Example

Example 3.1. Given the following VFE

y
′
(x) = y(x− 1) +

∫ x
x−1

y(s) ds, x ⩾ 0,

y(x) = ex, x ⩽ 0,
(7)

with the analytical solution y(x) = ex.

Assume

y(s) = x(s) + z(s),(8)

for s ∈ [x− 1, 0], x(s) is initial function ψ(s) and for s ∈ [0, x], z(s) is the solution
of Eq. (7). We substitute relation (8) into (7) and integrate Eq. (7) from 0 to x
we have

y(x)− y(0) =
∫ x

0

y(x− 1) dx+

∫ x

0

(1− ex−1) dx+

∫ x

0

∫ x

0

y(s) ds dx.(9)

In the sequent, approximating y(x), y(0), y(x − 1) and f(x) with respect to
BPFs using (6), gives

y(x) ≃ Y TΦ(x) = ΦT (x),

5y(0) ≃ Y T0 Φ(x) = ΦT (x)Y0,

y(x− 1) ≃ ΨTΦ(x) = ΦT (x)Ψ,

f(x) ≃ FTΦ(x) = ΦT (x)F,

(10)
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where m-vectors Y, Y0,Ψ and F are BPFs coefficients of y(x), y(0), y(x − 1) and
f(x), respectively and Y0 = [y0, y0, . . . , y0]

T with y0 = y(0). We substitute rela-
tions (10) to (9) and use the property of (6) to obtain

Y TΦ(x)− Y T0 Φ(x) ≃ ψTPΦ(x) + FTPΦ(x) + Y TP 2Φ(x),

then, we use orthogonality of BPFs and replace ≃ by = to obtain

Y − Y0 = PTψ + PTF + (P 2)TY.(11)

Relation (11) is a set of linear algebraic equations for the unknown coefficients
vector Y . Therefore, y(x) ≃ Y TΦ(x) is an approximate solution that can be
calculated to Eq. (7).

Table 1 demonstrates the absolute errors computed using BPFs with m =
10, 100, 1000 and compared with the Adomian method [4].

Table 1. Obtained results of y(x) for VFE.

x Adomian BPFs m = 10 BPFs m = 100 BPFs m = 1000
0 0 5.2× 10−2 5.0× 10−3 5.0× 10−4

0.2 2.0× 10−2 6.4× 10−2 6.1× 10−3 6.0× 10−4

0.4 8.0× 10−2 7.9× 10−2 7.5× 10−3 7.0× 10−4

0.6 1.8× 10−1 9.6× 10−2 9.2× 10−3 9.0× 10−4

0.8 3.2× 10−1 1.1× 10−1 1.1× 10−2 1.1× 10−3

1 1.3× 10−1 1.5× 10−2 2.0× 10−4 0
1.2 2.2× 10−1 4.4× 10−2 2.9× 10−3 3.0× 10−4

1.4 3.4× 10−1 7.5× 10−2 5.8× 10−3 6.0× 10−4

1.6 4.9× 10−1 1.0× 10−1 8.9× 10−3 9.0× 10−4

1.8 6.9× 10−1 1.4× 10−1 1.2× 10−2 1.2× 10−3

2 3.3× 10−1 1.5× 10−1 2.0× 10−2 2.1× 10−3

2.2 4.7× 10−1 1.3× 10−1 1.9× 10−2 2.0× 10−3

2.4 6.4× 10−1 1.1× 10−1 1.8× 10−2 1.9× 10−3

2.6 8.5× 10−1 9.9× 10−2 1.7× 10−2 1.8× 10−3

2.8 1.1 8.1× 10−2 1.6× 10−2 1.8× 10−3

3 1.2 7.2× 10−2 1.6× 10−2 1.8× 10−3
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4. Convergence Analysis

Theorem 4.1. [6] Let I = [0, 1) and fm(t) = FTΦ(t) be the BPF approxi-
mation of f ∈ C1(I), where F = [f0, f1, . . . , fm−1]

T and fi is defined by (3) and
suppose that there exists a positive number M such that

|f
′
(t)| ≤M, t ∈ [0, 1).

Then
∥ f − fm∥ ∞ ≤Mh.

We have f(x) − fm(x) = O(h) as a result
∫ s
0
f(x) dx −

∫ s
0
fm(x) dx = O(h).

By integrating both sides of Eq. (1), we conclude y(x)− ym(x) = O(h).
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Abstract. Finding the nondominated frontier of multiobjective optimiza-
tion problems is an interesting research subject for some researchers. In

recent years, various researches have been conducted on finding the bounds
of objective functions in quadratic optimization problems using copositive
relaxation. These researches have been focused on single objective quadratic
optimization problems. In this manuscript, we propose an approach to esti-

mate a piece-wise linear nondominated frontier of the nondominated frontier
of biobjective quadratic optimization problems with quadratic and linear con-
straints using copositive relaxation.
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1. Introduction

The concept of copositivity was first introduced by Motzkin in 1952. After that,
many articles have been published on this concept in optimization, which are
focused on single-objective problems. Besides, there are many NP-hard problems
that cannot be solved easily, so, the researchers try to approximate the solutions
using some innovative methods. One of these methods is copositive relaxation
which was introduced by Bomze in 2015 for quadratic optimization problems under
quadratic and linear constraints [1]. Bomze has shown that a tight bound for these
kind of problems can be identified using copositive relaxation. To extend this
subject, we use the copositive relaxation for biobjective quadratic optimization
problems with quadratic and linear constraints. In this regards, we propose a
method to approximate the nondominated frontier of the biobjective quadratic
optimization problem by a piece-wise linear map.

1.1. Preliminaries. We abbreviate the integer scalars between two integers
m, n with m ≤ n by [m : n] := m,m+ 1, . . . , n. The positive orthant is denoted
by Rn+ := {x ∈ Rn : xi ≥ 0 for all i ∈ [1 : n]}, and the positive semidefinite
matrix H by H ⪰ O. The Frobenius duality is defined by ⟨S,X⟩ = trace(SX),
where S and X are symmetric matrices with the same orders. The Dual of cone
D is defined as follows:

D∗ := {S = ST ∈ Rn×n : ⟨S,X⟩ ≥ 0 for all X ∈ D},

∗Speaker
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where D is a cone of symmetric n× n matrices. For a symmetric n× n matrix Q,
Q is copositive if vTQv ≥ 0 for all v ∈ Rn+ and Q is strictly copositive if vTQv > 0
for all v ∈ Rn+−{0}. The set of all copositive matrices is a closed and convex cone
as follows:

C∗ = {Q = QT ∈ Rn×n : Q is copositive}.
C∗ is the dual cone of C = conv{xxT : x ∈ Rn+}, where conv S denotes the convex
hull of set S ⊂ Rn [3]. In this manuscript, subscripts 2D, 2P , 2C , 2CD and 2CP
are used to refer to the conic dual, the primal conic problem, the co(mpletely)
positive problems, the dual problem over the copositive cone, and the primal
problem over the completely positive cone, respectively.

1.2. Multiobjective Optimization Problems. Amultiobjective optimiza-
tion problem is an optimization problem that involves multiple objective functions
as follows:

min (q1(x), q2(x), . . . , qk(x))
s.t. x ∈ X,(1)

where k ≥ 2 is the number of objectives and the set X is the feasible set of
decision vectors. The feasible set is typically defined by some constraint functions.
In addition, the vector-valued objective function is often defined as q : X →
Rk and q(x) = (q1(x), q2(x), . . . , qk(x))

T . The image of X is denoted by Y . In
multi-objective optimization, there does not typically exist a feasible solution that
minimizes all objective functions simultaneously. Therefore, attention is paid to
Pareto optimal solutions; that is, solutions that cannot be improved in any of the
objectives without degrading at least one of the other objectives. Mathematically,
a feasible solution x1 ∈ X is dominated by another solution x2 ∈ X , if fi(x1) ≤
fi(x2) for all indices i ∈ {1, 2, . . . , k} and fj(x1) < fj(x2) for at least one index
j ∈ {1, 2, . . . , k}. A solution x∗ ∈ X (and the corresponding outcome q(x∗)) is
called efficient, if there does not exist another solution that dominates it. The set
of efficient outcomes is often called the efficient front or efficient frontier. For more
information see [4].

In this article, we consider k = 2 and the objective functions are quadratic with
quadratic and linear constraints. In the next section, we introduce these problems
in details. In these problems, we don’t have any efficient algorithm to find the
efficient points and nondominated frontier. In [1], an approach to find a tight
bound for the objective function of a single objective problem has been presented
using copositive matrix and relaxation of that. In this paper, we attempt to extend
this approach to biobjective quadratic optimization problems. Moreover, we try to
estimate a piece-wise linear frontier of the nondominated frontier using copositive
relaxation for biobjective quadratic optimization problems.

2. Copositive Relaxation in Biobjective Quadratic Optimization

Consider the following biobjective quadratic optimization problem:

inf (q01(x), q02(x))
s.t. qi(x) ≤ 0, i = 1, 2, . . . ,m,

Ax = b,
x ≥ 0,

(2)
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where all q01(x), q02(x) and qi(x) = xTQix − 2bTi x + ci for i = 1, . . . ,m are
quadratic functions, b ∈ Rp and A is a p×n matrix of full row rank p. We further
impose the Slater condition on the linear constraints as follows:
there is a point y ∈ P such that yj > 0 for all j ∈ [1 : n], where P := {x ∈ Rn+ :
Ax = b}.

The efficient frontier of (2) cannot be identified easily and clearly regarding
to its nonlinear objective functions and constraints. Therefore, we try to estimate
its frontier as a piece-wise linear map. For this purpose, at first we consider the
following problem:

min z = q01(x)
s.t. qi(x) ≤ 0,

Ax = b,
x ≥ 0.

(3)

Using copositive relaxation, we consider q01(x) = xTQx − 2bTx + c defined

on Rn and define Shor relaxation matrix as M(q) :=

[
c −bT
−b Q

]
and also J0 =[

1 oT

o O

]
.

Let AT = [rT1 , r
T
2 , . . . , r

T
p ], where rk is the kth row of A. For all k ∈ [1 : p], we

define the symmetric matrices of order n+1 as Ak :=

[
2bk −rk
−rTk O

]
. It is sufficient

to find the optimal objective of the following problem:

minx∈C,⟨J0,X⟩=1 ⟨M0, X⟩
s.t. ⟨Mi, X⟩ ≤ 0, i ∈ [1 : m],

⟨Ak, X⟩ = 0, i ∈ [1 : p],
(4)

where X is a matrix of variables. We denote the optimal objective value of the
above problem as z∗CP . By [1, Theorem 4.1] we have z∗CP ≤ z∗+. In the next step
we should find the optimal objective value of the following problem:

min z = q02(x)
s.t. qi(x) ≤ 0,

Ax = b,
q01 ≤ z∗CP1 + kδ,
x ≥ 0,

(5)

where δ is a step size to increase the value of z∗CP1 to relax the constraint corre-
sponding to q01 in each iteration. To be more precise, we want to find a piece-wise
linear estimation for the frontier of the nondominated space. For this estimation
we use δ as a step size of it and k is started from zero up to somewhere that
z∗CP1 remains unchanged. For problem (5), in a similar way, we can find another
lower bound like z∗CP2 using the copositive relaxation. Using the proposed method
we can find adjacent pairs (z∗CP1 + kδ, z∗CP2). By considering the convex com-
bination of two adjacent points, we can find a piece-wise linear estimation of the
nondominated frontier of (2).
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Example 2.1. Consider two quadratic functions y1 = x21 and y2 = 3x21 − x1,
where x ∈ Rn+. We have the following biobjective optimization problem:

min z = (x21, 3x
2
1 − x1)

s.t. x1 ≥ 0.
(6)

Using the proposed method, the following two problems are constructed:

min z = x21
s.t. x1 ≥ 0,

(7)

and

min z = 3x21 − x1
s.t. x1 ≥ 0,

x21 ≤ zCP1 + kδ.
(8)

Considering problem (7), we have M0 =

[
0 0
0 1

]
, X =

[
a b
b d

]
and J0 =

[
1 0
0 0

]
.

⟨M0, X⟩ = tr(

[
0 0
0 1

] [
a b
b d

]
) = d and by ⟨J0, X⟩ = 1, we have

tr(

[
1 0
0 0

] [
a b
b d

]
) = a = 1.

Because of X ∈ C, we can let X = xxT [2], where x =

[
x′1
x′2

]
, so

[
x′21 x′1x

′
2

x′1x
′
2 x′22

]
=[

a b
b d

]
. Therefore, d ≥ 0, and problem (4) according to (7) is as

min d
s.t. d ≥ 0.

and we conclude z∗CP1 = 0. In this regard, problem (8) is as follows:

min z = 3x21 − x1
s.t. x21 ≤ kδ,

x1 ≥ 0,
(9)

choosing δ = 1
180 for k = 0, 1, . . . , 5, we should solve 6 problems. For example for

k = 1 we have
min −b+ 3d
s.t. d ≤ 1

180 ,
d ≥ 0,

so, d = 1
180 and b = 1√

180
. These imply that z∗CP2 = −1√

180
+ 1

60
∼= −0.0578 and

z∗CP1
∼= 0.0055. Similarly, we can find z∗CP for all 6 problems. In Table 1, the

optimal objective values of these 6 problems in the structure of (zCP1+kδ, zCP2)
have been listed. The pair points represent the estimation of some nondominated
points of (6).

Table 1. The estimation of the nondominated points of (6).

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5
(q1(x), q2(x)) (0,0) (0.005,-0.057) (0.011,-0.0720) (0.0166,-0.1124) (0.022,-0.126) (0.0277,-0.083)
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In Figure 1, the nondominated frontier of (6) have been depicted in green
curve. Using pairs (zCP + kδ, zCP2), k = 1, . . . , 6, the piece-wise linear estimation
of the nondominated frontier of (6) has been drawn in red color.

Figure 1.

References

1. I. M. Bomze, Copositive relaxation beats Lagrangian dual bounds in quadratically and linearly

constrained quadratic optimization problems, SIAM J. Optim. 25 (3) (2015) 1249–1275.
2. A. Berman, Complete positivity, Linear Algebra Appl. 107 (1988) 57–63.
3. M. Dür, Copositive Programming–a survey, In: M. Diehl, F. Glineur, E. Jarlebring and

W. Michiels (Eds), Recent Advances in Optimization and its Applications in Engineering,

Springer, Berlin, Heidelberg, (2010) pp. 3–20.
4. C. L. Hwang and A. S. M. Masud, Multiple Objective Decision Making–Methods and Appli-

cations: A State-of-the-Art Survey Springer-Verlag Berlin Heidelberg, New York, 1979.

E-mail: mirdehghan@shirazu.ac.ir
E-mail: dibash1374@gmail.com

479

mailto:mirdehghan@shirazu.ac.ir
mailto:dibash1374@gmail.com




The 51st Annual Iranian Mathematics Conference University of Kashan, 15–20 February 2021

Optimality and Duality for Efficiency in Nonsmooth
Multiobjective Fractional Optimization Problems

Ali Ansari Ardali∗

Department of Applied Mathematics, Faculty of Mathematical Sciences, Shahrekord

University, P. O. Box 115, Shahrekord, 88186-34141, Iran

Abstract. This paper is devoted to the study of optimality conditions and
duality for nonsmooth multiobjective fractional optimization problems, in-
volving inequality and equality constraints in terms of the limiting/
Mordukhovch subdifferential. Based on the concept of Mordukhovch sub-

differential and using suitable generalized constraint qualification, we derive
necessary and sufficient optimality conditions for these problems. In addition,
we propose a type of Wolfe dual problems and examine weak/strong duality
relations under generalized convexity.
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1. Introduction

Optimality conditions and duality relations for multiobjective optimization prob-
lems involving locally Lipschitz functions have been investigated intensively by
many researchers; see e.g., [1, 2, 3, 4] and the references therein. In this work,
we employ some advanced tools of variational analysis and limiting/Mordukhovich
subdifferential to establish necessary optimality conditions for Pareto/efficient so-
lutions of a nonsmooth fractional multiobjective optimization problem with in-
equality and equality constraints. Since the limiting/Mordukhovich subdifferential
of a real-valued function at a given point is contained in the convexified/Clarke
subdifferential of such a function at the corresponding point [6], the necessary op-
timality conditions formulated in terms of the limiting subdifferential are sharper
than the corresponding ones expressed in terms of the convexified subdifferential.
Sufficient optimality conditions for such solutions to the considered problem are
also provided by means of introducing generalized convex-affine functions defined
in terms of the limiting subdifferential for locally Lipschitz functions. Along with
optimality conditions, we state a dual problem to the primal one and explore weak
and strong duality relations under assumptions of generalized convexity.

2. Preliminaries

In this section, we recall some definitions and results from nonsmooth analysis
needed in what follows see, e.g., [6] for more details. For each m ∈ N, we denote
by Rm+ the nonnegative orthant of Rm. The canonical pairing between space
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Y and its topological dual Y ∗ is denoted by ⟨·, ·⟩ while the symbol ∥.∥ for the
norm in the considered space. The polar cone of a set S ⊂ Y is defined by
S◦ := {y∗|⟨y∗, y⟩ ≤ 0, ∀y ∈ Y }. Given a set-valued mapping Ψ : Y ⇒ Y ∗, we
denote by

lim sup
y→ŷ

Ψ(y) ={y∗ ∈ Y ∗ | ∃ yn → ŷ and y∗n ⇀ y∗ with y∗n ∈ Ψ(yn), ∀ n ∈ N},

the sequential Painlevé-Kuratowski upper/outer limit of Ψ as y → ŷ, where the
notation ⇀ indicates the convergence in the weak∗ topology of Y ∗. Let Θ ⊂ Y be
locally closed around ŷ ∈ Θ. Define the (basic/ limiting/ Mordukhovich) normal
cone to Θ at ŷ ∈ Θ by

NM (ŷ; Θ) := lim sup

y
Θ // ŷ

N̂(y; Θ) = lim sup

y
Θ // ŷ

{
y∗ ∈ Y ∗

∣∣∣∣ lim sup

y
′ Θ // y

⟨y∗, y′ − y⟩
∥y′ − y∥

≤ 0

}
.

Now, let us recall the definitions of subdifferentials which will be used through-
out the paper. Let ψ : Y → R = R ∪ {∞} be an extended real-valued function.
The Mordukhovich subdifferential of ψ at ŷ ∈ dom ψ are given, by

∂Mψ(ŷ) =
{
y∗ ∈ Y ∗ | (y∗,−1) ∈ NM ((ŷ, ψ(ŷ); epi ψ)

}
,

where epi ψ = {(y, µ) ∈ Y × R| µ ≥ ψ(y)}. If ŷ /∈ dom ψ, then one puts
∂Mψ(ŷ) = ∅. It is known [6] that when ψ is a convex function, the above-defined
subdifferentials coincides with the subdifferentials in the sense of convex analysis
[7]. Also, the nonsmooth version of Fermats rule (See, e.g., [6, Proposition 1.114]),
which is an important fact for many applications, can be formulated as follows: If
ŷ is a local minimizer for ψ, then:

0 ∈ ∂Mψ(ŷ).(1)

3. Main Results

In this section, we first establish necessary optimality conditions for efficient so-
lutions of a multiobjective fractional optimization problem. Then by imposing
assumptions of generalized convexity, we give sufficient optimality conditions for
such solutions. Also, we propose a dual problem to the primal one in the sense of
Mond and Weir [5] and examine weak and strong duality relations between them.

Recall Mordukhovich [6] that a set Θ ⊂ Y is sequentially normally compact

(SNC) at ŷ ∈ Θ if for any sequences: yk
Θ // ŷ and y∗k

w∗
// 0 with y∗k ∈ N̂(yk; Θ),

one has ∥y∗k∥ → 0 as k −→ ∞. Also, a function ψ : Y −→ R is called sequentially
normally compact (SNC) at ŷ ∈ Y if gph ψ is (SNC) at (ŷ, ψ(ŷ).

Let us consider the following constrained multiobjective fractional optimiza-
tion problem (P ):

min
Rm

+

ψ(y) = (
τ1(y)

ρ1(y)
, . . . ,

τm(y)

ρm(y)
)

(P ) s.t. φi(y) ≤ 0, i ∈ I = {1, . . . , p},
ϕj(y) = 0, j ∈ J = {1, . . . , q}, y ∈ Θ,
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where Θ is a nonempty locally closed subset of Y and ψ = ( τk(y)ρk(y)
), k ∈ K =

{1, . . . ,m}, φ = (φi), i ∈ I and ϕ = (ϕj), j ∈ J are vector functions with locally
Lipschitz components defined on Y . For, the sake of convenience, we further
assume that ρk(y) > 0, k ∈ K for all y ∈ Θ, and that τk(ŷ) ≤ 0, k ∈ K for the
reference point ŷ ∈ Θ.

We say that feasible point ŷ is an efficient solution of problem (P), and write
ŷ ∈ S(P ) if and only if for every feasible point y, ψ(y) − ψ(ŷ) /∈ −Rm+ \ {0}. We
say that constraint qualification (MFCQ) is satisfied at ŷ ∈ Θ if there do not exist
µi ≥ 0, i ∈ I(ŷ) := {i ∈ I|φi(ŷ) = 0} and γj ≥ 0, j ∈ J(ŷ) := {j ∈ J |ϕj(ŷ) = 0},
such that

∑
i∈I(ŷ) µi +

∑
j∈J(ŷ) γj ̸= 0 and

0 ∈
∑
i∈I(ŷ)

µi∂Mφi(ŷ) +
∑
j∈J(ŷ)

γj
(
∂Mϕj(ŷ) ∪ ∂M (−ϕj)(ŷ)

)
+NM (ŷ; Θ).

The following theorem gives a (KKT) type necessary optimality condition for
efficient solutions of problem (P).

Theorem 3.1. Let ŷ ∈ S(P ). If (MFCQ) holds at ŷ ∈ Θ, then there exist
(λk) ∈ Rm+ \ {0}, (µi) ∈ Rp+ and (γj) ∈ Rq+ such that

0 ∈
∑
k∈K

λk
(
∂Mτk(ŷ)−

τk(ŷ)

ρk(ŷ)
∂Mρk(ŷ)

)
+
∑
i∈I

µi∂Mφi(ŷ)

+
∑
j∈J

γj
(
∂Mϕj(ŷ) ∪ ∂M (−ϕj)(ŷ)

)
+NM (ŷ; Θ), µiφi(ŷ) = 0 i ∈ I.(2)

Proof. Let ŷ ∈ S(P ) and Ψ(y) = maxk∈K

{
τ1(y)
ρ1(y)

− τm(y)
ρm(y)

}
. We are going to

show that, for every feasible point y, Ψ(ŷ) < Ψ(y). Indeed, if this is not the case,
then there exists feasible point ȳ such that Ψ(ȳ) ≤ Ψ(ŷ). Thus, Ψ(ȳ) − Ψ(ŷ) ∈
Rm+ \ {0}, which contradicts the fact that ŷ ∈ S(P ). Thus, ŷ is a minimizer of the
following unconstrained scalar optimization problem

min
y∈Y

Ψ(y) + δ(y; Ω),(3)

where Ω is feasible set of problem (P) and δ(.; Ω) is indicator function. Applying
the nonsmooth version of Fermats rule (1), we have

0 ∈ ∂M
(
Ψ+ δ(.; Ω)

)
(ŷ).(4)

It follows from the basic subdifferential of maximum functions [6, Theorem
3.46], the quotient rule [6, Corollary 1.111] and the sum rule [6, Theorem 3.36] we
obtain

∂MΨ(ŷ) ⊂
{∑

k∈K

αk
τk(ŷ)∂Mρ(ŷ)− ρk(ŷ)∂Mτ(ŷ)

ρ(ŷ)2

∣∣∣∣αk ⩾ 0, k ∈ K,
∑
k∈K

αk = 1

}
.(5)

As the (MFCQ) is satisfied at ŷ and Ω is assumed to be (SNC) at this point,
and apply [6, Corollary 3.5], it follows from (3)-(5) that for βi ⩾ 0, i ∈ I(ŷ), γj ⩾
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0, j ∈ J ,

0 ∈
{∑
k∈K

αk
ρ(ŷ)

(
∂Mτk(ŷ)−

τk(ŷ)

ρk(ŷ)
∂Mρ(ŷ)

)
|αk ⩾ 0, k ∈ K,

∑
k∈K

αk = 1

}
+

{ ∑
i∈I(ŷ)

βi∂Mφi(ŷ) +
∑
j∈J

γj
(
∂Mϕj(ŷ) ∪ ∂M (−ϕj)(ŷ)

)}
+NM (ŷ; Ω).

Now, by put βi = 0, i ∈ I − I(ŷ) and λk = αk

ρk(ŷ)
, the proof is complete. □

Definition 3.2. We say that (f, g; h) is strictly generalized convex-affine
on Ω at ŷ ∈ Ω if for any y ∈ Ω \ {ŷ}, ζk ∈ ∂Mτk(ŷ), ηk ∈ ∂Mρk(ŷ) k ∈ K,
σi ∈ ∂Mφi(ŷ), i ∈ I and θj ∈ ∂hj(ŷ) ∪ ∂M (−hj)(ŷ) there exists ν ∈ NM (ŷ; Ω)−

such that for ωj ∈ {1,−1},

τk(y)− τk(ŷ) ≥ ⟨ζk, ν⟩, k ∈ k, ρk(y)− ρk(ŷ) ≥ ⟨ηk, ν⟩, k ∈ k,
φi(y)− φi(ŷ) ≥ ⟨σi, ν⟩, i ∈ I, ϕj(y)− ϕj(ŷ) = ωj⟨θj , ν⟩, j ∈ J.

We are now to provide sufficient conditions for a feasible point of problem (P)
to be a efficient.

Theorem 3.3. Assume that ŷ ∈ Ω satisfies condition (2). If (ψ; φ; ϕ) is
strictly generalized convex-affine on Ω at ŷ, then ŷ ∈ S(P ).

Proof. Since ŷ satisfies condition (2), then there exist (λk) ∈ Rm+ \{0}, (µi) ∈
Rp+ and (γj) ∈ Rq+, ζ∗k ∈ ∂Mτ∗k (ŷ), η∗k ∈ ∂Mρk(ŷ) k ∈ K, σ∗

i ∈ ∂Mφi(ŷ), i ∈ I,
with µiφi(ŷ), and θ

∗
j ∈ ∂hj(ŷ) ∪ ∂M (−hj)(ŷ) such that

−
(∑

k∈K

λk

(
ζ∗k − τk(ŷ)

ρk(ŷ)
η∗k
)
+
∑
i∈I

µiσ
∗
i +

∑
j∈J

γjθ
∗
j

)
∈ NM (ŷ; Ω).(6)

Suppose to the contrary that ŷ /∈ S(P ). Then there is ȳ such that ψ(ȳ)−ψ(ŷ) ∈
−Rm+ \ {0}. By the strictly generalized convex-affine property of (ψ; φ; ϕ) on Ω
at ŷ, for ȳ above, there exists ν ∈ NM (ŷ; Ω)− such that(∑

k∈K

λk
(
⟨ζ∗k , ν⟩ −

τk(ŷ)

ρk(ŷ)
⟨η∗k, ν⟩

)
+
∑
i∈I

µi⟨σ∗
i , ν⟩+

∑
j∈J

γj⟨θ∗j , ν⟩
)

<
∑
k∈K

λk
[
τk(ȳ)− τk(ŷ)−

τk(ŷ)

ρk(ŷ)

(
ρk(ȳ)− ρk(ŷ)

]
+
∑
i∈I

µi
(
φi(ȳ)− φi(ŷ)

)
+
∑
j∈J

1

ωj
γj
(
ϕj(ȳ)− ϕj(ŷ)

)
,

where ωj ∈ {−1, 1}, j ∈ J . This entails that there is k0 ∈ K such that ψk0(ȳ) <
ψk0(ŷ). It gives a contradiction, which completes the proof. □

Now, we consider a Mond-Weir multiobjective fractional dual problem of the
form:

(D) max
Rm

+

{
ψ̃(z, λ, µ, γ) :=

( τ1(y)
ρ1(y)

, . . . ,
τm(y)

ρm(y)

)∣∣(z, λ, µ, γ) ∈ ΩD

}
,
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where, if B(0, ∥γ∥) = {σ ∈ Rq
∣∣∥σ∥ = ∥γ∥}, the constraint set ΩD is defined by

ΩD : =
{
(z, λ, µ, γ)

∣∣0 ∈∑
k∈K

λk
(
∂Mτk(z)−

τk(z)

ρk(z
∂Mρk(z)

)
(7)

+
∑
i∈I

µi∂Mφi(z) +
∑
j∈J

γj
(
∂Mϕj(z) ∪ ∂M (−ϕj)(z)

)
+NM (ẑ; Θ),

⟨µ, φ(z)⟩+ ⟨σ, ϕ(z)⟩ ≥ 0, ∀σ ∈ B(0, ∥γ∥)
}
,

weak duality and strong duality relations between the primal problem (P) and the
dual problem (D) read as follows.

Theorem 3.4. (Weak Duality) Let y ∈ Ω and (z, λ, µ, γ) ∈ ΩD. If (ψ; φ; ϕ)

is strictly generalized convex-affine on Ω at z, then ψ(y) ≰ ψ̃(z, λ, µ, γ).

Proof. Assume to the contrary that ψ(y) ≤ ψ̃(z, λ, µ, γ). By the strictly
generalized convex-affine property of (ψ; φ; ϕ) on Ω at z, for such y, that there

is k0 ∈ K such that
(
τk0(y) −

τk0
(z)

ρk0
(z)ρk0(y)

)
> 0, or equivalently, ψk0(z) < ψk0(y)

which contradict and therefore completes the proof. □
Theorem 3.5. (Strong Duality) Let ȳ ∈ S(P ), be such that the (MFCQ) is

satisfied at this point. Then there exists (λ̄, µ̄, γ̄) ∈ (Rm+ ) \ {0} × Rp+ × Rq+ such

that (ȳ, λ̄, µ̄, γ̄) ∈ ΩD and ψ(ȳ) = ψ̃(ȳ, λ̄, µ̄, γ̄). If in addition (ψ; φ; ϕ) is strictly
generalized convex-affine on Ω at any z, then (ȳ, λ̄, µ̄, γ̄) ∈ S(D).

Proof. According to Theorem 3.1 and since (ψ; φ; ϕ) is strictly general-
ized convex-affine on Ω at any z, by invoking of Theorem 3.4, we assert that
ψ̃(ȳ, λ̄, µ̄, γ̄) ≰ ψ̃(y, λ, µ, γ), for any (y, λ, µ, γ) ∈ ΩD. Hence, (ȳ, λ̄, µ̄, γ̄) ∈ S(D).

□
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Abstract. In this paper, we consider the problem of linear quadratic con-
tinuous time optimal control. Our assumed system for this problem is a

special case of non-homogeneous control systems with non-zero terms. To
minimize the certain cost function assigned to this system, we will propose
an optimum control strategy which is calculated by incorporating Hamilton-
Jacobi-Bellman partial differential equation.
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1. Introduction

In this work, we deal with the problem of optimization of linear time invariant
(LTI) continuous time control systems whose parameters do not vary with time.
In practice, applications of LTI systems may be found in circuits, control theory,
NMR spectroscopy, signal processing and in many other areas.

Any LTI control system is expressed as a first order ordinary differential equa-
tion of the form:

ẋ(t) = f(t, x(t), u(t)), x(0) = x0,(1)

where x(t) and u(t) are state vector and input vector, respectively. The LTI
control system (1) can be classified into two categories: non-homogeneous system
and homogeneous system. In a homogeneous system, no external signal is applied
and we look for behavior of the states due to the presence of initial condition
only. But in a non-homogeneous system, we have both the initial conditions and
external input signals simultaneously [3].

The problem of optimization of LTI system is defined as determination of
the best possible control strategy (usually of the optimum control vector u(t)),
which minimizes a certain cost function or performance index. This problem is
considered widely in the literature of control systems (See for example [5] and [6]
and the references therein).

In what follows, we consider the problem of optimal tracking and terminal
control of a non-homogeneous LTI control system in finite horizon. In general, a
control optimization problem consists of minimization of a cost function as:

J =

∫ T

0

{g(t, x(t), u(t)}dt+ q(T, x(T )),

∗Speaker

487



M. Ayatollahi

subject to the continuous time dynamic:

ẋ(t) = f(t, x(t), u(t)), x(0) = x0.

One approach for solving the mentioned problem is applying transformation
on the affine system but it extends the state matrix into a time dependent form. To
avoid this difficulty, we propose an approach that uses Hamilton-Jacobi-Bellman
(HJB) partial differential equation. Although it is not easy to find an exact solution
to HJB equation, yet there are some advantages in using this equation. HJB
arises as a central aspect in optimal control theory and also provides a relatively
inexpensive way to verify optimality among optimization methods if one is able
to guess a solution. The HJB equation related to the above mentioned problem is
expressed as:

−∂V (t, x)

∂t
= min

u

[∂V (t, x)

∂x
f(t, x(t), u(t)) + g(t, x(t), u(t)

]
,

with boundary condition V (T, x) = q(T, x) [2]. V (t, x) is a continuously differ-
entiable function which is called value function and generally it is not easy to
compute it.

2. Main Results

Here, we consider a non-homogeneous linear quadratic control problem which is
the minimization of the following cost function:

J =
1

2
xT (T )QTx(T ) +

1

2

∫ T

0

{xTQx+ uTRu}dt,(2)

subjec to:

ẋ(t) = Ax(t) +Bu(t) + c(t), x(0) = x0.(3)

In which R is a positive definite matrix and Q, R and QT are symmetric
matrices with appropriate size. The first term in (2) refers to the cost at the end
of the optimization time interval and the second term refers to the cost in the
entire optimization interval. For LTI system (3) A and B are state and input
matrices while the non-homogeneous term c(t), is assumed to be a known vector-
valued function which is such that the solution x(t) of the differential equation is
uniquely defined.

The above mentioned problem has a solution if and only if the original linear
quadratic control problem with c(t) = 0 has a solution [4]. For solving this problem
it is possible to rewrite it as a standard linear quadratic control problem using the
transformation on the affine systems as introduced in [4], but in that case the
extended state matrix becomes time dependent.

In the following theorem, by using Hamilton-Jacobi-Bellman equation we will
introduce an optimal control law to solve this minimization problem while all
matrices of the system remain time independent.

Theorem 2.1. Consider the problem of minimization of linear quadratic cost
function (2) subject to (3), in which c(t) is an arbitrarily function such that for
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c(t) = 0 there exist a solution to the minimization problem. Then, the optimal
control strategy that solves this problem is:

u∗ = −R−1BT (S(t)x+m(t)),

where S(t) is an n × n symmetric matrix with continuously differentiable entries
which is the solution of the differential Riccati equation:

Ṡ(t) + S(t)A+ATS(t)− S(t)BR−1BTS(t) +Q = 0 , S(T ) = QT ,

and m(t) is an n × 1 vector with continuously differentiable entries which is the
solution of the ordinary differential equation:

ṁ(t) + (A−BR−1BTS)Tm(t) + S(t)c = 0 , m(T ) = 0.

Proof. The corresponding HJB equation to our mentioned system is:

−∂V (t, x)

∂t
= min

u

[∂V (t, x)

∂x
(Ax+Bu) +

1

2
(xTQx+ uTRu)

]
.(4)

Assume existence of a continuously differentiable value function of the form:

V (t, x) =
1

2
xTS(t)x+mT (t)x+ n(t),(5)

that satisfies (4). Here S(t) is an n × n symmetric matrix with continuously
differentiable entries, m(t) is a continuously differentiable n-vector and n(t) is a
continuously differentiable function. To determine such S(t), m(t) and n(t) we
substitute (5) into the HJB Eq. (4) which leads to:

−1

2
xT Ṡ(t)x− ṁT (t)x− ṅ(t) = min

u

[1
2
xTQx+

1

2
uTRu

+ (xTS(t) +mT (t))(Ax+Bu+ c)
]
.

Carrying out the minimization on the right hand side yields the optimum
control signal:

u∗ = −R−1BT (S(t)x+m(t)).(6)

For determining S(t) and m(t), we substitute (6) into (5) that leads to an identity
relation which is readily satisfied if:

Ṡ(t) + S(t)A+ATS(t)− S(t)BR−1BTS(t) +Q = 0, S(T ) = QT ,

ṁ(t) + (A−BR−1BTS(t))Tm(t) + S(t)c = 0, m(T ) = 0,

ṅ(t) +mT (t)c− 1
2m

T (t)BR−1BTm(t) = 0, n(T ) = 0.

(7)

The first equation in (7) is a matrix differential Riccati equation. According to
[1], positive definiteness of Q and QT and controllability of (A,B) guarantee the
existence of the unique S satisfying in the first equation. The two other differential
equations in (7) are linear in L and G respectively. Due to the theorem of existence
and uniqueness of solutions for the linear first-order differential equations [7], the
existence of unique solutions to the two remaining equations in (7) is guaranteed
by existence of S. This implies that the HJB Eq. (4) has a solution in the form
of (5) which satisfies the boundary conditions. Now, the optimum control (6) is
completely determined. □
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3. Numerical Example

In this section, the proposed method is applied to a dynamical system with the
following constant matrices:

A =

[
0 1
0 0

]
, B =

[
1
0

]
, c =

[
1
0

]
.

Required matrices for cost function are taken as

Q =

[
1 0
0 0

]
, R = I1×1, QT = 02×2.

Appling ODEs (7) on the controllable pair (A,B) yields

S =

[
1.4142 1

1 1.4142

]
, m =

[
1

1.4142

]
.

So, the optimum control law will be

u∗ = −
[
0 1

]
(Sx+m) = −x1 − 1.4142x2 − 1.4142.
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Abstract. Finding a solution for the combinatorial optimization problems

has always been important due to their applications. But most of them are
NP-Complete and unsolvable in polynomial time. Therefore, the approxi-
mation algorithms have been designed for them. One of these problems is

total dominating set problem. In this paper, we present a new quadratic
integer programming model for total dominating set problem and design an
approximation method to find a lower bound for total dominating number.
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1. Introduction

Consider an undirected and connected graph G = (V,E), where V = {v1, . . . , vn}
and E are respectively vertices and edges of G. The degree of vertex vi is shown by
deg(vi) , and ∆ stands for the maximum degree of the graph. A set S ⊆ V is called
dominating set of G if each vertex is a member of S or adjacent to a member of S.
The set S is referred to as minimum dominating set if it has minimum cardinality
among all dominating sets. The cardinality of minimum dominating set is called
domination number and denoted by γ(G). Domination number and its variations
have been extensively studied in the literature. One of them is total domination
number. A set St of vertices in a graph G is called a total dominating set if every
vertex vi ∈ V is adjacent to an element of st. The size of total dominating set with
minimum cardinality is denoted by γt(G). For more details we refer the reader to
[9].

The difference between these two parameters arises from this fact that the
members of dominating set is not necessary be adjacent with another one in dom-
inating set while it is necessary in total dominating set. The parts (a) and (b) in
the Figure 1, show this difference. The black vertices show dominating set and
total dominating set respectively in the parts (a) and (b).

Dominating set and its variants are one of the classical problems in graph
theory having important applications in many fields (e.g. [3, 4] for some recent
applications). In [8], more than 1200 papers on different versions of dominating set
problem are listed. Despite having a lot of application and theoretical attraction,

∗Speaker

491



M. Djahangiri and M. Abdolhosseinzadeh

Unfortunately, in [5] it has been shown the NP-completeness of dominaing set
problem and subsequently the total dominating set problem. So, for any arbitrary
graph, it is not expected that the total dominating set will be found in reason-
able time. To overcome to this challenge, there are several methods such linear
relaxation, Greedy Algorithms and metaheuristics. In this paper, the semidefinite
relaxation is applied to find an approximation solution for the total dominating
set problem.

The semidefinite programming is a special case of convex optimization which
linear objective function is optimized over the intersection of the cone of positive
semidefinite matrices with linear constraints. Let Sn denote the set of symmetric
n×n real matrices. The cone of symmetric positive semidefinite (definite) matrices
is denoted by Sn+ (Sn++ ). B−D ⪰ 0 ( B−D ≻ 0 ) means that (B−D) is positive
semidefinite (definite). Suppose that A1, . . . , Am are linearly independent matrices
in Sn; C ∈ Sn and b ∈ Rm. The standard form of semidefinite programming
problem is written as follows:

min ⟨C,X⟩
s.t. ⟨Ai, X⟩ ≥ bi, i = 1, 2, . . . , n,

X ⪰ 0,

where ⟨B,D⟩ = tr(BtD) =
∑
i,j bijdij . The semidefinite programming model can

be solved in a polynomial time with an interior point method [1]. The interested
reader is referred to [2, 10] for a thorough discussion and applications of semi-
definite programming. semidefinite programming relaxation is a powerful tool to
approximate the optimal solution of some combinatorial problems. For example,
dominating set [6] and maximum cut [7]. The good performance of semidefinite
relaxation in these problems encouraged us to utilize this method to find an ap-
proximation of the k-tuple domination number.

Figure 1.

2. Problem Description

The open neighborhood of a vertex v consists of the set of adjacent vertices to v,
that is, N(v) = {w ∈ V |wv ∈ E} and the closed neighborhood of is defined as
N [v] = N(v) ∪ {v}. The following labeling can be defined on V with respect to a
subset S ⊆ V as:

y(vi) =

{
1, v ∈ S,
−1, v /∈ V.

For the sake of simplicity, we denote y(vi) by yi and refer to a vertex with the
label 1 as (+1)-vertex and as (-1)-vertex, otherwise. Further, N(i)(N [i]) stands
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for the open (closed) neighborhood of the vertex vi. It is important to mention
that a vertex in a total dominating set St is a (+1)-vertex induced by St. From
the definition of labelling, it is clear that the objective function is 1

2

∑n
i=1(1+ yi).

The next lemma gives us valid inequalities for total dominating set.

Lemma 2.1. St ⊆ V is total dominating set if and only if it must satisfy in
the following inequalities:∑

j∈N(i)

(1− yiyj) +
∑
j∈N [i]

1 + yj
2
≥ 2, i = 1, 2, . . . , n.(1)

Now, based on the (1), the quadratic integer programming model can be
written as follows:

min 1
2

∑n
i=1(1 + yi)

s.t.
∑
j∈N(i)(1− yiyj) +

∑
j∈N [i]

1+yj
2 ≥ 2, i = 1, 2, . . . , n,

yi ∈ {−1,+1}, i = 1, 2, . . . , n.

(2)

Observe that the objective functions of (2) and part of inequalities are linear,
while analyzing of our algorithms needs a quadratic objective function. To convert
these linear functions to quadratic ones, a reference variable y0 ∈ {−1,+1} is
introduced and problem (2) is rephrased as follows:

min 1
2

∑n
i=1(1 + y0yi)

s.t.
∑
j∈N(i)(y

2
0 − yiyj) +

∑
j∈N [i]

y20+y0yj
2 ≥ 2, i = 1, 2, . . . , n,

yi ∈ {−1,+1}, i = 0, 1, 2, . . . , n.

(3)

Now suppose y = (y0, y1, . . . , yn) be the optimal solution of (3). If y0 = +1
then y = (y1, . . . , yn) is the optimal solution of (2) and if y0 = −1 then y =
(−y1, . . . ,−yn) is the optimal solution of (2).

3. Semidefinite Relaxation

First, for i = 0, 1, . . . , n, the variable yi is substituted by an (n + 1)-dimensional
vector ui ∈ U, where U = {(+1, 0, . . . , 0), (−1, 0, . . . , 0)}. Accordingly, the re-
striction yi ∈ {−1,+1} is replaced by ui ∈ U and then problem (3) is adapted
as:

min
1

2

n∑
i=1

(1 + ut0ui)

s.t.
∑

j∈N(i)

(ut0u0 − utiuj) +
∑
j∈N [i]

ut0u0 + ut0uj
2

≥ 2, i = 1, 2, . . . , n,

ui ∈ U, i = 0, 1, 2, . . . , n.

(4)

Recall that ||ui = 1|| for ui ∈ U and this motivates to expand U to the standard
(n+ 1)-dimensional unit sphere Sn+1 = {u ∈ Rn+1| ||u|| = 1}, at the second step
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of the relaxation procedure. Thus, the following problem is obtained

min
1

2

n∑
i=1

(1 + ut0ui)

s.t.
∑

j∈N(i)

(ut0u0 − utiuj) +
∑
j∈N [i]

ut0u0 + ut0uj
2

≥ 2, i = 1, 2, . . . , n,

utiui = 1, ui ∈ Sn+1, i = 0, 1, 2, . . . , n.

(5)

By introducing Xij = yiyj , Eij = eie
t
j and Ai =

∑
j∈N(i)

1
2 (2E00−Eij−Eji)+∑

j∈N [i]
1
4 (2E00 − E0j − Ej0), where ei is the i-th standard unit vector of Rn+1,

the model (5) is converted to the following:

min
n

2
+ ⟨C,X⟩

s.t. ⟨Ai, X⟩ ≥ 2, i = 1, 2, . . . , n,
Xii = 1, i = 0, 1, 2, . . . , n,
rank(X) = 1,
X ⪰ 0,

(6)

where C = (cij), ci0 = c0i =
1
4 for i = 1, . . . , n and cij = 0 otherwise. By dropping

the nonconvex constraint rank(X) = 1 from (6), the semidefinite relaxation is
formulated as:

min
n

2
+ ⟨C,X⟩

s.t. ⟨Ai, X⟩ ≥ 2, i = 1, 2, . . . , n,
Xii = 1, i = 0, 1, 2, . . . , n,
X ⪰ 0,

(7)

The model (7) can be solved by interior point methods in CVX solver. Fi-
nally, the optimal solution of (7) just gives us a lower bound to total domination
number. Because the total domination number has been not reported for graphs
of a particular category, we solved a simple example with this method. The total
domination number of graph in Figure 2 is 22 while after relaxing its model and
rounding the obtained solution 100 times, geometric mean of these solutions is
calculated 19.28 which is good approximation.

Figure 2.
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4. Conclusion

In this paper, one of the most famous NP-complete problems in graph theory, the
total dominating set problem, was investigated and a new quadratic integer pro-
gramming model was presented. Finally, an SDP relaxation models are proposed.
Finding the efficiency of the relaxation could be a future research direction.
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Abstract. In the real world, many data are inaccurate, and we are dealing

with vague, unreliable, and inaccurate data. Measuring the performance of
any creature in such uncertain conditions is inevitable. Fuzzy Rough Data
Envelopment Analysis (FRDEA) provides the space to evaluate the relative
performance of homogeneous organisms, known as decision units (DMUs) in

the Envelopment Analysis (DEA) literature. In this paper, we used the data
envelopment analysis model and assumed the performance measurements to
be inaccurate. The aim of this paper is to convert the data envelopment
analysis model with uncertain performance measurements into a crisp model,

which is done using the principle of fuzzy expansion and the expected value
of rough. Inaccurate assumption of performance measurements means fuzzy
rough assumptions of inputs and outputs.

Keywords: Rough method, Data envelopment analysis, Fuzzy sets.
AMS Mathematical Subject Classification [2010]: 90C08,
03E72.

1. Introduction

Data Envelopment Analysis (DEA), as multifunctional the board and dynamic
device has made significant advances in principle, technique, and applications on
the planet today. This methodology is a direct nonparametric technique for es-
timating and assessing the general presentation of a bunch of units, first created
by Charans et al. [1]. Customary information envelopment investigation models,
for example, CCR and BCC don’t manage ambiguous and incorrect information.
In such models, it is accepted that all info and yield information is definitely in-
dicated. In reality, although the information sources and yields are thought to be
known, because of vulnerability, units containing missing data, judgment informa-
tion, figure information, or consecutive inclination data may not be right. Rough
set theory was first proposed by Pawlak [7] in 1982 as a conventional apparatus for
displaying and preparing inadequate data in information systems. Rough set the-
ory is generally utilized in numerous fields today. The main idea is to reduce the
decision-making or classification of the rules of the problem by reducing the data
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under the assumption of maintaining the same classification ability [8]. Rough set
theory is an expansion of set hypothesis where a subset of a reference is charac-
terized by a couple of successive sets called upper and lower approximations. A
key concept in Rough Pawlak’s collection model is the value relation. Fuzzy rough
set was first studied by Dubois and Prade in [2, 3] and then studied by Morsi
and Yakout [6], who defined the upper and lower approximations of the fuzzy set
with respect to a fuzzy min-similarity relation. In this manuscript, in Section 2,
the basic concepts of DEA’s Rough and Rough Theory are presented. In Section
3, the answer to the RDEA model is obtained using interval programming and
a method for ranking the efficiency interval is presented. Then, in Section 4, a
method for solving the RFDEA model using the expected value using the fuzzy
expander principle is presented. The conclusion is given in Section 5.

2. Basic Concepts

2.1. Rough Set Theory. The Rough set theory is proposed by Pawlak [7]
which is an excellent mathematical tool for dealing with vague descriptions of
objects. A basic assumption is that every object in the world is perceived through
the information available, and this information may not be sufficient to pinpoint
the exact object. One way to approximate a set is by using other sets. Thus a
rough set may be defined by a pair of definite sets called the upper and lower
boundaries.

Definition 2.1. [5] The collection of all sets having the same lower and upper
approximations is called a Rough set, denoted by (x, x).

Note that the lower approximation is a subset containing the objects surely
belonging to the set, whereas the upper approximation is a superset containing the
objects possibly belonging to the set, and x ⊂ x ⊂ x. Let Λ be a nonempty set,
A as a σ-algebra of subsets of Λ, and ∆ an element in A, and Π a trust measure.
Then is called a rough space.

Definition 2.2. [5] Let ξ be a rough variable, and α ∈ (0, 1]. Then ξsup(α) =
sup{r|Tr{ξ ≥ r} ≥ α} is called the αoptimistic value to ξ, and

ξinf(α) = inf{r|Tr{ξ ≤ r} ≥ α},

is called the α-pessimistic value to ξ.

Theorem 2.3. [5] Let ξsup(α) and ξinf(α) be the α-pessimistic and α-optimistic
values of the rough variable ξ, respectively. Then we have

• Tr{ξ ≥ ξsup(α)} ≥ αTr{ξ ≤ ξinf(α)} ≥ α,
• ξinf(α) is an increasing and left-continuous function of α,
• ξsup(α) is an decreasing and left-continuous function of α,
• if 0 < α ≤ 1, then ξinf(α) = ξsup(1− α) and ξsup(α) = ξinf(1− α),
• if 0 < α ≤ 0.5, then ξinf(α) ≤ ξsup(α),
• if 0.5 < α ≤ 1, then ξinf(α) ≥ ξsup(α).

where ξinf(α) and ξsup(α)are an interval, the upper bound is ξinf(α) and the lower
bound is ξsup(α)denoted as [ξsup(α), ξinf(α)].
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Lemma 2.4. Let ξ be a trapezoidal fuzzy rough variable ξ = (r̄1, r̄2, r̄3, r̄4),
where r̄1, r̄2, r̄3, r̄4 are rough variables defined on (Λ,Θ, A, π), and

r̄1 = [[P2, P3], [P1, P4]], 0 < P1 ≤ P2 ≤ P3 ≤ P4,

r̄2 = [[q2, q3], [q1, q4]], 0 < q1 ≤ q2 < q3 ≤ q4,
r̄3 = [[s2, s3], [s1, s4]], 0 < s1 ≤ s2 < s3 ≤ s4,
r̄4 = [[t2, t3], [t1, t4]], 0 < t1 ≤ t2 < t3 ≤ t4.

Then, the expected value of ξ is

E[ξ] =
1

16

4∑
i=1

(Pi + qi + si + ti).

Now, the following results can be extracted.

3. General Model for Fuzzy Rough Expected Value Model (EVM)

Let a typical single objective problem with fuzzy rough parameters, as follows:

max f(x, ξ)

s.t. gi(x, ξ) ≤ 0, ∀i, x ∈ X,(1)

where f(x, ξ) and gi(x, ξ), j = 1, . . . , n are continuous functions in X and ξ =
(ξ1, . . . , ξn) is a fuzzy rough vector on the possibility space(Θ, P (Θ), P ). Then, it
follows from the expected operator that

maxE[f(x, ξ)]

s.t. E[gi(x, ξ)] ≤ 0, ∀i, x ∈ X,(2)

where E denotes the expected value operator of fuzzy rough variable. Using the
expected value operator, model (2) has been converted into a certain programming
and the DMs can easily obtain the optimal solution [4].

3.1. Deterministic Fuzzy Rough CCR Model with Expected Value
Operator. In this subsection, we discuss the issue of evaluating the efficiencies of
DMUs with fuzzy rough input and fuzzy rough output. Consider n DMUs, each
of which consumes m different fuzzy rough inputs to secure s different fuzzy rough
outputs. In addition, we presume that the fuzzy rough input x̃ij , (i = 1, . . . ,m)

and the fuzzy rough output ỹrj , (r = 1, . . . , s) are characterized, respectively, by
the following two membership functions:

µx̃ij
(t) =

 L(
x
m1
ij −t
xα
ij

), t ≤ xijm1 ,

R(
t−xm2

ij

xij
β ), t ≥ xijm2 .

Such µỹrj (t) are obtained similarly, where

xm1
ij = ([x

(m1−a)
ij , x

(m1−b)
ij ], [x

(m1−c)
ij , x

(m1−d)
ij ]),

0 < x
(m1−c)
ij ≤ x(m1−a)

ij ≤ x(m1−b)
ij ≤ x(m1−d)

ij ,
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also x
(m2)
ij , y

(m1)
rj , y

(m1)
rj are created similarly. Below we consider the CCR model

with fuzzy rough data.

max

s∑
r=1

urỹrp

S.t.
m∑
i=1

vix̃ip = 1,(3)

s∑
r=1

urỹrj −
m∑
i=1

vix̃ij ≤ 0 ∀j, ur, vi ≥ 0, ∀ (r, i).

Model (3) involves fuzzy rough parameters and consequently, it cannot be
optimized directly. Nevertheless, we employ the expected value operator to trans-
form the fuzzy rough model into fuzzy rough EVM. Using the extension principle,
the fuzzy information

∑s
r=1 urỹrj and

∑m
i=1 vix̃ij can be written as follows

m∑
i=1

vix̃ij = (
m∑
i=1

vix
α
ij ,

m∑
i=1

vix
m1
ij ,

m∑
i=1

vix
m2
ij ,

m∑
i=1

vix
β
ij),

s∑
r=1

urỹrj = (
s∑
r=1

ury
α
rj ,

s∑
r=1

ury
m1
rj ,

s∑
r=1

ury
m2
rj ,

s∑
r=1

ury
β
rj),

where

m∑
i=1

vix
m1
ij = ([

m∑
i=1

vix
m1−a

ij ,
m∑
i=1

vix
m1−b

ij ], [
m∑
i=1

vix
m1−c

ij ,
m∑
i=1

vix
m1−d

ij ]),

m∑
i=1

vix
m2
ij = ([

m∑
i=1

vix
m2−a
ij ,

m∑
i=1

vix
m2−b
ij ], [

m∑
i=1

vix
m2−c
ij ,

m∑
i=1

vix
m2−d
ij ]),

s∑
r=1

ury
m1
rj = ([

s∑
r=1

ury
m1−a
rj ,

s∑
r=1

ury
m1−b
rj ], [

s∑
r=1

ury
m1−c
rj ,

s∑
r=1

ury
m1−d
rj ]),

s∑
r=1

ury
m2
rj = ([

s∑
r=1

ury
m2−a
rj ,

s∑
r=1

ury
m2−b
rj ], [

s∑
r=1

ury
m2−c
rj ,

s∑
r=1

ury
m2−d
rj ]).

The deterministic CCR model based on the expected value approach is repre-
sented as follows.

max

s∑
r=1

ur[(y
a−m1
rp + yb−m1

rp + yc−m1
rp + yd−m1

rp ) + (ya−m2
rp + yb−m2

rp + yc−m2
rp + yd−m2

rp )]

+4
s∑

r=1

ur(−yαrp
∫ 1

0

L(t)dt+ yβrp

∫ 1

0

R(t)dt)),

s.t.

m∑
i=1

vi((x
m1−a

ip + x
m1−b

ip + x
m2−c

ip + x
m1−d

ip ) + (x
m2−a

ip + x
m2−b

ip + x
m2−c

ip + x
m2−d

ip ))

+4

m∑
i=1

vi(−xαip
∫ 1

0

L(t)dt+ xβip

∫ 1

0

R(t)dt) = 8,

500



A NEW APPROACH TO FUZZY ROUGH DEA MODEL

s∑
r=1

ur[(y
m1−a

rj + y
m1−b

rj + y
m1−c

rj + y
m1−d

rj ) + (y
m2−a

rj + y
m2−b

rj + y
m2−c

rj + y
m2−d

rj )]

4
s∑

r=1

ur(−yαrj
∫ 1

0

L(t)dt+ yβr

∫ 1

0

R(t)dt)−
m∑
i=1

vi((x
m1−a

ij + x
m1−b

ij + x
m2−c

ij + x
m1−d

ij )

+(x
m2−a

ij + x
m2−b

ij + x
m2−c

ij + x
m2−d

ij )),

4

m∑
i=1

vi(−xαij
∫ 1

0

L(t)dt+ xβij

∫ 1

0

R(t)dt) ≤ 0, ∀j, ur, vi ≥ 0, ∀r, j.(4)

4. Conclusion

In this paper, we develop a DEA model with fuzzy rough parameters to deal with
uncertainty and imprecise to evaluate the relative efficiency of decision-making
units under such conditions. This model is a tool to compare performance in such
an uncertain and ambiguous environment. The said model under rough space has
been addressed through fuzzy rough expected value operator and possibility ap-
proach to measure the relative efficiency of the DMUs. The novelty also lies in
converting the fuzzy DEA model into its crisp equivalent DEA model by means of
adopting concepts of fuzzy theory along with rough programming and by incor-
porating the α-optimistic and α-pessimistic values of rough variables to transform
the rough programming model into the said crisp DEA model. The proposed ap-
proach provides insights for future research to address uncertainty in various other
types of DEA models.
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1. Introduction

We consider an optimization problem,

(P )min f(x) s.t. gi(x) ≤ 0, i ∈ I := {1, . . . ,m},
where f, gi : Rn → R, (i ∈ I) are quasiconvex functions. The set of feasible
solutions of (P ) is

K := {x ∈ Rn : gi(x) ≤ 0, i ∈ I}.(1)

For a given x̄ ∈ K, set I(x̄) := {i ∈ I : gi(x) = 0}. We recall that the func-
tion f : Rn → R is said to be quasiconvex if for each x, y ∈ Rn and λ ∈ [0, 1],
f(λx+(1−λ)y) ≤ max{f(x), f(y)}. Moreover, f is said to be strongly quasiconvex
if for each x, y ∈ Rn with x ̸= y and λ ∈ (0, 1), f(λx+(1−λ)y) < max{f(x), f(y)}.
The study of quasiconvex functions and their properties has attracted great at-
tention due to their applications in various scientific and technological areas such
as mathematics, economics, image processing, machine learning, etc.; see [1, 2, 6]
and the references therein. Quasiconvex functions are not necessary, differentiable,
directionally differentiable or even continuous. Thus, to derive the KKT type op-
timality conditions for (P ), we need to use some generalized derivative notions
[3, 7, 8]. In this paper, we use the lower global subdifferential notion which is
recently introduced by Lara and Kabgani [5]. The lower global subdifferential is
defined based on the lower global directional derivative introduced in [4]. The
rest of this section contains notations, preliminaries and basic definitions from
generalized convexity and nonsmooth analysis. Section 2 provides necessary and
sufficient conditions for ensuring optimality in (P ).
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Throughout this paper, Rn stands for an n-dimensional Euclidean space with
Euclidean norm ∥·∥, and ⟨·, ·⟩ for the standard inner product. Given a set C ⊆ Rn,
coC, coneC, intC, and clC denote the convex hull, convex cone hull, the interior,
and the closure of C, respectively. The indicator function of C, denoted by ιC(·),
is defined by ιC(x) = 0 if x ∈ C, and ιC(x) = +∞ if x ̸∈ C. The support function
of C is defined by σC(x) := supc∈C⟨c, x⟩. The closed ball with center at x and
radius δ > 0 is denoted by B(x, δ).

The cone of feasible directions and the tangent cone of C at x ∈ clC, denoted
by D(C, x) and T (C, x), respectively, are defined by

D(C, x) := {d ∈ Rn : ∃ δ > 0, ∀ λ ∈ (0, δ), x+ λd ∈ C} ,
T (C, x) := {d ∈ Rn : ∃ tn ↓ 0, ∃ {dn} ⊆ Rn, dn → d, x+ tndn ∈ C} .

If C is convex, then clD(C, x) = T (C, x). Furthermore, if C is convex, then the
normal cone of C at x ∈ C, is defined by:

N(C, x) := {d ∈ Rn : ⟨d, x− x⟩ ≤ 0, ∀ x ∈ C}.

The polar cone of C ⊆ Rn is defined by

C◦ := {d ∈ Rn : ⟨d, x⟩ ≤ 0, ∀x ∈ C},

It is seen that N(C, x̄) = T ◦(C, x̄).

Definition 1.1. [4, Definition 3.1] Let h : Rn → R be a proper function and
x ∈ domh. Hence for every ε > 0, the lower global directional derivative of h at x
in the direction u ∈ Rn is defined by:

hε(x;u) := inf
0<t≤ε

h(x+ tu)− h(x)
t

.

Definition 1.2. [5, Definition 3.2] Let h : Rn → R be a proper function and
x ∈ domh. Then for any ε > 0, the lower global subdifferential of h at x ∈ domh
is defined by

∂εh(x) := {ξ ∈ Rn : hε(x;u) ≥ ⟨ξ, u⟩, ∀ u ∈ B(0, 1)},

The function h is called lower global subdifferentiable at x ∈ domh if ∂εh(x) ̸= ∅
for some ε > 0.

Clearly, ∂εh(x) and ∂εh(x) are closed and convex for all ε > 0 and all x ∈
domh. Moreover, if h is convex, then hε(x;u) = h′(x;u) by [4, Corollary 3.1 (a)],
and from positively homogeneity of h′(x; ·), ∂εh = ∂h for all ε > 0.

Definition 1.3. [5, Definition 4.1] Let h : Rn → R be a proper function and
ε > 0. Then h is said to be ε-lower regular at x ∈ domh if for each ε > 0,

hε(x;u) ≥ 0, u ∈ Rn =⇒ sup
η∈∂εh(x)

⟨η, u⟩ ≥ 0.

It is said that h is ε-lower regular on domh if it is at every point on domh.

Theorem 1.4. [5, Theorem 3.1] Let h : Rn → R be a proper function and
x ∈ int domh. Then ∂εh(x) is convex and compact for all ε > 0.
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2. Main Results

In this section, a sufficient optimality condition (Theorem 2.3) and a necessary
optimality condition (Theorem 2.4) in terms of lower global subdifferentials of
the objective function and the constraints functions are derived. In some part
of the presented results, we use a generalized version of the Abadie constraint
qualification.

Definition 2.1. Assume that K is as presented in (1) and x̄ ∈ K. We say
that Abadie Constraint Qualification (ACQ) holds at x̄ if ∪

i∈I(x̄)

∂εgi(x̄)

◦

⊆ T (K, x̄).

Lemma 2.2. Assume that K is as presented in (1) and x̄ ∈ K. Then, for each
ε ∈ (0, 1],

cl cone

 ∪
i∈I(x̄)

∂εgi(x̄)

 ⊆ N(K, x̄).(2)

Moreover, if ACQ holds at x̄, then the equality holds in (2) and ∪
i∈I(x̄)

∂εgi(x̄)

◦

= T (K, x̄).

Proof. Let i ∈ I(x̄) be arbitrary. Since K is a convex set and gi is quasicon-
vex, for each x ∈ K, (gi)ε(x̄;x− x̄) ≤ 0, for each ε ∈ (0, 1]. Thus,

⟨ζ, x− x̄⟩ ≤ 0, ∀ (x ∈ K, i ∈ I(x̄), ζ ∈ ∂εgi(x̄)) .

Since N(K, x̄) is a closed convex cone, (2) holds by (2).
Now, assume that ACQ holds at x̄. We have, ∪

i∈I(x̄)

∂εgi(x̄)

◦

⊆ T (K, x̄) ⊆ (T (K, x̄))
◦◦

= (N(K, x̄))
◦ ⊆

cl cone

 ∪
i∈I(x̄)

∂εgi(x̄)

◦

=

 ∪
i∈I(x̄)

∂εgi(x̄)

◦

.

□

In the following theorem, a sufficient optimality condition for (P ) is derived.
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Theorem 2.3. Assume that K is as presented in (1) and x̄ ∈ K. If f is
strongly quasiconvex, ε ∈ (0, 1] and there exist λ1, . . . , λm ≥ 0 such that

0 ∈ ∂εf(x̄) +
m∑
i=1

λi∂εgi(x̄),

λigi(x̄) = 0, ∀i ∈ I,

then x̄ is an optimal solution of (P ).

Proof. By Lemma 2.2, we have

0 ∈ ∂εf(x̄) +
m∑

i∈I(x̄)

λi∂εgi(x̄) ⊆ ∂εf(x̄) +N(K, x̄).

Now, consider ζ ∈ ∂εf(x̄) such that −ζ ∈ N(K,x). Thus, 0 ≤ ⟨ξ, x − x⟩
for each x ∈ K and ⟨ξ, u⟩ ≤ fε(x;u) for each u ∈ B(0, 1). Let x ∈ K such that
∥x− x̄∥ ≤ 1. Since f is a strongly quasiconvex function and ε ∈ (0, 1],

0 ≤ ⟨ξ, x− x⟩ ≤ inf
0<t≤ε

f(x+ t(x− x))− f(x)
t

,

⇒ f(x) ≤ f(x+ t(x− x)), ∀ t ∈ (0, ε],

⇒ f(x) ≤ f(x).

Thus, x̄ is a local minimum of (P ). However, since f is strongly quasiconvex
thus x̄ is a minimizer of (P ). □

The following theorem presents a necessary optimality condition for (P ).

Theorem 2.4. Assume that K is as presented in (1) and x̄ ∈ K ∩ int dom f .
If ACQ holds at x̄ and f is ε-lower regular function at x̄, then there exist ε > 0
and λ1, . . . , λm ≥ 0 such that

0 ∈ ∂εf(x̄) +
m∑
i=1

λi∂εgi(x̄),

λigi(x̄) = 0, ∀i ∈ I,

Proof. First, we claim that for each ε ∈ (0, 1], we have

sup
η∈∂εf(x)

⟨η, u⟩ ≥ 0, ∀ u ∈ D(K,x).

Since x̄ is a minimizer of (P) and f is quasiconvex, we have

f1(x;x− x) = inf
0<t≤1

f(x+ t(x− x))− f(x)
t

≥ 0, ∀ x ∈ K.

Then, for every ε ∈ (0, 1], fε(x;x − x) ≥ 0 for all x ∈ K. Since f is ε-lower
regular function at x, we have

sup
η∈∂εf(x)

⟨η, x− x⟩ ≥ 0, ∀ ε ∈ (0, 1], ∀ x ∈ K

⇒ sup
η∈∂εf(x)

⟨η, λ(x− x)⟩ ≥ 0, ∀ ε ∈ (0, 1], ∀λ ≥ 0, ∀x ∈ K.(3)
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On the other hand, since K is a convex set

D(K,x) = {d ∈ Rn : ∃ x ∈ K, ∃ α ≥ 0, d = α(x− x)}.
Hence, by Eq. (3), supη∈∂εf(x)⟨η, u⟩ ≥ 0 for all u ∈ D(K,x) and all ε ∈ (0, 1].

Now, by [5, Theorem 4.2 (c)], we have

0 ∈ ∂εf(x) +N(K,x).

The proof is completed by Lemma 2.2. □
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Abstract. Basic Data Envelopment Analysis models are intrinsically
preference-free. However, there exist several approaches for incorporating de-
cision maker’s preference(s) into the procedure of efficiency analysis; among
them value efficiency analysis is one of the most practical approaches. In value

efficiency analysis it is assumed that the decision maker has an implicit value
function and he/she presents his/her preferences by means of determining
the most preferred solution among all existing activities. Besides estimating
the value efficiency score for each unit, value efficiency analysis is capable

of setting benchmarks for value inefficient units. In this paper, we develop a
two-step target setting approach in the framework of value efficiency analysis,
in order to provide more realistically achievable targets.

Keywords: Benchmarking, Value efficiency, Value efficient frontier,
Intermediate layer.
AMS Mathematical Subject Classification [2010]: 90B30,
90B50.

1. Introduction

Data envelopment analysis(DEA) is a non-parametric mathematical program-
ming based approach for evaluating a set of homogeneous Decision Making Units
(DMUs) with multiple inputs/multiple outputs [2, 3]. Recently, DEA has been
developed and used extensively in many practical applications. For a complete
history of DEA see [4].

One of the main properties of the original DEA models is that they are in-
trinsically preference-free. This means that they evaluate efficiency scores without
taking into account any preferences among units or input and outputs. However,
there are several approaches for incorporating preferences into the evaluation mod-
els [6], among them value efficiency analysis (VEA) is a well-known method. In
VEA it is assumed that the decision maker (DM) has an empirical value func-
tion, which is pseudo-concave and increasing in outputs and pseudo-convex and
decreasing in inputs. Moreover, he/she provides his/her preferences by means
of providing his/her most preferred solution in the feasible technology. Based on
these assumptions, the original VEA model in the DEA framework was formulated
in [5].

On the other hand, as DEA is a powerful tool in benchmarking it is expected
that the VEA model can also be used in the field of benchmarking. In this regard,
a target setting approach based on VEA was developed in [7]. The main idea of
this approach was to determine a target unit for each value inefficient unit which
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is both feasible and value efficient. However, the set of all value efficient units does
not necessarily form a complete envelopment for the DEA production possibility
set, and may just include a small portion of the efficient frontier. Therefore, the
target that that is obtained in [7] may be relatively far from the inefficient unit
and so is difficult to achieve in a single step. In this regard, to develop a stepwise
benchmarking approach in the framework of VEA seems necessary and useful. In
this paper, we extend the model of [7] to a two-step benchmarking approach in
order to obtain more realistic and achievable targets.

2. Basic Preliminaries

Suppose that we have n decision making units, where DMUj uses input vector Xj

to produce output vector Yj , for j = 1, . . . , n. As usual, we assume that Xj and Yj
are semi-positive m-vector and s-vector, respectively. The pair (Xj , Yj) is called
an observed activity, for j = 1, . . . , n. The production possibility set in DEA for
a constant returns to scale technology is formed as:

T = {(X,Y ) | X ≥
n∑
j=1

λjXj , Y ≤
n∑
j=1

λjYj , λj ≥ 0, j = 1 . . . , n}.

The formal definition of efficiency is given in the following.

Definition 2.1. A feasible activity (X,Y ) ∈ T is called efficient if and only if
there does not exist any (X,Y ) ∈ T such that (Y,−X) ≥ (Y ,−X) and (Y,−X) ̸=
(Y ,−X).

One of the well-known DEA models which can be suitably used for diagnosing
efficient units is the basic additive model formulated as:

max σo = 1TS− + 1TS+

s.t.
∑n
j=1 λjXj + S− = Xo,∑n
j=1 λjYj − S+ = Yo,

(S−, S+) ≥ (0, 0), λ ≥ 0.

(1)

It can be easily shown that DMUo is efficient if and only if the optimal value of
(1) is equal to zero.

Let E ⊆ {1, . . . , n} denotes the set of all observed efficient units. According
to [1], the set of all efficient activities is formulated as:

TE = {(X,Y ) | X =
∑
j∈E λjXj , Y =

∑
j∈E λjYj ,

−UYj + V Xj − dj = 0,
dj ≤Mtj , λj ≤M(1− tj),
tj ∈ {0, 1}, λj , dj ≥ 0, j ∈ E
(U, V ) ≥ 1s+m}.

Now to deal with value efficiency analysis, assume that the DM has an em-
pirical value function which is pseudo-concave/-convex and increasing/decreasing
in outputs/inputs and takes its maximum value at (X∗, Y ∗) ∈ T . This means
that (X∗, Y ∗) =

∑n
j=1 λ

∗
j (Xj , Yj) denotes the most preferred solution (MPS) of

the DM. The additive-based value efficiency analysis model for evaluating DMUo
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is formulated as [7]:

max ρo = 1TS− + 1TS+

s.t.
∑n
j=1 λjXj + S− = Xo,

∑n
j=1 λjYj − S+ = Yo,

(S−, S+) ≥ (0, 0), λj ≥ 0, if λ∗j = 0.

Similarly, DMUo is called value efficient if and only if the optimal value of the
above model is equal to zero. If V E ⊆ {1, . . . , n} denotes the set of all observed
efficient units, it is clear that V E ⊆ E. Moreover, the set of all value efficient
activities is formulated as:

TV E = {(X,Y ) | X =
∑
j∈V E λjXj , Y =

∑
j∈V E λjYj ,

−UYj + V Xj − dj = 0,
dj ≤Mtj , λj ≤M(1− tj), j ∈ V E,
dj , λj ≥ 0, tj ∈ {0, 1}, j ∈ V E, (U, V ) ≥ 1s+m}.

It is not difficult to prove that TV E ⊆ TE .

3. Benchmarking

If DMUo is value inefficient, i.e. at optimality ρo > 0 in model (3), it would be
desirable to provide a corresponding target unit for it. The weighted benchmarking
model which calculates the closest target for the value inefficient unit DMUo is
formulated as:

min
∑m
i=1 |

hx
i

xio
|+
∑s
r=1 |

hy
r

yro
|

s.t.
∑
j∈V E λjXj + hx = Xo,∑
j∈V E λjYj − hy = Yo,

−UYj + V Xj − dj = 0, j ∈ V E,
dj ≤Mtj , λj ≤M(1− tj), j ∈ V E,
dj , λj ≥ 0, j ∈ V E,
(U, V ) ≥ 1s+m, (h

x, hy) free.

(2)

Note that (2) and the model formulated in [7] both have the same feasible
region which is in fact TV E and the only difference between them is their objective
functions. While the objective function in [7] is in fact the conventional norm-one
of the slacks, in model (2) it has a weighted form. Solving (2) gives a value
efficient target for DMUo with minimum distance in terms of weighted norm-one.
Moreover, it is worthwhile to note that problem (2) is in fact non-linear, due its
objective function which is in the form of absolute value. However, it can be easily
converted to a linear function using the following transformation for each r ∈ R r = r+ − r−,

|r| = r+ + r−,
r+, r− ≥ 0.

It is clear that TV E does not necessarily form a complete envelope for the set
T and therefore the target obtained from (2) maybe too far from DMUo and it
might be difficult to achieve in a single step. So, we need a two-step benchmarking
procedure which is more practical. Here, we develop a two-step benchmarking
approach which gives two targets for each value inefficient unitDMUo, an ultimate
target located on TV E and an intermediate target. Towards this end, we need to
formulate an intermediate layer. This layer is in fact formed by omitting the set
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of all value efficient units, expect the MPS. To explain more, we assume that IV E
contains all observed units which are value efficient after omitting the set of all
value efficient units, except the MPS. Formally, the following algorithm calculates
the set IV E:
Algorithm for IV E:
Step 1. Set J ′ = ({1, . . . , n} − V E) ∪ {MPS}.
Step 2. Solve the following problem for each o ∈ {1, . . . , n} − V E:

max ρ′o = 1TS− + 1TS+

s.t.
∑
j∈J ′ λjXj + S− = Xo,∑
j∈J ′ λjYj − S+ = Yo,

(S−, S+) ≥ (0, 0),
λj ≥ 0, if λ∗j = 0.

(3)

Step 3. Set IV E = {j | ρ′j = 0}.
Then, we form the intermediate layer T IV E as:

T IV E = {(X,Y ) | X =
∑
j∈IV E λjXj , Y =

∑
j∈IV E λjYj ,

−UYj + V Xj − dj = 0,
dj ≤Mtj , λj ≤M(1− tj),
dj , λj ≥ 0, tj ∈ {0, 1}, j ∈ IV E,
(U, V ) ≥ 1s+m}.

Note that as the MPS belongs to both sets V E and IV E, both layers TV E

and T IV E include the MPS. In other words, they intersects at the MPS. Now,
assume that DMUo is a value inefficient unit. If o ∈ IV E, then it has one final
benchmark which is determined straightforwardly by solving (2). Otherwise, when
o /∈ IV E, we provide two sequential benchmarks for it, an intermediate benchmark
on T IV E , and a final benchmark on TV E . Therefore, we develop the following two-
step benchmarking approach for each DMUo, where o /∈ V E ∪ IV E.

Two-Step Benchmarking Algorithm:
Step One. Intermediate Target Setting Solve model (2) by replacing V E by
IV E to find the intermediate target (XI

o , Y
I
o ) as:

(XI
o , Y

I
o ) =

∑
j∈IV E

λ∗j (Xj , Yj) = (Xo − hx∗, Yo + hy∗),(4)

where “*” stands for optimality of the corresponding problem.
Step Two. Final Target Setting Solve model (2) for (XI

o , Y
I
o ) instead of

(Xo, Yo) to find the final target (XF
o , Y

F
o ) as:

(XF
o , Y

F
o ) =

∑
j∈V E

λ∗∗j (Xj , Yj) = (XI
o − hx∗∗, Y Io + hy∗∗),(5)

where “**” denotes optimality of the corresponding problem.
Note that as variables hx and hy are both unconstrained in model (2), none of

the obtained targets, i.e. the intermediate target (4) and the final target (5), does
not necessarily dominate DMUo. However, considering the objective function of
(2), one could claim that both are chosen as the closest target from the previous
one w.r.t. weighted norm-one.
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Example 3.1. Consider a set of 15 DMUs in a single input-single output
technology operating under variable returns to scale. The corresponding data set
is given in the first two rows of Table 1. Applying model (1) the set of efficient
units is obtained as E = {1, 2, 3, 4, 5, 14, 15}. Now, assuming that the DM chooses
unit 3 as the MPS, and by using the value efficiency model (3), the set of value
efficient units is V E = {2, 3, 4, 15}. Moreover, using the given algorithm for IV E,
the units on the intermediate layer is obtained as IV E = {3, 5, 14}. Note that unit
3 belongs to both V E and IV E. Finally, by implementing the proposed two-step
benchmarking algorithm, we report the results in the four last rows of Table 1.
Note that for each value efficient unit in V E there is no target, for units in the
set IV E we have only one (final) target on TV E , and for the other units we have
two sequential targets, the intermediate on T IV E and the final on TV E . Figure
(1) represents the technology along with the two sets TV E and T IV E .

Table 1. Data set and results.

Units 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

U
n
it
s Input 1 2 4 7 12 1.5 3.5 6.5 11 4 5.5 8.5 10 1.5 5

Output 2 5 7.5 9 10 2.5 5.5 8 9.5 4 4.5 6.5 8 3.5 8

IV
E Input 1.5 – – – – 1.5 2.75 6.5 11 1.812 2.125 8.5 10 – –

Output 3.5 – – – – 3.5 5.5 8.281 9.688 4 4.5 8.906 9.375 – –

V
E Input 2 – – – 7 2 2.75 6.5 7 2 2.125 7 7 2 –

Output 5 – – – 9 5 5.937 8.75 9 5 5.156 9 9 5 –

Figure 1. Illustration of value efficient frontier and intermediate layer.
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Abstract. In this paper, we propose a new algorithm for solving uncon-
strained optimization problems. Using a modified definition of trust region
ratio and an appropriate adaptive choice, an efficient adaptive nonmonotone
scheme is provided. To avoid resolving the trust region subproblem when-

ever the trial step is rejected, we employ a line search strategy. Under some
suitable and standard assumptions, the global convergence properties of the
New Algorithm is established. Numerical experiments show the efficiency of
the new proposed algorithm.
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1. Introduction

Consider the unconstrained optimization problem as follows:

minx∈Rnf(x),(1)

in which f : Rn → R is a twice continuously differentiable function. For solving
(1), many effective iterative procedures is provided, however, trust region and line
search methods are two commonly used convergence schemes for unconstrained
optimization [5]. In the procedure of line search methods, one moves along a
(descent) direction as long as a sufficient reduction in the objective is achieved.
On the other hand, in the standard trust region method, given xk a trial step dk
is obtained by solving the following problem

min qk(d) = fk + gTk d+
1

2
dTBkd

s.t. ∥d∥ ≤ ∆k,(2)

where fk = f(xk), gk = ∇f(xk), Bk is the exact Hessian ∇2f(xk), or it’s ap-
proximation, and ∆k > 0 is the trust region radius. Also, the agreement between
the model and the objective function is measured by the trust region ratio that
defined as follows:

rk =
f(xk)− f(xk + dk)

qk(0)− qk(dk)
.(3)

A good agreement between the model and the objective function is achieved
when the ratio is closed to 1. In this case, the trust region radius is expanded
for the next iteration and the trial step dk is accepted, so we obtain the new
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approximation point xk+1 = xk + dk. Otherwise, if the ratio is closed to 0 or
negative, the iteration is not successful, so the trust region radius is decreased and
the trial step is rejected. In such a situation, the trust region subproblem should
be solved again in a smaller region.

In the classic trust region method, the objective function values were reduced
monotonically. Using the monotone scheme may reduce the speed of convergence
for some problems. To overcome this drawback the nonmonotone trust region
method is developed [4]. The capital difference between the monotone and non-
monotone trust region method is based on the definition of the ratio rk. One of the
most efficient nonmonotone terms is proposed by Ahookhosh et al. [1] as follows

Rk = ϵkfℓ(k) + (1− ϵk)fk,(4)

where fk = f(xk), ϵk ∈ [ϵmin, ϵmax] ⊂ [0, 1] and

fℓ(k) = max
0≤j≤M(k)

fk−j ,(5)

that is the Grippo’s nonmonotone term and M(0) = 0 and, for k ≥ 1, M(k) =
min{k,M}, for given positive integer M .

The procedure of updating the trust region radius at every iteration has a
crucial role in acheiving the global convergence, since the large amount of trust
region radius increases the number of solving the subproblems. In addition, a
small trust region radius increases the total number of iterations. Also, selecting
the appropriate initial trust region radius is important. Shi and Gou in [8] defined

an adaptive radius as ∆k = −cp gTk qk
qTk B̃kqk

∥qk∥, where c ∈ (0, 1), pk is a nonnegative

integer and qk satisfying − gTk qk
∥gk∥∥qk∥ ≥ τ , τ ∈ (0, 1) and B̃k = Bk + iI in which i is

the smallest nonnegative integer that qTk B̃kqk > 0. In this paper, we introduce an
efficient trust region method in which, when a trial step dk is rejected, we avoid
resolving the trust region subproblem.

The reminder of this paper is organized as follows: in Section 2, we present the
structure of the new nonmonotone adaptive trust region method in details. The
global convergence property is established in Section 3. Finally, the numerical
results is reported in Section 4.

2. The New Algorithm

In this section, we deal with our modified nonmonotone trust region algorithm
for solving the unconstrained optimization problems. This method combines the
nonmonotone technique as proposed in [2] with an improved scalar approximation
of the Hessian according to the modified secant equation as proposed in [3]. Also,
if the trial step is rejected, using the line search method, we avoid to resolve the
subproblem.

For given xk, the trial step dk is computed by (approximately) solving the
following simple subproblem

min qk(d) = gTk d+
1

2
dT γ(xk)d(6)

s.t. ∥d∥ ≤ ∆k,
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where γk := γ(xk) is a scalar approximation of the Hessian matrix. Biglari and
Solimanpur in [3] proposed another simple subproblem in which the approximation
of the Hessian at the current point xk is computed by

γ̂k =
4(fk−1 − fk) + 3gTk dk−1 + gTk−1dk−1

dTk−1dk−1
.(7)

Whereas γ̂k, in (7), may become negative in some iterations, we modified γk as
below [7]

γk =
4(fk−1 − fk) + (3 + ηk)g

T
k dk−1 + gTk−1dk−1

dTk−1dk−1
,(8)

where ηk in (8) is computed by

ηk =

{
4(fk−fk−1)−3gTk dk−1−gTk−1dk−1+δ

gkT dk−1
, if γ̂k < 0,

0, Otherwise,

where δ is a small positive number and γ̂k is defined by (7). The definition (8)
implies that the scalar approximation of the Hessian became nonnegative.

Using dk, from solving the subproblem (6), the nonmonotone trust region ratio
is computed by [2]

rk =
Rk − f(xk + dk)

Predk
,(9)

where Rk is defined by (4) and Predk = qk(0)− qk(dk). For given µ ∈ (0, 1), the
trial step is accepted whenever rk ≥ µ; otherwise it is rejected.

If the trial step accepted, we set xk+1 = xk+dk and we update the trust region
radius appropriately. Otherwise, assuming that the function f is continuously

differentiable and its gradient is Lipschitz continuous, consider [6] βk =
−gTk dk
Lk∥dk∥2

in which Lk is an approximation of the Lipschitz constant L that here is updated
by

−dTk−1yk−1

∥dk−1∥2
,(10)

where yk−1 = gk − gk−1. From [10], the step size αk is computed by

f(xk + αkdk) ≤ Rk + φαk(g
T
k dk −

1

2
αkrLk∥dk∥2),(11)

where φ ∈ (0, 12 ), and r ∈ [0,+∞) are real constants. Furthermore, the procedure
of updating the adaptive trust region radius is as follows [7]

∆k = min

{
νk
∥gk∥
γk

,∆max

}
,(12)

where ∆max > 0 is a threshold value for the radii and νk+1 is updated by:

νk+1 =

 σ0νk, rk < µ1,
νk, µ1 ≤ rk ≤ µ2,
min{σ1νk, νmax}, rk > µ2,

(13)

where 0 < σ0 < 1 < σ1, 0 < µ1 < µ2 ≤ 1 and νmax > 0 are given numbers. We
describe the structure of the proposed algorithm as below.
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A New Algorithm

Input: x0 ∈ Rn, 0 < µ < µ1 < µ2 ≤ 1, 0 < σ0 < 1 < σ1, 0 < ϵmin <
ϵmax < 1, ϵ, ε,M, νmax,∆max > 0, 0 < θ1 < θ2 , the constant t ∈ (0, 1),
σ ∈ (0, 12 , r ∈ (0,∞), L0 > 0 and δ > 0.

Step 0: Set k = 0, γ0 := γ(x0) = 1, g0 = g(x0), ν0 = 1 and ∆0 =

min
{
ν0

∥g0∥
γ0

,∆max

}
.

Step 1: If ∥gk∥ ≤ ε, Then Stop.
Step 2: Determine dk by solving (6).
Step 3: Compute rk using (9). If rk > µ2, Then set xk+1 = xk + dk,

Update νk+1 using (13) and set ∆k+1 = min
{
νk+1

∥gk+1∥
γk+1

,∆max

}
and

goto Step 5.
Step 4: Update Lk by (10), find the step length αk satisfying (11), and set
xk+1 = xk + αkdk and update ∆k from (12).

Step 5: Compute the new Hessian approximation γk+1 by (8). If γk+1 ≤ ϵ,
Then set γk+1 = θ1. If γk+1 ≥ 1

ϵ , Then set γk+1 = θ2, Set k = k + 1
and goto Step 1.

3. Convergence Analysis

For considering the global convergence, the following standard assumptions are
needed:

A1: The set Ω = {x ∈ Rn|f(x) ≤ f(x0)} is a closed bounded convex set,
f(x) is a twice continuously differentiable function in Ω and the function
∇f(x) is a Lipschitz continuous function on Ω.

A2: There exists a positive constant m such that dT γkd ≥ m∥d∥2,∀d ∈
Rn, ∀k ∈ N .

A3: The matrix γk is uniformly bounded, i.e. there exists a positive con-
stant M1 such that ∥γk∥ ≤M1, ∀k ∈ N .

Lemma 3.1. [7] Assume that dk is a solution of the problem (6). Then, one
has

Predk := qk(0)− qk(dk) ≥
1

2
∥gk∥min

{
∆k,
∥gk∥
γk

}
.(14)

Lemma 3.2. [6, 7] Step 4 of the New Algorithm is well-defined.

Theorem 3.3. [6, 7] Suppose that Assumption A1 to A3 holds and {xk} is
the sequence generated by the New Algorithm. Then, the New Algorithm either
stops at a stationary point or

lim inf
k→∞

∥gk∥ = 0.(15)

4. Numerical Results

In this section, we focus on providing some computational results of applying the
New Algorithm along with the following algorithms on some test problems in order
to compare their performances:
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NATRM: Algorithm 2.1 in [9].

FATRA: Algorithm 1 in [7].

Figure 1. Performance based on function evaluations.

Figure 2. Performance based on the number of gradient.

Acknowledgement

The author would like to thank the University of Kashan for supporting this work.

519



Z. Saeidian

References

1. M. Ahookhosh and K. Amini, An efficient nonmonotone trust-region method for uncon-

strained optimization, Numer. Algorithms 59 (2011) 523–540.
2. D. Ataee Tarzanagh, M. R. Peyghami and H. Mesgarani, A new nonmonotone trust re-

gion method for unconstrained optimization equipped by an efficient adaptive radius, Optim.
Methods Softw. 29 (4) (2014) 819–836.

3. F. Biglari and M. Solimanpur, Scaling on the spectral gradient method, J. Optim. Theory
Appl. 158 (2) (2013) 626–635.

4. L. Grippo, F. Lampariello and S. Lucidi, A nonmonotone line search technique for Newton’s
method, SIAM J. Numer. Anal. 23 (1986) 707–716.

5. J. Nocedal and S. J. Wright, Numerical Optimization, Springer, NewYork, 2006.
6. S. Rezaee and S. Babaei-Kafaki, A modified nonmonotone trust region line search method,

J. Appl. Math. Comput. 57 (2018) 421–436.
7. Z. Saeidian and M. R. Peyghami, An adaptive nonmonotone trust region method for un-

constriained optimization problems based on a simple subproblem, Iranian J. Nume. Anal.
Optim. 5 (2) (2015) 95–117.

8. Z. Shi and J. Guo, A new trust region method for unconstrained optimization, J. Comput.

Appl. Math. 213 (2008) 509–520.
9. Q. Zhou and C. Zhang, A new nonmonotone adaptive trust region method based on simple

quadratic models, J. Appl. Math. Comput. 40 (2012) 111–123.
10. Z. Wan, S. Huang and X. D. Zheng, New cautious BFGS algorithm based on modified Armijo-

type linesearch, J. Inequal. Appl. 241 (1) (2012) 1–10.

E-mail: Saeidian@Kashanu.ac.ir

520

mailto:Saeidian@Kashanu.ac.ir


The 51st Annual Iranian Mathematics Conference University of Kashan, 15–20 February 2021

Applying Game Theory in Tumor Growth Analysis

Atefeh Deris∗

Faculty of Mathematical Sciences, Arak University, Arak, Iran

and Mahdi Sohrabi-Haghighat
Faculty of Mathematical Sciences, Arak University, Arak, Iran

Abstract. The behavior and growth of cancerous tumor is an interesting
research subject and it has been widely analyzed from theoretical and em-
pirical aspects. Various models have been applied to determine the growth

pattern of cancerous tumor. In one of the current models, which we refer to
as the competitive model, the tumor growth rate is determined based on the
competition between the healthy and cancer cells. According to the effective
application of this model in determining the tumor growth rate, some meth-

ods to get rid of the model restrictions are presented so that it can be used
for tumor progression pattern. Finally, in order to evaluate the efficiency of
the developed model, it has been implemented in some empirical examples.

Keywords: Cancerous tumor, Evolutionary game theory, Fitness,
Growth rate.
AMS Mathematical Subject Classification [2010]: 13F55,
05E40, 05C65.

1. Introduction

Understanding the patterns of tumor growth is one of the important fields of study
about the cancerous tumor. Different mathematical models have been introduced
to explore these patterns. One of the simplest growth rules is the exponential
growth model which indicates that the number of tumor cells doubles by a constant
rate, meaning that the growth rate will always be constant, and thus its plot will
be like a straight line in the semi-log plot [4, 5]. The exponential growth model
was challenged by Gompertz in 1825, who stated that the doubling time of the
tumor volume is not constant and the growth rate will decrease as the tumor
volume increases. The Gompertz’s growth curve is like sigmoid or S shape. The
other model is the logistic growth which states that the growth rate reduces and
finally reaches zero, when the population tends to the maximum carrying capacity
[3]. Both models are sigmoid but Gompertz model indicates an exponentially
decreasing growth rate, while in the logistic model, the growth rate decreases
linearly proportional to the size of tumor.

But, these models are not sufficient to deal with the perturbed tumors (under
treatment). Therefore, it is necessary to provide the biological interpretations of
tumor growth mechanism with new approaches, so that it can be used in perturbed
tumors regression. One of the models which has been recently introduced in this
regard, and it will be referred to as the competitive model is designed based on
the competition between the healthy and cancer cells [7, 8]. In this paper, we
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intend to expand and develop the usage of the competitive model by providing
some methods.

2. The Competitive Model Development for Tumor Progression
Pattern

In the competitive model, the growth rate of tumor will be determined based
on the competition result of the healthy and cancer cells. The healthy cells of
a tissue or organism cooperate with the other cells, while the cancer cells defect
the cooperation process with other cells, and each cell will receive an utility for
its selected strategy. Assume that the following matrix is the game matrix of the
healthy and cancer cells

A =

[
a b
c d

]
.

A cancer cell will receive a utility c against a healthy cells, which is higher than
the utility of the competition of a healthy cell with the other healthy cells, thus
c > a. On the other hand, the healthy cells cooperate with each other unlike the
cancer cells, therefore their utility will be more than the cancer cells in comparison,
thus a > d. Because the healthy cells have less utility in contrast with the cancer
cells, thus d > b. The inequalities c > a > d > b recall that the matrix A is a
prisoner’s dilemma game matrix.

West et al. [7] introduced the amounts of a = 3, b = 0, c = 5, d = 1, and then
simulated the tumor growth process (by considering the selection probability of
each cell for the proliferation equal to the fitness of that cell). In order to develop
the competitive model, two limitations are needed to be fixed. The first limitation
is that the payoff matrix of each tumor is a function of that tumor’s characteristics
and the default values cannot be used.

To explain further, the real data of mammary tumor extracted from reference
[2] were used. In Figure 1, we have illustrated the expected growth curve of
cancer cells by using the constant elements and different selection intensities in
the competitive model. Figure 1 clearly shows that the competitive model cannot
simulate correctly the cancer cells growth by considering the mentioned constant
elements and any selection intensity. In Figure 2, the previous data and two
different selection intensities of 0.2 and 0.5 have been considered, but we have
changed the elements of prisoner’s dilemma matrix. As it can be seen in Figure 2,
the growth rate of cancer cells has been approximated more accurately.

Figures 1 and 2 indicate that the matrix of prisoner’s dilemma with the con-
stant elements cannot be used for all tumors, and these elements should be selected
based on the tumor behaviors.

We consider the matrix elements as parametric and let their values be deter-
mined according to the tumor characteristics that were observed in the clinical
trials. Therefore, if V is the population volume of N cells (i.e. tumor carrying
capacity) and vt is the volume of tumor at time t, then the fitness of healthy and
cancer cell mass with constant volume v at time t are determined by the following
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Figure 1. A tumor data and its simulation in the competitive
model with respect to the constant elements of prisoner’s dilemma
matrix and different values of selection intensities.

Figure 2. The previous tumor data (given in Figure 1) and its
simulation in the competitive model with appropriate elements
of prisoner’s dilemma matrix and two different values of selection
intensities.

formulas

ft = 1− w + wFt,

gt = 1− w + wGt,

where

Ft =
a(V − vt − 1) + b(vt)

V − 1
,

Gt =
c(V − vt) + d(vt − 1)

V − 1
,

and w is the intensity of selection which is a number in the interval [0, 1], and it
shows the effect of competition in the evolution process. Our empirical computa-
tions show that the numbers between 0.05 and 0.5 for the selection intensity will
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lead to better results in order to calculate the growth rate and simulate the growth
process in the competitive model. Considering the main idea of evolutionary game
theory that considers the growth rate of species proportional to their fitness, the
expected tumor volume in the next time is obtained by the following formula

vt+1 =
V · gt · vt

gt · vt + (V − vt) · ft
.

It is interesting to see that

∆vt
∣∣
t→0
≈ kvt,

where k =
w(V (c− a) + (a− d))
(V − 1)(1− w + wa)

. Based on the relationship between the matrix

elements of the prisoner’s dilemma problem, if a >
1− w
w

, then k > 0, which

results an exponential growth of tumor in the initial stages of cancer cell growth
process. In the following parts, we will let b = 0 and the condition k > 0 be
provided.

To obtain the value of parameters a, b, c, and d, we use the clinical observations
and solve a problem in order to implement the curve fitting process. Suppose that
(t1, u1), (t2, u2), . . . , (tk, uk) are the clinical observations of tumor, where uj is the
tumor volume observed at time tj (j = 1, . . . , k). Each time starting from (tj , uj),
we obtain vt(j+1)

parametrically for j = 1, . . . , k− 1. Then, under the curve fitting
process, we compute the parameters a, b, c, and d by solving the following problem

min
∑
j

(vtj − uj)2 s.t. c > a > d > b.(1)

Problem (1) is a nonlinear programming problem with variables a, b, c, and d.
Note that vtj is a nonlinear function on the variables a, b, c, and d, and uj is the
scalar value corresponding to the clinical observations. The optimal solution to
this problem determines the prisoner’s dilemma matrix elements.

If the number of clinical observations is sufficient, there is no need to con-
straints c > a > d > b and the optimal solution of the unconstrained minimization
problem will be satisfied these constrains.

As the variables of the non-linear programming problem (1) are limited only to
4 variables a, b, c and d, it can be solved by the standard mathematical softwares
(especially because of the existence of appropriate initial solution such as a =
3, b = 0, c = 5, and d = 1 as well).

3. Experimental Examination of the Developed Competitive Model

In this section, we implement the developed competitive model presented in the
previous section on the tumors data of 10 types of male mice with the lung cancer
extracted from [1, 6]. Some experiments were conducted on ten mice, therefore,
the data of each type of mouse is the average of the data belonging to the same
type of mouse. The tumors data are measured in a period of 4 to 22 days on
the mice with 6 to 8 weeks age. These data set display the volume range of 3 to
1449mm3 (we consider 106 cells as 1mm3 cells).
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In order to show the capability of the competitive model to interpret and
simulate the growth process of cancerous tumor , we have used the coefficient of
determination (R2) index to measure the accuracy of the model.

Table 1. The mean value (among all mice) of coefficient of de-
termination (R2) for different growth models.
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Model

R2 0.96 0.97 0.98 0.96 0.93 0.97 0.97 0.96 0.64 0.98

In [1], for the same dataset, the mean value (for all mice) of R2 index has been
calculated in different models, which have been presented in Table 1 along with
the related value in the competitive model. As it can be seen, the competitive
model and the generalized logistic model have the best performance in simulating
the cancerous tumor growth.

These results indicate the good structure flexibility, which have provided the
adaptation of competitive model with the real data.
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Abstract. In this paper, the three towers problem has been studied and a

new definition of this problem has been proposed. With this new definition,
an extension of the problem to n-towers is given. Finally, by means of sim-
ulation, the correctness of some derived formulas for some specific problems
has been verified.
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1. Introduction

The three towers problem is a rather old subject in probability theory, which due
to its nature can be applied in many disciplines in science. This problem has been
represented by Lennart Rade in 1972 as in the following [5]:

“We have three piles of chips, named A, B, and C, containing a, b, and c
chips, respectively. We randomly select a pile (say A), then we randomly select
another pile from the rest (say B) and we move one chip from A to B, in each
round. We continue the rounds till one of the piles gets empty. This problem
can be considered as an extension of the classical gambler’s ruin problem. The
objective is to find the expected duration of the rounds”.

Twenty years after presentation of this problem, Arthur Engel, discovered a
solution for it by turning the problem into a recursive equation. According to the
procedure performed in [3], if f(a, b, c) is the expected number of rounds, when
the number of chips in the piles are a, b and c respectively, then

f(a, b, c) = 1 +
1

6

∑
(x,y,z)∈S

f(x, y, z),(1)

where S = {(a, b + 1, c − 1), (a, b − 1, c + 1), (a + 1, b, c − 1), (a − 1, b, c + 1), (a +
1, b− 1, c), (a− 1, b+ 1, c)} and there exist boundary conditions of

f(a, b, 0) = f(a, 0, c) = f(0, b, c) = 0.(2)
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If we consider T as the duration for this process, by solving (1) and considering
the boundary conditions stated in (2), the expected duration of the rounds will be
obtained by the following:

E(T ) =
3abc

a+ b+ c
.

Recently, the authors of [1] have calculated the variance of the number of rounds,
by using a similar method. In fact, the variance of the number of rounds when
the initial amounts of the piles are a, b, and c chips respectively, is calculated as,

Var(T ) =
3abc

2(a+ b+ c)

(
ab+ ac+ bc− 1− 6abc

a+ b+ c

)
.

In this paper, first, we give a different definition of this problem and by provid-
ing a relation between this problem and the 3-player gambler’s ruin problem, the
expected number of rounds will be investigated. Then in the following sections,
some extensions of the problem will be presented and studied.

2. A New Definition of Three Towers Problem

In this section we give a different definition of the three towers problem, which
can be applied in other branches of sciences, as in the following:

There are three piles of chips called A, B, and C. In each round, one of the
piles gets selected with the probability of 1

3 and two chips from the other two (one
from each) will be moved over to the former pile. These rounds continue till at
least one of the piles gets empty. Note that in this variation, two piles can get
empty simultaneously. This problem can be considered similar to the three players
gamblers ruin problem, which has been studied by Sandell in [8]. Let Zi(n) be
the amount of chips for pile i in round n, where i = 1, 2, 3 and n = 1, 2, 3, . . .. By
defining,

Sn = Z1(n)Z2(n)Z3(n) + n(a+ b+ c− 2),(3)

and considering, σn = σ [Zi(k); i = 1, 2, 3, k = 0, 1, 2, . . . , n], to be the σ−algebra
generated by the variables Zi(k) up to the round n, Sandell has shown that

• {Sn, σn} is a martingale,
• The optional stopping theorem holds for {Sn} and T , thus we have
E(ST ) = E(S0).

On the other hand, if T denotes the first time that at least one of the piles gets
empty, according to (3), ST = T (a+ b+ c− 2), thus E(ST ) = (a+ b+ c− 2)E(T )
and S0 = abc. Consequently, for this situation, it yields that

E(T ) =
abc

a+ b+ c− 2
.(4)

3. The n-Towers Problem

By the definition presented in the pervious section, an extension of three towers
problem, named the n-towers problem, can be proposed. In this extension, there
exist n piles with c1, c2, . . . , cn chips as amountes, respectively. In each round one
of the piles such as pile i will be selected with the probability of 1

n , and from the
rest of n − 1 piles, n − 1 chips (1 from each) will be moved over to pile i. These
rounds continue till at least one of the piles gets empty.
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This problem can be considered equivalent to symmetric n-player gambler’s
ruin problem which is studied by Cho [2]. He derived a formula for E(T ), but his
formula was not in a simple closed-form and to be evaluated, requires the calcula-
tion of the probabilities of the various possible ruin states at time T , divided into
appropriate symmetry classes. Nevertheless, the n-player gambler’s ruin problem
studied in [4] and [6] can be considered equal to the n-towers problem when the
amount of chips are the same for all the piles. In the following, we study those.

3.1. Every Piles Has d Chips as Amount, and 1 ≤ d ≤ n+ 1. Now
we study the n-towers problem when the initial amount of every pile is d chips,
1 ≤ d ≤ n+1 . In each round one of the piles, say pile i, will be selected with the
probability of pi (not necessarily pi =

1
n ), and receives one chip from every other

pile, which is n− 1 chips in total, for i = 1, 2, . . . , n, 0 < pi < 1, p1 + · · ·+ pn = p
and 0 < p ≤ 1. Also in each round, there is a chance for a tie with the probability
r = 1 − p, (0 ≤ r < 1), and in this case no chip will be relocated. Obviously,
when r = 0 there is no tie. This process continues till at least one of the piles gets
empty. The n-player gambler’s ruin problem corresponding to the above case has
been studied in [4]. According to this paper, if Ei is the event of pile i getting
empty at the end of the process, then for m < n:

P (Ei1 ∩ Ei2 ∩ · · · ∩ Eim) =


(p−pi1−pi2−···−pim )n

pn−α , d = n,
(p−pi1−pi2−···−pim )n+1

p(pn−β) , d = n+ 1,
(p−pi1−···−pim )d

pd
, 1 ≤ d ≤ n− 1,

in which, p = p1 + p2 + · · ·+ pn, α = n!p1p2 . . . pn and β = n+1
2 α.

Also the expected duration of the this process is,

E(T ) =



npn−1

pn − α
, d = n,

npn−1

pn − β
+

1

p
, d = n+ 1,

d

p
, 1 ≤ d ≤ n− 1.

(5)

Another point that can be obtained from this paper, is the independence of the
events of “which pile gets emptied” and “the duration of the process”.

Recently Sabzevari has studied the n-player gambler’s ruin problem again [7].
According to his findings, variance of the duration of this process can be obtained
as the following,

Var(T ) =



n2αpn−2

(pn − α)2
+
n(1− p)pn−2

pn − α
, d = n,

n2βpn−2

(pn − β)2
+
n(1− p)pn−2

pn − β
+

1− p
p2

, d = n+ 1,

d(1− p)
p2

, 1 ≤ d ≤ n− 1.

One interesting points expressed in this paper said, if there is no chance of
tie, when the number of piles approaches infinity, the variance of the number of
rounds for finishing the game approaches zero. In fact, if the number of piles

531



M. Sabzevari, N. Noroozi and H. Ghorbani

becomes large, the random variable T will be transformed into a degenerated
random variable. In fact, when n→∞,

• T ∼ n if d = n,
• T ∼ n+ 1 if d = n+ 1,
• T ∼ d if 1 ≤ d ≤ n− 1.

But when there is chance of tie in the problem, the situation is totally different. If
r is fixed and independent of n, then for n→∞, Var(T ) approaches infinity too.

3.2. Every Piles Has the Amount of n + c Chips, and 1 < c ≤ n. In
this section we study the n-towers problem when the amount of each tower is n+c
chips, (1 < c ≤ n). In each round, one of the towers, say tower i, will be selected
with the probability of pi and it receives n− 1 chips from the other n− 1 towers,
one from each, where i = 1, . . . , n, 0 < pi < 1, and p1 + p2 + · · ·+ pn = 1. There
is no chance of ties in this problem. In fact the corresponding n-players gamblers
ruin problem has not been studied so far when there is a chance of ties.

According to findings of [6], there is no closed-form formula for calculating
the expected duration for this process, and for its calculation, one should consider
some factors such as the number of equivalence classes of piles amountes in different
rounds. For example, when the initial amount of the towers are the same and equal
to n+ 2 chips:

E(T ) = 2 + n

(
1 + α(n+ 2)(n+ 1)(3− α+ p21 + · · ·+ p2n)

4!△

)
,(6)

where α = n!p1 . . . pn and

△ = 1− α(n2 + 3n+ 6)

8
+
α2(n+ 1)(n+ 2)

4!
.

Also for the initial amount of n+3 chips for each tower, the expected of duration
of the process has been studied as a matrix relation.

One of the interesting points which have been studied in this paper is the
observation that when the initial amount of each tower is n+2 chips, which tower
gets empty by the end of the process is not independent of the duration of the
process, and this is in contrast with the previous case (amount of n+ 1 chips for
each tower).

4. Simulations

In this section, the following specific games have been considered. The aim here
is to verify the correctness of the derived formulas in the pervious sections by
simulation.

i) The three towers problem, see Section 2, with three piles containing five,
seven, and eight chips, respectively. Using Eq. (4) yields E(T ) = 15.556.

ii) The six towers problem, see Section 3, when the initial amount of every
pile is seven chips, with r = 1

26 , and

pi =
1

2i
, i = 1, 2, . . . , 6.

Using Eq. (5) yields E(T ) = 7.119.
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iii) The six towers problem, see Section 3, when the initial amount of every
pile is eight chips, with

pi =
1

2i
, i = 1, 2, . . . , 5, p6 =

1

25
.

Using Eq. (6) yields E(T ) = 8.032.

Using Maple12, these three games were simulated N times. Table 1 shows the
expected duration of these simulations. As expected, by increasing N , the number
of simulated games, a good agreement between theoretical values of the expected
rounds duration and their empirical counterparts are observed.

Table 1. The expected duration of running three mentioned
games N times obtained by simulation.

N game (i) game (ii) game (iii)

50 17.800 7.100 8.120
100 18.510 7.110 8.060
500 16.100 7.102 8.048
1000 16.107 7.104 8.036
5000 15.736 7.118 8.031
10000 15.634 7.125 8.033
50000 15.573 7.121 8.031
100000 15.572 7.120 8.030
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Abstract. In this paper, Zero and One inflated Poisson lindley distribution
is introduced and some basic properties of it are obtained. The first order in-
teger valued autoregressive model with zero and one inflated Poisson Lindley
distributed innovations is presented. Some basic properties of this model are

obtained and using the conditional maximum likelihood (CML) estimation
method the model is fitted to the set of real data and by AIC and BIC criteria
the goodness of fitting this model is demonstrated.
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1. Introduction

Time series models are one of the popular tools to analysis of time dependent
data. For the data which is obtained from a random counting process, the useful
time series is called an integer-valued time series. These time series are applied in
different fields, such as economics, social sciences and life insurance.

At the first time, the integer valued autoregressive process of order one, which
is called INAR(1) in brief, were introduced by Al-Osh and Al-Zaid (1987) [1]. In
1992, they introduced the INAR(1) model and presented some detailed discussion
for the case in which the marginal distribution of the process is Geometric [2].
After that, many authors presented new integer valued processes and reviewed
their properties.

Before 2010, almost all integer-valued time series which is introduced, used
to model a non-negative and, consequently, non-symmetric counting observations.
One of the major drawbacks of these models was that they could not be used to
model both types of correlations (positive and negative). In 2010, Freeland in-
troduced the correct symmetric stationary process, called the “true integer-valued
autoregressive model of the first lag”, which had a negative correlation, as well
[4]. In 2019, Bourguignon et al. had extended the INAR(1) process with Poisson
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innovations for modeling integer-valued time series with equidispersion, underdis-
persion, and overdispersion [3].

The Poisson-Lindley (PL) distribution, which is a compound Poisson distribu-
tion, has many properties which is useful for a good fit in some practical situations,
Mohammadpour et al. (2018) considered this distribution as the marginal distri-
bution of an INAR(1) process [6]. Along with introducing the Poisson-Lindley
INAR(1) process, they established some of its properties.

In modeling count data there are some practical problems, where the number
of zeros or ones exceeds or is less than a reference level and in this situations the
common integer valued time series do not have an adequate fit. This shortcomming
resulted in introducing zero-modified or zero and one modified distributed time
series. Jazi et al. (2012a) studied the first order integer-valued AR processes
with zero-inflated poisson innovations using binomial thinning operator [5]. X.
Qi, et al. (2018) introduced an INAR(1) model with zero and one inflated Poisson
distributed innovations [9], also M. Sharafi, et al. (2020) introduced an INAR(1)
models with zero modified Poisson lindley innovations and denoted that this model
is good for some real data [7]. Since the models based on PL distribution are useful
for modeling real data, in some practical problems, where the number of zeros and
ones exceeds, in this paper we are going to introduce a zero and one inflated
INAR(1) Process with Poisson-Lindley distributed innovations.

The sections of the paper is organized as follows. In Section 1, we introduce the
zero and one inflated Poisson lindley distribution and study some basic properties
of it. In Section 2, we have introduced the INAR(1) model with zero and one
inflated Poisson lindley innovations and explain about some basic properties of it.
Finally, in Section 3, using CML estimation method we have fitted this model to
the real data and have denoted the goodness of this model.

2. Preliminaries

In this section we introduce zero and one inflated Poisson lindley distribution and
obtain some basic properties of it which are useful for the next sections.

Definition 2.1. The random variable Y is said to have zero and one inflated
Poisson lindley distribution, denoted by Y ∼ ZOIPL(ϕ0, ϕ1, θ) if its probability
mass function is

P (Y = k) =


ϕ0 + (1− ϕ0 − ϕ1) θ

2(θ+2)
(1+θ)3 , if k = 0,

ϕ1 + (1− ϕ0 − ϕ1) θ
2(θ+3)
(1+θ)4 , if k = 1,

(1− ϕ0 − ϕ1) θ
2(θ+2+k)
(1+θ)k+3 , if k = 2, 3, . . . ,

where 0 ≤ ϕ0, ϕ1 < 1 and θ > 0.

In the next theorem some basic properties of ZOIPL random variable are
obtained.

Theorem 2.2. Let Y be the ZOIPL random variable which is defined in the
Definition 2.1. Then

536



ZOIPLINAR(1) MODELS

1) the cumulative distribution function of Y is

P (Y ≤ k) =


0, if k < 0,

ϕ0 + (1− ϕ0 − ϕ1) θ
2(θ+2)
(1+θ)3 , if 0 ≤ k < 1,

ϕ0 + ϕ1 + (1− ϕ0 − ϕ1)(1− θ2+([k]+3)θ+1
(1+θ)[k]+3 ), if k ≥ 1,

2) E(Y ) = ϕ1 + ϕ2
θ+2
θ(1+θ) , where ϕ2 = 1− ϕ0 − ϕ1,

3) the variance of Y is obtained as

V ar(Y ) = ϕ1(1− ϕ1) + ϕ2
θ3 + 5θ2 + 10θ + 6

θ2(1 + θ)2
− ϕ22

(θ + 2)2

θ2(1 + θ)2
− 2ϕ1ϕ2

θ + 2

θ(θ + 1)
,

4) the probability generating function of Y is

ψY (s) = ϕ0 + ϕ1s+ (1− ϕ0 − ϕ1)
θ2(2 + θ − s)

(1 + θ)(1 + θ − s)2

= ϕ(sp+ 1− p) + (1− ϕ) θ2(2 + θ − s)
(1 + θ)(1 + θ − s)2

,

where ϕ = ϕ0 + ϕ1 and p = ϕ1

ϕ0+ϕ1
.

We omitted the proof of this theorem because of page limitation. In the next
section we introduce the INAR(1) model with ZOIPL distributed innovations.

3. The INAR(1) Model with Zero and One Inflated Poisson Lindley
Distributed Innovations

In this section we introduce an INAR(1) process with zero and one inflated Poisson
Lindely distributed innovations which is denoted by ZOPLINAR(1) and discuss
about some basic properties of it. To do this, at first we present the definition of
binomial thining operator introduced by Steutel and Van Harn (1979) [8].

Definition 3.1. (Binomial thinning operator) Let X be an arbitrary non-
negative integer-valued random variable. Also, let Yi be a sequence of independent
and identically distributed Bernoulli random variables with success probability α.
Then, for any α ∈ (0, 1), the binomial thinning operator “◦” is defined as

α ◦X =
X∑
i=1

Yi.

Moreover, for every i, Yi is considered to be independent of X.

In this paper, we are going to introduce a new INAR(1) process based on the
above thining operator.

Definition 3.2. Suppose that {Xt}t∈N is the INAR(1) process defined by

Xt = α ◦Xt−1 + ϵt, t = 1, 2, . . . ,(1)

where α ∈ (0, 1), ◦ is the binomial thinning operator. This process is called
ZOIPLINAR(1) process if the sequence {ϵt}∞t=0 is a sequence of iid ZOIPL random
variables, where ϵt is independent of Xt−1 for all t ≥ 1.
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This model which is based on ZOIPL distribution are applied for modeling real
data in some practical problems, where the number of zeros and ones are greater
than the number which is expected from the Poisson Lindley distribution. In the
next theorem we study some basic properties of the ZOIPLINAR(1) processes. In
this part we are omitted the proof too.

Theorem 3.3. Let {Xt} be the ZOIPLINAR(1) process defined by (1). Then

1) E(Xt|Xt−1) = αXt−1 + E(ϵt),
2) V ar(Xt|Xt−1) = α(1− α)Xt−1 + V ar(ϵt),

3) E(Xt) =
E(ϵt)
1−α ,

4) V ar(Xt) =
αE(ϵt)+V ar(ϵt)

1−α2 ,

5) Corr(Xt, Xt−1) = α,
6) the probability generating function of Xt is

ψXt(s) = ψXt−1(1− α+ αs)ψϵt(s),

where ψϵt(s) is introduced in the Theorem 2.2,
7) the transition probabilities are

Pij = P (Xt = j|Xt−1 = i) =

min(i,j)∑
k=0

(
i

k

)
αk(1− α)i−kP (ϵt = k),(2)

where P (ϵt = k) = ϕ0I{0}(k) + ϕ1I{1}(k) + (1− ϕ0 − ϕ1) θ
2(θ+2+k)
(1+θ)k+3 ,

8) the marginal and joint probability function of Xt is as follows:

Pj = P (Xt = j) =
∞∑
i=0

PijPi,

where

f(X1,...,Xn)(x1, . . . , xn) = Px1

n−1∏
i=1

Pxixi+1

= Px1

n−1∏
i=1

min(xi,xi+1)∑
k=0

(
xi
k

)
αk(1− α)xi−kP (ϵt = xi+1 − k)

 .
About the dispersion of the model we have the following remark.

Remark 3.4. The variance of Xt is bigger than the mean of Xt if and only if
the variance of ϵt is bigger than the mean of ϵt.

4. Conditional Maximum Likelihood Estimation

In the study of integer-valued time series, different estimation methods are applied.
In this section, we are going to estimate the parameters of the ZOIPLINAR(1)
model using conditional maximum likelihood (CML) estimation methods.

By maximizing the following conditional log-likelihood function over the pa-
rameter space, the conditional maximum likelihood estimator of λ = (α, θ, ϕ0, ϕ1)
is obtained.

l(λ) =
n∑
t=2

logP (Xt = j | Xt−1 = i),
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where P (Xt = j | Xt−1 = i) = Pij is the transition probabilities, presented in
Eq. (2). Since there is no closed form for the CML estimates, the maximizers are
achieved using numerical methods.

5. Application

In this section the data set of the monthly number of cases of polio reported
by the U.S. Centers for Disease Control for the years 1970 up to 1983 is consid-
ered. There is 168 observations in this data set for which empirical mean and
variance of them are 1.33 and 3.53, respectively. There are 64 zeros, which is
37.87 percent, and 55 ones, which is 32.74 percent of the observations. Using
conditional maximum likelihood estimators (CMLE) we are fitted three models
INAR(1), ZOINAR(1)(INAR(1) model with zero and one inflated Poisson dis-
tributed innovations) and ZOIPLINAR(1) (INAR(1) model with zero and one
inflated Poisson lindley distributed innovations) to the data and as can be seen in
the table below, the ZOIPLINAR(1) model has the best fitness. Because of page
limitation in this abstract, we eliminated more details of this part and summaries
our results in the next table.

Table 1. The CMLE of the parameters, AIC and BIC criteria
for the Polio data.

Model CMLE AIC BIC

INAR(1) λ̂=1.100 582.1259 588.3738
α̂=0.1848

λ̂ =2.8967

ZOINAR(1) ϕ̂0=0.4011 544.3156 556.8115

ϕ̂1=0.2960
α̂=0.1285

ϕ̂0=0.1322

ZOIPLINAR(1) ϕ̂1=0.1466 531.1109 533.3588
α̂=0.0889

θ̂=1.0242
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Abstract. Based on progressively first-failure censored data, the problem

of estimating parameters as well as reliability and hazard rate functions for
a class of an exponential distribution is considered. The classic and Bayes
approaches are used to estimate the parameters. The maximum likelihood

estimates and exact confidence interval as well as exact confidence region
for parameters are developed based on this censoring scheme. Also, when
the parameters have discrete and continuous priors, several Bayes estimators
with respect to squared error and linear-exponential (Linex) loss functions are

derived. Finally, a real data analysis is presented to illustrate the methods
of inference developed in this paper.
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1. Introduction

In many life test studies, it is common that the lifetimes of the test units may not
be able to record exactly. Censoring is very common in reliability data analysis,
in the past several decades. It usually applies when the exact lifetimes are known
for only a portion of the products and the remainder of the lifetimes has only
partial information. In some cases, the lifetime of products is quite long and so
the experimental time of the progressive type-II censoring scheme can still be too
long. In order to give an efficient experiment, the other test methods are proposed
by statisticians, where one of them is the progressive first-failure censoring scheme
(See [10]). It can be described as follows.

Suppose that n independent groups with k items within each group are put
on a life test and experimenter decides beforehand the quantity m, the number
of units to be failed. At the time of the first failure, Xr

1;m,n,k, r1 groups and
the group in which the first failure is observed are randomly removed. r2 groups
and the group with observed failure are randomly removed as soon as the second
failure, X r

2;m,n,k, has occurred. The procedure is continued until all rm groups
and the group with observed failure are removed at the time of the m-th failure,
Xr
m;m:k:n. Then Xr

1;m,n,k < Xr
2;m,n,k < · · · < Xr

m;m,n,k are called progressively

first-failure censored order statistics with the censoring scheme r = (r1, r2, . . . , rm).
To simplify the notation, we will use Xi in place of Xr

i;m,n,k. For a review of recent
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developments and further discussions as well as applications of the progressive
first-failure censoring scheme, we refer to [3, 6] and [8].

Suppose the lifetime random variable T has a continuous distribution with
two parameters as α and λ, and with the pdf and cdf as

f(t;α, λ) = αψ(t;λ) exp{−αΨ(t;λ)}, 0 < t <∞,(1)

F (t;α, λ) = 1− exp{−αΨ(t;λ)},(2)

where ψ(t;λ) = ∂Ψ(t;λ)
∂t , Ψ(t;λ) is increasing in t with Ψ(0;λ) = 0 and Ψ(∞;λ) =

∞. The corresponding reliability and hazard rate functions become:

R(t) = exp{−αΨ(t;λ)}, h(t) = αψ(t;λ),(3)

respectively. This general form for lifetime model including some well-known and
useful models such as Burr XII distribution with Ψ(t;λ) = ln(1 + tλ), Pareto dis-
tribution with Ψ(t;λ) = ln t − lnλ, t > λ, Gompertz distribution with Ψ(t;λ) =
eλt−1
λ , Weibull distribution with Ψ(t;λ) = tλ, two parameters Rayleigh distri-

bution with Ψ(t;λ) = (t − λ)2, t > λ, two parameters bathtub-shaped lifetime

distribution (See [4]) with Ψ(t;λ) = et
λ − 1 and so on.

2. Classical Estimation

2.1. Point Estimation. Let X = (X1, X2, . . . , Xm) be a progressive first-
failure censored sample from (1), with censoring scheme (r1, r2, . . . , rm). The
likelihood function is given by

L(α, λ;x) = Akmαm exp
{
− αk

m∑
i=1

(ri + 1)Ψ(xi;λ)
} m∏
i=1

ψ(xi;λ),(4)

where A = n(n − r1 − 1)(n − r1 − r2 − 2) · · · (n − r1 − r2 − · · · − rm−1 −m + 1).
By setting the derivatives of the log-likelihood function with respective to α or λ

to zero, the MLE of λ, say λ̂, is the solution to the following likelihood equation

m∑
i=1

(∂/∂λ)ψ(xi;λ)

ψ(xi;λ)
=
m
∑m
i=1(ri + 1)(∂/∂λ)Ψ(xi;λ)∑m
i=1(ri + 1)Ψ(xi;λ)

,(5)

and the MLE of α, say α̂, can be obtained as

α̂ =
m

k
∑m
i=1(ri + 1)Ψ(xi; λ̂)

.(6)

It is not easy to solve the Eq. (5) analytically in order to achieve the MLE
of λ. Some numerical methods can be employed such as the Newton-Raphson
method. Finally, using the invariance property, the MLEs of R(t) and h(t) are
respectively obtained as

R̂(t) = exp{−α̂Ψ(t; λ̂)}, and ĥ(t) = α̂ψ(t; λ̂).
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2.2. Interval Estimation. Let Yi = kαΨ(Xi;λ) for i = 1, 2, . . . ,m. It can
be seen that Y1 < Y2 < · · · < Ym, are the progressive first-failure censored order
statistics from an exponential distribution with mean 1. Consider Z1 = nY1 and

Zi = (n −
∑i−1
k=1 rk − i + 1)(Yi − Yi−1) for i = 2, 3, . . . ,m. The generalized spac-

ings Z1, Z2, . . . , Zm are independent and identically distributed as an exponential
distribution with mean 1 (See [1, p.17-18]). Hence, for j = 1, 2, . . . ,m− 1,

τj = 2

j∑
i=1

Zi = 2kα[

j∑
i=1

(ri + 1)Ψ(Xi;λ) +
m∑

i=j+1

(ri + 1)Ψ(Xj , λ)],(7)

γj = 2

m∑
i=j+1

Zi = 2kα

m∑
i=j+1

(ri + 1)[Ψ(Xi;λ)−Ψ(Xj ;λ)],(8)

are independently Chi-squared distributed with 2j and 2(m−j) degrees of freedom,
respectively. We consider the following pivotal quantities:

ηj =
j

m− j
.

∑m
i=j+1(ri + 1)(Ψ(Xi;λ)−Ψ(Xj ;λ))∑j

i=1(ri + 1)Ψ(Xi;λ) +
∑m

i=j+1(ri + 1)Ψ(Xj ;λ)
, j = 1, 2, . . . ,m− 1,(9)

ξ = 2kα
m∑
i=1

(ri + 1)Ψ(Xi;λ).(10)

It is clearly that ηj has a F distribution with 2(m−j) and 2j degrees of freedom
and ξ has a Chi-squared distribution with 2m degree of freedom. Meanwhile, ηj
and ξ are independent. To construct an exact confidence interval for λ and the
joint confidence region for the parameters α and λ, we need the following lemma.

Lemma 2.1. Suppose that for x1 < x2 < · · · < xm,

wj(λ) =

∑m
i=j+1(ri + 1)(Ψ(xi;λ)−Ψ(xj ;λ))∑j

i=1(ri + 1)Ψ(xi;λ) +
∑m

i=j+1(ri + 1)Ψ(xj ;λ)
, j = 1, 2, . . . ,m− 1.(11)

Then wj(λ) is strictly increasing in λ, if function Ψ′(t;λ)
Ψ(t;λ) is strictly increasing in

t, where Ψ′(t;λ) is (∂/∂λ)Ψ(t;λ).

Remark 2.2. For all of well-known lifetime distributions mentioned in Section
1, it can be shown that Ψ′(t;λ)

Ψ(t;λ) is strictly increasing in t. For instance, when

Ψ(t;λ) = ln(1 + tλ), it turns out to be Burr XII distribution and see [9].

Let Fv1,v2(p) is the percentile of F distribution with v1 and v2 degrees of
freedom with the right-tail probability p.

Theorem 2.3. Suppose that X = (X1, X2, . . . , Xm) be a progressive first-

failure censored sample from (1), with censoring scheme (r1, r2, . . . , rm), Ψ′(t;λ)
Ψ(t;λ) is

strictly increasing in t, and

Wj(λ) =
j

m− j
wj(λ), j = 1, 2, . . . ,m− 1,(12)

where wj(λ) is defined in (11). Then, for any 0 < ν < 1 and j = 1, 2, . . . ,m− 1,
when F2(m−j),2j(

ν
2 ) and F2(m−j),2j(1− ν

2 ) are in the range of the function Wj(λ)

φj
(
X, F2(m−j),2j(1−

ν

2
)
)
< λ < φj

(
X, F2(m−j),2j(

ν

2
)
)
,(13)
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is a 100(1− ν)% confidence interval for λ, where φj(X, u) is the solution of λ for
equation Wj(λ) = u.

Theorem 2.4. Suppose that X = (X1, X2, . . . , Xm) be a progressive first-

failure censored sample from (1), with censoring scheme (r1, r2, . . . , rm), Ψ′(t;λ)
Ψ(t;λ) is

strictly increasing in t. Then, for any 0 < ν < 1 and j = 1, 2, . . . ,m − 1, when

F2(m−j),2j(
1+

√
1−ν
2 ) and F2(m−j),2j(

1−
√
1−ν
2 )are in the range of function Wj(λ), a

100(1− ν)% confidence region for (α, λ) is given by
φj
(
X, F2(m−j),2j(

1+
√
1−ν
2 )

)
< λ < φj

(
X, F2(m−j),2j(

1−
√
1−ν
2 )

)
,

χ2
2m( 1+

√
1−ν
2 )

2k
∑m

i=1(ri+1)Ψ(xi;λ)
< α <

χ2
2m( 1−

√
1−ν
2 )

2k
∑m

i=1(ri+1)Ψ(xi;λ)
,

(14)

where χ2
v1(p) is the percentile of Chi-squared distribution with v1 degree of freedom

with the right-tail probability p and φj(X, u) is defined in Theorem 2.3.

3. Bayes Estimation

Now, we deal with the problem of estimating the parameters α and λ, as well as
reliability function R(t) and hazard rate function h(t) against different symmetric
and asymmetric loss functions. We assume that for j = 1, 2, . . . ,M, λ has a
discrete prior say,

P (λ = λj) = θj ,
M∑
j=1

θj = 1,(15)

while the conditional distribution of α given λj has a conjugate prior distribution,
with density

g(α|λj) = βj exp{−αβj}, α, βj > 0,(16)

where βj , j = 1, 2, . . . ,M, are hyper-parameters. Combining (4) and (16), the
conditional posterior of the parameter α, takes the form

π(α|x, λj) =
1

Γ(m+ 1)
cm+1
j αm exp{−αcj}, j = 1, 2, . . . ,M,(17)

where cj = k
∑m
i=1(ri + 1)Ψ(xi;λj) + βj . Also by applying (4), (15), (16) and the

discrete version of Bayes theorem, the marginal posterior distribution of λ can be
expressed as

pj = P (λ = λj |x) =
βjθjc

−(m+1)
j

∏m
i=1 ψ(xi;λj)∑M

j=1 βjθjc
−(m+1)
j

∏m
i=1 ψ(xi;λj)

, j = 1, 2, . . . ,M.(18)

Therefore, the Bayes estimators of α, λ,R(t), h(t) under the squared error loss
function are given respectively, by

α̂SB = (m+ 1)

M∑
j=1

pj
cj
, λ̂SB =

M∑
j=1

pjλj ,(19)

R̂SB(t) =

M∑
j=1

pj
[
1 +

Ψ(t;λj)

cj

]−(m+1)

, ĥSB(t) = (m+ 1)

M∑
j=1

pjψ(t;λj)

cj
.(20)
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For the loss function Linex, the Bayes estimators of α, λ, R(t) and h(t) are
respectively obtained as

α̂LB = −1

c
ln

[ M∑
j=1

pj

(
1 +

c

cj

)−(m+1)
]
, λ̂LB = −1

c
ln

[ M∑
j=1

pje
−cλj

]
,(21)

R̂LB(t) = −1

c
ln

[ M∑
j=1

∞∑
l=0

(−1)l

Γ(l + 1)
pjc

l
(
1 +

lΨ(t;λj)

cj

)−(m+1)
]
,(22)

ĥLB(t) = −1

c
ln

[ M∑
j=1

pj

(
1 +

cψ(t;λj)

cj

)−(m+1)
]
,(23)

where c ̸= 0 is the parameter of loss function Linex. When c is negative, un-
derestimation is more serious than overestimation and it is opposite for positive
c.

Example 3.1. (Real Data) In this example, we analyze a data set from [5],
which represents the number of 1000s of cycles to failure for electrical appliances in
a life test. The complete data have been used earlier by [7]. They showed that the
bathtub-shaped distribution is suitable to fitting the data. The cdf of the bathtub-

shaped distribution is form (2), where Ψ(t;λ) = et
λ − 1, t > 0. It can be shown

that Ψ′(t;λ)
Ψ(t;λ) , is strictly increasing in t (See [4]). The data are randomly grouped

Table 1. progressively first-failure censored sample of size 8 out of 20 groups.

i 1 2 3 4 5 6 7 8
xi 0.014 0.034 0.059 0.061 0.069 0.142 0.165 1.270
ri 4 0 3 0 0 2 3 0

into 20 groups with k = 3 items within each group. The progressively first-failure
censored sample is given in Table 1. For this example, 12 groups of failure times
are censored, and 8 first-failures are observed. By applying (13) and (14), the
95% exact confidence intervals (CI) for λ, confidence regions (CR) for (α, λ), are
obtained and the length of confidence intervals (LCI) and area for confidence

regions (ACR) are presented in Table 2, where A(λ) =
∑8
i=1(ri + 1)(ex

λ
i − 1).

From Table 2, it is observed that, the 95% optimal confidence interval for λ is

Table 2. The 95% confidence intervals and regions and their some prop-
erties for λ and (α, λ).

j CI CR LCI ACR
1 0.3933 < λ < 1.7034 0.3397 < λ < 1.8545 , 1.0114

A(λ)
< α < 5.2012

A(λ)
1.3101 1.3904

2 0.3694 < λ < 1.4175 0.3192 < λ < 1.5198 , 1.0114
A(λ)

< α < 5.2012
A(λ)

1.0481 1.0334

3 0.3538 < λ < 1.3167 0.3044 < λ < 1.4039 , 1.0114
A(λ)

< α < 5.2012
A(λ)

0.9629 0.9081

4 0.2317 < λ < 1.0946 0.1920 < λ < 1.1696 , 1.0114
A(λ)

< α < 5.2012
A(λ)

0.8629 0.6805

5 0.1391 < λ < 0.9320 0.1092 < λ < 1.0014 , 1.0114
A(λ)

< α < 5.2012
A(λ)

0.7929 0.5232

6 0.1302 < λ < 0.9750 0.0963 < λ < 1.0462 , 1.0114
A(λ)

< α < 5.2012
A(λ)

0.8448 0.5708

7 0.0212 < λ < 0.7932 0.0109 < λ < 0.8646 , 1.0114
A(λ)

< α < 5.2012
A(λ)

0.7720 0.4094
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(0.0212, 0.7932), and the optimal confidence region for (α, λ) is given by

0.0109 < λ < 0.8646 ,
1.0114

A(λ)
< α <

5.2012

A(λ)
,

and ACR =
∫ 0.8646

0.0109
4.1898
A(λ) dλ = 0.4094. Since there is no prior information about

α, to compute the Bayes estimates, we estimate the hyper-parameters βj , j =
1, 2, . . . , 8, using the maximum likelihood type-II method (See [2, p. 99]). The
values of βj and pj , for each given λj and θj , j = 1, 2, . . . , 8, are summarized in
Table 3. The MLEs as well as Bayes estimates of α, λ, reliability function R(t),
and hazard rate function h(t), for t = 0.5, are presented in Table 4.

Table 3. Prior information, hyper-parameter values and the posterior
probabilities.

j 1 2 3 4 5 6 7 8
λj 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75
θj 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125
βj 3.5605 3.1398 2.7814 2.4735 2.2073 1.9756 1.7727 1.5942
pj 0.0308 0.0549 0.0859 0.1206 0.1532 0.1778 0.1897 0.1871

Table 4. The ML and the Bayes estimates of α, λ,R(t) and h(t), with
t = 0.5, c = 1.

α̂ α̂SB α̂LB λ̂ λ̂SB λ̂LB

0.4800 0.4252 0.4132 0.7200 0.6268 0.6220

R̂(t) R̂SB(t) R̂LB(t) ĥ(t) ĥSB(t) ĥLB(t)
0.6697 0.6871 0.6833 0.7700 0.6584 0.6267

4. Conclusion

Lifetime studies are very important to assess the reliability of products. This
article investigates the problem of reliability analysis for a class of an exponen-
tial distribution based on progressive first failure censoring. Both classical and
Bayesian point estimations have been developed. Additionally, the exact confi-
dence intervals and regions respectively for λ and (α, λ), have been conducted. It
is noteworthy that many well-known and useful lifetime distributions which have
wide application in reliability theory as well as other related fields are involved in
this class.
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Abstract. In this paper, a class of test statistics is defined based on the
center-outward depth ranking to test the equality of mean vectors in multi-
variate paired data. The tests are implemented through the idea of permu-

tation tests that require no distributional assumption, except the symmetric
paired data joint distribution assumption. Therefore, the tests have broader
applicability than some of the existing tests. This class of test statistics is
very easy to compute for data in any practical dimension. This distinguishes

it from some of the other tests in the literature. The performance of the
proposed tests is evaluated using a Monte Carlo study. The results show that
the tests perform well comparing other procedures in the literature.

Keywords: Center-outward ranking, Depth function, Multivariate
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1. Introduction

Many experiments in agriculture, biology, medicine etc, are performed based on
the multivariate data. Therefore, analysis of the multivariate data is an impor-
tant subject in statistical science. In this paper, among the various inferences
for multivariate data, we’ll focus on the nonparametric tests for mean vectors of
the multivariate paired data. These tests are based on the center-outward ranks
generated by depth functions. There is a substantial literature for this problem.
Under the multivariate normality assumption, which is often difficult to justify in
practice, it is common to use Hotelling’s T 2 test [3]. In some cases, data may
demonstrate distributions other than multivariate normal, in these situations non-
parametric approaches can be suitable. Among many nonparametric tests have
been introduced on this problem, we can mention [1, 2] and [6].

Most of the univariate nonparametric methods are based on rank of data
points and they can be generalized to Rp if we have a ranking of data in Rp.
The halfspace depth function was introduced by Tukey in 1975 [7] for imagination
and ordering multivariate data. The different depth functions have been intro-
duced and the multivariate data order as center-outward based on them. This
center-outward ranking has been mostly applied in the multivariate nonparamet-
ric inference. Associated with a given distribution F on Rp, a depth function is

∗Speaker
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designed to provide a center-outward ordering of points x in Rp. Indeed, a notion
of data depth is used to measure centrality/outlyingness of a point with respect

to given data cloud or distribution. Let X = (X1, . . . , Xp)
T

be a random vector
on a probability space (Ω,F , P ) and F denote a distribution function correspond-
ing to P . Zuo and Serfling [8] provided a formal definition of statistical depth
function as a function D(., F ) : Rp → R satisfying the four properties including
affine invariance, maximised somewhere in the center of the distribution F , quasi-
concavity and vanishing at infinity. Various depth functions have been proposed
for ranking multivariate data, among which the more popular are Tukeys depth
[7], Mahalanobis’s depth [5], and simplicial depth [4].

In this paper, we introduce a test statistic based on center-outward depth
ranking in order to test the equality of mean vectors in the multivariate paired
data.

2. The Proposed Test

Let (Xi1, . . . , Xip)
T

and (Yi1, . . . , Yip)
T

are p-variate vectors of observations of
random vectors X and Y, respectively, from the i-th subject, i = 1, . . . , n. Xi and
Yi are paired as they come from the same subject. It is commonly assumed that
subjects are independent. Let the mean vector of the vector Wi = (XT

i ,Y
T
i )
T

be denoted by µW =
(
µTX ,µ

T
Y

)T
. It is assumed that the random vector W has

a distribution centrally symmetric about µW . We interest to test the hypothesis
equality of the mean vectors H0 : µX = µY against Ha : µX ̸= µY . Let Zi =

(Zi1, . . . , Zip)
T
, i = 1, . . . , n, be observations of p-variate vector Z = Y−X. Under

null hypothesis, the random vector Z has a distribution centrally symmetric about
vector 0.

First, the random vectors Z1, . . . , Zn are ordered based on depth function
D (, Fn), where Fn is the sample distribution function of Z1, . . . ,Zn. Let r (Z1) , . . . ,
r (Zn) be the center-outward ranks of Z1, . . . ,Zn, respectively. More precisely, for
a sample point Zi

r (Zi) = # {Zj : D (Zj , Fn) ≤ D (Zi, Fn) , j = 1, . . . , n} ,

is the center-outward rank of Zi with respect to the data cloud Z1,Z2, . . . ,Zn.
Now, define

Aj = {Zi : Zij ≥ 0, i = 1, . . . , n, j = 1, . . . , p} ,

Rj =
∑

Zi∈Aj

r (Zi), j = 1, . . . , p,

Mn = max(|2R1 −N |, . . . , |2Rp −N |).

The null hypothesis would be rejected if at least one of Rj ’s j = 1, . . . , n is
either sufficiently small or sufficiently large. It concludes that the larger values of
Mn,D is the stronger evidence against H0 and therefore the null hypothesis H0 is
rejected for large values of Mn,D. To determine when Mn is large enough to reject
H0, we need to derive the null distribution of Mn. Define

PM = pHo (Mn,D ≥Mo) ,(1)
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whereMo is the observed value ofMn,D. It seems that the asymptotic distribution
of Mn will not accessible. Alternatively, we apply Fishers permutation test to
determine the following p-value and complete our test procedure.

2.1. Permutation Method. We apply a permutation procedure to obtain
reference distribution forMn,D and to estimate its finite-sample p-value. Note that
an assumption behind a permutation test is that the observations are exchangeable
under the null hypothesis. We first discuss how the framework is set up to satisfy
this requirement and then describe the proposed permutation procedure. Define
for i = 1, . . . , n

Wi =


(
XT
i ,Y

T
i ,
)T

, if δi = 1,(
YT
i ,X

T
i ,
)T

, if δi = −1,

where random variable δi takes values 1 and −1 with probability 1/2. Under the

null distribution, we have Z
d
=−Z. Then, for each permuted sample W1, . . . ,Wn,

any permutation of Z is equal in distribution with itself. Moreover, the test sta-
tistics Mn,D depends only on Zi’s, i = 1, . . . , n. It concludes that, under the null
distribution, the distribution of Mn,D is invariant to any permutation.

Now, Fishers permutation test to approximate the p-value defined in (1) is ap-
plied as follows. Test statisticsMn,D is computed for B permutation of Z1, . . . ,Zn
that B is sufficiently large and any prmutation randomly is selected (if n is not
too large, for any permutation we compute test statistics). Under H0, the p-value
based on Mn,D can be approximated by

PM,B =
1

B

B∑
i=1

I
(
M∗
n,i ≥Mo

)
,

where M∗
n,i, i = 1, . . . , B and Mo are the observed values of Mn,D based on ith

permutation and the original data, respectively.

3. Simulation Study

Monte Carlo samples were generated to evaluate the performance of the proposed
test procedure, including the size (i.e., type I error probability) and power of the
tests. We compare the proposed tests to their counterparts T 2 Hotelling test which
is derived under the assumption that all the data are normally distributed and two
nonparametric tests including the test due to [2] computed with Wilcoxon score
function that denoted by HPn and the signed-rank test due to [6], MRn. The
proposed test statistic is calculated based on halfspace, simplicial and Mahalanobis
depth functions as Mn,MD, Mn,SD and Mn,HD, respectively. To investigate per-
formance under different true distributions, we considered multivariate normal
distributions and multivariate Cauchy distributions.

We simulated paired samples WT
i =

(
XT
i ,Y

T
i

)
, i = 1, . . . , n, from a (2p)-

variate distribution with mean vector µW and identity covariance matrix, where
Wi, i = 1, . . . , n, is either bivariate normal, or bivariate Cauchy. We let µW =(
µTX ,µ

T
Y

)T
with µX = 0 and µY = µY 1p for 1p being the p× 1 vector of 1s. We

generated 1000 Monte Carlo samples for each setup with n = 50. Moreover, the
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nominal level was set at 0.05 throughout. The empirical rejection probability of a
test was calculated as the proportion of rejections from 1000 replicates.

The empirical rejection probabilities have been provided in Table 1. Inspection
of Table 1 confirms that the performance of our test statistics is not aected by
dierent depth ranking. The empirical rejection probabilities corresponding to L =
0 represents the proportion of rejection under the null hypothesis. These results
demonstrate that all the tests would be accurate in estimating the nominal level.
Table 1 clearly shows that the proposed tests perform comparably to the Hotelling
T 2 test under the normal distribution, even though the former are completely
nonparametric and do not utilize the normality assumption. For bivariate Cauchy
distribution, Mn,MD, Mn,SD and Mn,HD tests outperform the Hotelling’s T 2 and
the nonparametric tests. Indeed, the Hotelling’s T 2 is sensitive to violations of
normality in data and the depth-based tests are moment-free approaches and thus
more suitable for testing location parameters not derived from moments.

Table 1. Empirical rejection probabilities for the bivariate nor-
mal and Cauchy distribution with µY = 0.15L and µY = 0.2L,
respectively.

Bivariate normal distribution Bivariate Cauchy distribution

L L
Test 0 1 2 3 0 1 2 3

T 2 0.052 0.246 0.719 0.998 0.041 0.105 0.183 0.251
HDn 0.052 0.210 0.712 0.972 0.052 0.198 0.312 0.630
MRn 0.055 0.266 0.674 0.942 0.053 0.266 0.655 0.911
Mn,MD 0.049 0.260 0.681 0.954 0.051 0.271 0.673 0.921
Mn,HD 0.054 0.266 0.674 0.942 0.050 0.274 0.682 0.952
Mn,LD 0.051 0.252 0.666 0.942 0.052 0.271 0.691 0.953
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Abstract. In this paper, we discuss the optimal step stress accelerated life

test plan under periodic inspection and Type I censoring. The exponential
distribution with a failure rate function that a log-quadratic function of stress
and the tampered failure rate model are considered. The asymptotic variance
of the maximum likelihood estimators of parameters is derived as an optimal-

ity criterion and the optimal stress change times are determined. A numerical
example will be given to illustrate the proposed inferential procedures.

Keywords: Asymptotic variance, Exponential distribution, Periodic
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1. Introduction

The life testing time under environment conditions may be very long and it is diffi-
cult for extremely reliable units to make life testing at use stress. The accelerated
life testings (ALTs) are used to overcome this problem. ALTs are done on greater
stresses than use stress and then ALTs quickly yield informations on test units. A
special class of the accelerated life testing, known as step-stress testing, allows the
experimenter to gradually increase the stress levels at some pre-fixed time points
during the experiment for maximal flexibility and adjustability. This model has
attracted great attention in the reliability literature. Since the stress-loading is
non-constant for the step-stress ALT (SSALT), an additional model to explain the
effect of changing stress is required. Tampered failure rate (TFR) model assumes
that a change in the stress has a multiplicative effect on the failure rate function
over the remaining life. In this paper TFR model has been used.

The lifetimes of test units can be examined continuously or intermittently in
the SSALT. The periodic inspection of life testing time is often used due to further
reduction in time and cost, on the other hand earlier studies assumed continuous
inspection. The data from periodic inspection consist of only the number of failures
in the inspection intervals.

Ahmad et al. [1] studied the statistical inference of model parameters and
optimum test plans on the design for periodic inspection under the constant stress
ALT. Moon [2] considered the estimation of model parameters and optimum plans
based on Type I censored data from three step stress ALT for exponential distri-
bution under the TFR model. Moon and Park [3] studied the optimum plan and
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the estimation of model parameters with Type I censoring under simple SSALT.
In this paper, the results of Moon and Park [3] are extended to the case of three
SSALT based on periodic inspection with type I censoring under the tampered
failure rate model.

In Section 2, the model and some necessary assumptions are described. In
Section 3, MLEs of the parameters and the optimum plan that minimizes the
asymptotic variance of the MLE of the mean lifetime at the use stress are obtained.
A numerical example is presented for the proposed inferential procedures in Section
4.

2. Model and Assumptions

Suppose that there are four level stresses y0 < y1 < y2 < y3, where y0 is the use
stress. In the presentation of our results and without loss of generality, xi =

yi−y0
y3−y

notation is used for i = 0, 1, 2, 3.
All test units n are simultaneously put on stress x1 and inspections are con-

ducted at pre-set times t11, t12, . . . , t1K(1), but if all units do not fail before time
t1K(1)(= τ1), the surviving units are subjected to the stronger stress x2 and ob-
served at pre-set times t21, t22, . . . , t2K(2), but if all units on stress x2 do not fail
before time t2K(2)(= τ2), the surviving units are subjected to the stronger stress
x3 and observed at pre-set times t31, t32, . . . , t3K(3) and surviving units at time
t3K(3)(= τc) are censored, where K(i) is the number of inspections at stress xi,
i = 1, 2, 3. At stress xi, the number of failures nij are recorded corresponding
pij , probability of failures in the interval (tij−1, tij ], i = 1, 2, 3, j = 1, 2, . . . ,K(i)
and pc = P (τc < T ), where t10 = τ0 = 0, τ1 = t20, τ2 = t30. Note that,

ni =
∑K(i)
j=1 nij for i = 1, 2, 3 and nc is the censored units at a censoring time τc

where nc = n− (n1 + n2 + n3).
Suppose that stress response relationship of each test unit has the log-quadratic

function with the stress variable xi, which is given by log θi = β1 + β2xi + β3x
2
i ,

i = 1, 2, 3, where β1, β2 and β3 are unknown model parameters. The number
of failed units nij , i = 1, 2, 3, j = 1, 2, . . . ,K(i) are used to estimate the model
parameters β1, β2 and β3, and then the model is extrapolated to make statistical
inferences under the use stress.

The probability distribution function f(t) for a test unit lifetime T at stress
xi, i = 1, 2, 3 is given by

f(t) =



1

θ1
exp

(
− t

θ1

)
, 0 ≤ t < τ1,

1

θ2
exp

(
− t− τ1

θ2
− τ1
θ1

)
, τ1 ≤ t < τ2,

1

θ3
exp

(
− t− τ2

θ3
− τ2 − τ1

θ2
− τ1
θ1

)
, τ2 ≤ t < τc.

3. Maximum Likelihood Estimators and Optimum Plan

In this section, MLEs of the model parameters β1, β2 and β3 are obtained by
Newton Rapshon method and the optimum plan for searching the optimal stress
change times τ1 and τ2, which minimize the asymptotic variance of the MLE of
the logarithm of the mean lifetime at the use stress x0. The likelihood function is
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given by

L ∝
3∏
i=1

K(i)∏
j=1

p
nij

ij p
nc
c ,

where pij = P (tij−1 < T < tij) = exp(−u(0)ij−1) − exp(−u(0)ij ) and Pc = P (T >

τc) = exp(−u(0)3K(3)) and

u
(m)
ij−1 = (tij−1 − τi−1)x

m
i exp (−β1 − β2xi − β3x2i )

+ (τi−1 − τi−2)x
m
i−1 exp (−β1 − β2xi−1 − β3x2i−1)

+ τi−2x
m
i−2 exp (−β1 − β2xi−2 − β3x2i−2),

u
(m)
ij = (tij − τi−1)x

m
i exp (−β1 − β2xi − β3x2i )

+ (τi−1 − τi−2)x
m
i−1 exp (−β1 − β2xi−1 − β3x2i−1)

+ τi−2x
m
i−2 exp (−β1 − β2xi−2 − β3x2i−2),

u
(m)
3K(3) = (τc − τ2)xm3 exp (−β1 − β2x3 − β2

3x
2
3)

+ (τ2 − τ1)xm2 exp (−β1 − β2x2 − β2
3x

2
2)

+ τ1x
m
1 exp (−β1 − β2x1 − β2

3x
2
2),

for i = 1, 2, 3, j = 1, 2, . . . ,K(i) and m = 0, 1, . . . , 4, where x0 = 0 and τ0 = 0.
Thus, the log likelihood function which is a function of unknown parameters

β1, β2 and β3 is given by as follows:

ℓ = logL(β1, β2, β3) ∝
3∑
i=1

K(i)∑
j=1

nij log pij + nc log pc.

The MLEs for the model parameters β1, β2 and β3 can be obtained by solving the
following equation:

∂ℓ

∂βk
=

3∑
i=1

K(i)∑
j=1

nij
1

pij

∂pc
∂βk

+ nc
1

pc

∂pc
∂βk

= 0,

for k = 1, 2, 3, where

∂pij
∂βk

= u
(k)
ij−1 exp(−u

(0)
ij−1)− u

(k)
ij exp(−u(0)ij ), i = 1, 2, 3, j = 1, 2, . . . ,K(i),

∂pc
∂βk

= u
(k)
3K(3) exp(−u

(0)
3K(3)).

The Fisher information matrix F is defined as F = (fkl), k, l = 1, 2, 3 and can
be obtained by taking the expected value of the second partial and mixed partial
derivatives of ℓ with respect to β1, β2 and β3 as follows:

∂2ℓ

∂β2
k

=
3∑

i=1

K(i)∑
j=1

nij

pij

[∂2pij
∂β2

k

− 1

pij
(
∂pij
∂βk

)2
]
+
nc

pc

[∂2pc
∂β2

k

− 1

pc
(
∂pc
∂βk

)2
]
,

∂2ℓ

∂βk∂βl
=

3∑
i=1

K(i)∑
j=1

nij

pij

[ ∂2pij
∂βk∂βl

− 1

pij
(
∂pij
∂βk

)(
∂pij
∂βl

)
]
+
nc

pc

[ ∂2pc
∂βk∂βl

− 1

pc
(
∂pij
∂βk

)(
∂pij
∂βl

)
]
.
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for k ̸= l = 1, 2, 3, where for i = 1, 2, 3,

∂2pij
∂β2

k

=
(
(u

(k)
ij−1)

2 − u(2k)ij−1

)
exp(−u(0)ij−1)−

(
(u

(k)
ij )2 − u(2k)ij

)
exp(−u(0)ij ),

∂2pij
∂βk∂βl

=
(
u
(k)
ij−1u

(l)
ij−1 − u

(k+l)
ij−1

)
exp(−u(0)ij−1)−

(
u
(k)
ij u

(l)
ij − u

(k+1)
ij

)
exp(−u(0)ij ),

∂2pc
∂β2

k

=
(
(u

(k)
3K(3))

2 − u(2k)3K(3)

)
exp(−u(0)3K(3)),

∂2pc
∂βk∂βl

=
(
u
(k)
3K(3)u

(l)
3K(3) − u

(k+l)
3K(3)

)
exp(−u(0)3K(3)).

The expected value of the second partial and mixed partial derivatives of ℓ
with respect to β1, β2 and β3 are given by

fkk = −E
(
∂2ℓ

∂β2
k

)
= n

[ 3∑
i=1

Qikk +Qckk
]
,

fkl = −E
(

∂2ℓ

∂βk∂βl

)
= n

[ 3∑
i=1

Qikl +Qckl
]
,

where for k, l = 1, 2, 3 and i = 1, 2, 3

Qikl =

K(i)∑
j=1

[ 1

pij
(
∂pij
∂βk

)(
∂pij
∂βl

)− ∂2pij
∂βk∂βl

]
,

Qckl =
1

pc
(
∂pc
∂βk

)(
∂pc
∂βl

)− ∂2pc
∂βk∂βl

,

The optimum plan for determining optimal stress change times τ1 and τ2 under

three SSALT is presented, which minimize the asymptotic variance of log θ̂0, MLE
of logarithm of mean lifetime at the use stress x0. The asymptotic covariance

matrix, V of β̂1, β̂2 and β̂3 is given by V = F−1. And the asymptotic variance of

log θ̂0 is given by

AV (log θ̂0) = (1, x0, x
2
0)V (1, x0, x

2
0)

′.(1)

Then the optimal change times τ∗1 and τ∗2 minimizing the AV (log θ̂0).

4. Examples

The data from periodic inspections in three SSALT consist of only the number
of failures in each inspection interval (tij−1, tij ], i = 1, 2, 3, j = 1, 2, . . . ,K(i),
where K(i) is the number of inspection in each stress level. In practice, to find
the optimal stress change times τ∗1 and τ∗2 , the parameters must be approximated
by experience, similar data or preliminary test.

It is assumed that the numbers of inspections on each stress are K(1) = 3,
K(2) = 2, K(3) = 1 and the probabilities of failure, pij in inspection intervals
(tij−1, tij ] , i = 1, 2, 3, j = 1, 2, . . . ,K(i) are p11 = 0.2, p12 = 0.15, p13 = 0.1 on
stress x1, p21 = 0.15, p22 = 0.15 on stress x2, p31 = 0.15 on stress x3, pc = 0.1
and three stress levels are x1 = 0.3, x2 = 0.6, x3 = 1.0, and model parameters are
β1 = 1.0, β2 = −2.0, β3 = −5.0, and the stress change times are τ1 = 0.56868,
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τ2 = 0.67539, τc = 0.67766. The optimal stress change times τ∗1 and τ∗2 minimizing

the AV (log θ̂0) in (1) were obtained as τ∗1 = 0.44869 and τ∗2 = 0.67677. MATLAB
software can be used to find the optimal points.

Now, the MLEs for model parameters β1, β2 and β3 using the optimal stress
change times τ∗1 and τ∗2 based on β1 = 1.0, β2 = −2.0 and β3 = −5.0 are obtained
for n = 40, n = 30 and n = 25 to examine the behavior of MLEs due to the sample
size change.

All test units are simultaneously put on stress x1 = 0.3 and inspections are
conducted three times at pre-set times t11 = 0.21226, t12 = 0.40977 and t13 = τ∗1 =
0.44869, but if all units do not fail before time τ∗1 , the surviving units are subjected
to a stronger stress x2 = 0.6 and also observed at specified times t21 = 0.61178,
t22 = τ2 = 0.67677, but if all units do not fail before time τ∗2 , the surviving units
are subjected to a stronger stress x3 = 1.0 and observed until censoring time.

For n = 40, the number of failed test units at each inspection interval (tij−1, tij ],
i = 1, 2, 3, j = 1, 2, . . . ,K(i) were n11 = 4, n12 = 9, n13 = 3 on stress x1, n21 = 17,
n22 = 6 on stress x2, n31 = 1 on stress x3 and the number of censoring units was
nc = 0, where t10 = 0, t20 = τ∗1 and t30 = τ∗2 . By Newton-Raphson method,

the MLEs of model parameters β1, β2 and β3 were obtained as β̂1 = 1.12180,

β̂2 = −1.96114 and β̂3 = −4.86936.
For n = 30, n11 = 5, n12 = 3, n13 = 4 on stress x1, n21 = 11, n22 = 6 on

stress x2, n31 = 1 on stress x3, nc = 0 and the MLEs of model parameters β1, β2
and β3 were β̂1 = 1.14961, β̂2 = −1.91964 and β̂3 = −4.86005.

For n = 25, n11 = 3, n12 = 8, n13 = 0 on stress x1, n21 = 9, n22 = 3 on stress
x2, n31 = 2 on stress x3, nc = 0 and the MLEs of model parameters β1, β2 and β3
were β̂1 = 1.25757, β̂2 = −2.09730 and β̂3 = −4.85060.

As test units n changes, the MLEs of β1, β2 and β3 are closer to the true
values of model parameters as n increases.

The optimum plan is presented and maximum likelihood estimators of model
parameters are obtained by periodic inspection and type I censored data from the
step-stress accelerated life tests. This method will be very helpful in the situation
that the intermittent inspection is the only practicable way of checking the status
of test units under a step stress test. These results will be extended to the research
associated with periodic inspection and type I censoring for multiple step stress
accelerated life tests.
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Abstract. In this paper, we address the initial conditions problem in reg-

ularization of the random-intercepts model with the first-order lag response.
This model uses random effects to cover the intra-class correlation and the
first lagged response to address the serial correlation, which are the two com-
mon sources of dependency in longitudinal data. We demonstrate that ignor-

ing the correlation between the initial response and the random effects called
the initial conditions problem, can lead to biased regularized estimates.

Keywords: Penalized likelihood, Random effects, Serial correlation.
AMS Mathematical Subject Classification [2010]: 62J07.

1. Introduction

Longitudinal data are measurements or observations repeatedly collected from dif-
ferent subjects over time. Usually, there is dependency among observations of each
subject. Hence, analysis of longitudinal data requires special models that consider
this dependency. Two main sources of dependency among longitudinal observa-
tions are the intra-class correlation and the serial correlation. The intra-class
correlation is due to the effects of unmeasured characteristics of each subject on
its observations and this dependency can be handled by using linear mixed-effects
models. The serial correlation happens due to the transferring effects of variables
over time. Autoregressive models are usually applied to cover this dependency
among longitudinal observations.

Usually, in longitudinal data, both sources of dependencies emerge and need
to be considered in the analysis. Dynamic mixed-effects models which include
both random effects and lagged responses are usually used in these situations [4].
But ignoring the correlation between initial responses and random effects in these
models, called the initial conditions problem, can cause serious bias for maximum
likelihood estimators (MLEs) of regression coefficients and variance components
[2, 3]. Some solutions are proposed to deal with this issue in the important case
of dynamic random-intercepts models with the first lagged response, e.g. [5, 6].

On the other hand, the advent of internet and the advancement of technology
have made longitudinal data much easier to collect in many disciplines. In these
situations, it is more likely to collect more variables and thus dimensions of data
sets are increased. To achieve more interpretable models and to increase the effi-
ciency of predictions and inferences, it is necessary to select important covariates
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in regression analysis of longitudinal data. Regularization methods which apply
penalties on the norm of regression coefficients in the structure of a penalized like-
lihood corresponding to a regression model are used to select important covariates
and to achieve more efficient estimates.

In this paper, we discuss the initial conditions problem in regularization of
dynamic random-intercepts models and show that if this issue is not handled,
then, maximum penalized likelihood estimators (MPLEs) of regression coefficients
with the L1-norm penalty is inconsistent when the number of subjects is large and
the number of observations of each subject is small.

The rest of this paper is organized as follows. In Section 2, we introduce dy-
namic random-intercepts models and the initial conditions problem in estimating
parameters in these models. The MPLE is introduced in Section 3. Section 4
investigates large sample properties of the MPLE in dynamic random-intercepts
models.

2. Dynamic Random-Intercepts Models

Dynamic linear mixed-effects models are specifically adopted for the analysis of
longitudinal data that have both intra-class correlation and serial correlation. One
of the most important models in this class is the dynamic random-intercepts model,
defined as follows

yi,t = γyi,t−1 + x′
i,tβ + ui,t, i = 1, . . . , n, t = 1, . . . , T,(1)

where yi,t and xi,t are, respectively, the response variable and the p-dimensional
vector of covariates for the i-th subject at the t-th time, and yi,t−1 is the lagged
response variable. In this model, β is a p× 1 vector of regression coefficients with
the fixed intercept β0 as its first component and γ measures effects of the previous
response on the current one.

The error terms ui,t = αi + εi,t in which the random intercepts αi’s represent
unobserved subject effects and the residuals εi,t’s indicate time-varying effects

that are not included in the model. It is usually assumed that αi
iid∼N(0, σ2

α),

εi,t
iid∼N(0, σ2

ε) and they are independent of each other and xi,t’s, for all i and t.

2.1. The Initial Conditions Problem. All the past effects of covariates
and unmeasured variables on the current state of the response variable are in-
corporated through the lagged response, yi,t−1, in Eq. (1). By taking backward
substitution, we have

yi,t = γtyi,0 +
t−1∑
j=0

γjx′
i,t−jβ +

t−1∑
j=0

γjui,t−j .

Usually yi,0 which represents the initial state of the response is correlated with
the random effects αi. If we ignore this correlation, the MLE of θ = (γ,β′)′ is
inconsistent, when n is large and T is small. This problem is known as the initial
conditions problem.
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3. Maximum Penalized Likelihood Estimator (MPLE)

To obtain MPLE, we rewrite Eq. (1) in a vector form for each individual as

yi = X̃iθ + ui, i = 1, . . . , n,

where X̃i = (yi,−1 Xi), yi,−1 = (yi,0, . . . , yi,T−1), Xi = (xi,1, . . . ,xi,T )
′
, and

θ = (γ,β
′
)
′
. Then, the combined residual term ui = (ui,1, . . . , ui,T )

′ follows
NT (0,V) with the well defined covariance matrix of the form e.g., [1],

V = σ2
cJT + σ2

εET ,(2)

where σ2
c = σ2

ε +Tσ2
α. In Eq. (2), JT = (1/T )eTe

′

T , where eT is a T -dimensional

vector of ones and ET = IT − JT , where IT is a T -dimensional identity matrix.
Then, the penalized log-likelihood function is given by

l̃n(θ) ∝ −
n

2
log
(
det(V )

)
− 1

2

n∑
i=1

(yi − X̃iθ)
′V −1(yi − X̃iθ)−

p∑
j=1

Pλn(βj),

where Pλn(βj) = λn
∑p
j=1 |βj | is the penalty function of the least absolute shrink-

age and selection operator (Lasso) [7] and λn is the tuning parameter. By in-
creasing λn, the shrinkage rate of regression coefficients toward zero increases. If
variance components are known, maximizing penalized log-likelihood function for
the dynamic random intercept model is equivalent to minimizing

Qn(θ) =
1

n

n∑
i=1

(yi − X̃iθ)
′V −1(yi − X̃iθ) +

λn
n

p∑
j=1

|βj |.

4. Inconsistency of MPLE

Consider the following regularity conditions for the design matrix

Cn =
1

n

n∑
i=1

X̃iV
−1X̃

′
i −→ C,(3)

where C is a nonnegative-definite matrix and define the (random) function Zn(ϕ)
as follows

Zn(ϕ) =
1

n

∑n

i=1
(Y i − X̃iϕ)

′V −1(Y i − X̃iϕ) +
λn
n

p+1∑
j=2

| ϕj |,

which is minimized at θ̂n = argmin
θ
Qn(θ).

Theorem 4.1. Suppose that C in (3) is nonsingular and λn/n → λ0 ≥ 0.
Also, assume that

Z(ϕ) = T + (ϕ− θ)
′
C(ϕ− θ)− 2

σ2
ε

P (ψ)(γ − ϕ1) + λ0

p+1∑
j=2

| ϕj |,

561



A. A. Mofidian Naeini and R. Rikhtehgaran

where ψ =
σ2
ε

σ2
c

, and P (ψ) = ψφT (γ)σ0α, that σ0α = Cov(Yi,0, αi), and φT (γ) =

1− γT

1− γ
. Then

Zn(ϕ)− Z(ϕ)→ 0,

in probability.

Proof. For Zn(ϕ), we have

Zn(ϕ) = (ϕ− θ)′
1

n

n∑
i=1

X̃
′
iV

−1X̃i(ϕ− θ)− 2(ϕ− θ)′

n

n∑
i=1

X̃
′
iV

−1(Y i − X̃iθ)

+
1

n
(Y i − X̃iθ)

′V −1(Y i − X̃iθ) +
λn

n

p+1∑
j=2

| ϕj | .

Then, it is easy to show that

E

(
1

n

n∑
i=1

X̃
′
iV

−1(Y i − X̃iθ)

)
=

(
P (ψ)

σ2
ε

,0′
)′

,(4)

and

E

(
1

n

n∑
i=1

(Y i − X̃iθ)
′V −1(Y i − X̃iθ)

)
= T.(5)

Therefore, with assumptions of Eq. (3), and Eqs. (4) and (5), we have

Zn(ϕ)→ Z(ϕ),

in probability. □

Corollary 4.2. θ̂n → argmin Z(ϕ) in probability. Since Z(ϕ) is minimized

at θ⋆ ̸= θ, then θ̂n is inconsistent.

Based on the Theorem 4.1 and Corollary 4.2, we can see that ignoring the
initial conditions problem in dynamic random-intercepts models can cause serious
bias for the regularized maximum likelihood estimates of regression coefficients.
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Abstract. In this paper, we consider the problem of expected sample size

in a two stage pretest estimation for the scale parameter σ of a Rayleigh
distribution. In the presence of prior information for σ, i.e. σ0, the probability
of avoiding the second sample and the expected sample size are derived and

plotted for different cases.
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1. Introduction

Let X1, . . . , Xn be a random sample of size n taken from a Rayleigh distribution
with probability density function (p.d.f for short)

f(x|σ) = x

σ
exp

{
−x

2

2σ

}
, x > 0.(1)

The failure rate of the Rayleigh distribution is an increasing function of time which
is suitable distribution for components that have no manufacturing defects but age
rapidly with time (See [2, 3] for more information).

The maximum likelihood estimator of σ is σ̂ = 1
2n

∑n
i=1X

2
i . Suppose that

we have a priori about the parameter σ in form of a point guess σ0, i.e. the
sample data come from a distribution that is close to a Rayleigh distribution with
parameter σ0. This information may be regarded as a nuisance parameter in the
statistical estimation of the model. Such information about the parameter is called
nonsample information or uncertain prior information.

In some situations, the researcher can consider a two stage estimator using
prior information for achieving a minimum cost of experimentation: he/she con-
sider a small first stage sample and an additional second stage sample for estima-
tion (See [1, 4] and [5]).

In this paper, we propose a two stage pretest estimator in Rayleigh distribu-
tion. The probability of avoiding the second sample and the expected sample size
are computed and evaluated numerically and graphically for different cases.
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2. Two Stage Pretest Estimation

LetX11, X12, . . . , X1n1 be the first sample of size n1 taken from the Rayleigh distri-
bution with p.d.f given in (1). The MLE of σ is then given by σ̂1 = 1

2n1

∑n1

i=1X
2
1i.

Now, it is suspected a priori that σ = σ0 may hold. This information can be tested
in the form of the following hypothesis.{

H0, σ = σ0,
H1, σ ̸= σ0,

at the level of significance α. A likelihood ratio test (LRT) statistic is 2n1σ̂1

σ0
∼ χ2

2n1

under H0 which has an acceptance region

A =

{
σ̂1 :

q1σ0
2n1

≤ σ̂1 ≤
q2σ0
2n1

}
,(2)

where q1 and q2 are the values of the lower and upper 100α/2% points of the
chi-square distribution with 2n1 degrees of freedom, i.e.

q1 = χ2
2n1

(
α

2
), q2 = χ2

2n1
(1− α

2
).

If H0 is accepted, we stop sampling and take the estimator kσ̂1 + (1 − k)σ0,
where 0 ≤ k ≤ 1. If not so, we take additional observations X21, X22, . . . , X2n2 of
size n2 and compute the pooled estimator of σ as

σ̂p =
n1σ̂1 + n2σ̂2
n1 + n2

,

where σ̂2 = 1
2n2

∑n2

i=1X
2
2i is the MLE of σ based on data in stage two.

3. Expected Sample Size

The probability of avoiding the second sample is

Pr(A) = Pr

(
q1σ0
2n1

≤ σ̂1 ≤
q2σ0
2n1

)
= Pr

(
q1σ

⋆ ≤ 2n1σ̂1
σ
≤ q2σ⋆

)
=

∫ q2σ
⋆

q1σ⋆

g(t)dt = J(σ⋆, α, n1),(3)

where σ⋆ = σ0/σ, A is defined in (2) and g(t) is the density of T = 2n1σ̂/σ ∼ χ2
2n1

.
If σ = σ0, then, by (3), we have J(σ⋆, α, n1) = J(1, α, n1) = 1−α. Figure 1 shows
the shape of the probability of avoiding the second sample and J(σ⋆, α, n1) given in
(3) for selected values of α and n1 with respect to σ⋆. We observe that J(σ⋆, α, n1)
increases in (0, 1), is clearly 1− α at σ⋆ = 1 and then decreases in (1,∞).

The expected sample size is given by

n⋆ = E(n|σ) = n1 + n2[1− J(σ⋆, α, n1)].

When σ = σ0, the expected sample size is given by

n⋆0 = E(n|σ0) = n1 + n2[1− (1− α)] = n1 + n2α.

The plot of the expected sample size, n⋆, is given in Figure 2 for selected
values α, n1 and n2 with respect to σ⋆. It is observed that the expected sample
size is decreasing in (0, 1), is close to n1 when σ

⋆ = 1 and then increasing in (1,∞).
Moreover, the expected sample size increases as n2 increases for fixed n1, α and
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Figure 1. Plot of the probability of avoiding the second sample
for selected values of α and n1 with respect to σ⋆.

σ⋆. Also, the expected sample size in two stage sampling themes are small with
little α.

Figure 2. Plot of the expected sample size for selected values of
n1 and n2 highlighting α with respect to σ⋆.
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Abstract. In this paper, the Bayesian inference of mortality model is con-

sidered in joint life models. We compute the Bayesian estimations using the
squared error loss function and a priori distributions that create a dependency
between the hyper-parameters for this model of dependent lives. Also, we use

the importance sampling method to calculate the Bayes estimations and also
to create the corresponding HPD credible intervals. Finally, we analyze one
real data set for illustrative purposes.
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1. Introduction

In many fields of science, including statistics and life insurance, it is assumed that
the remainder of the lives of two persons or two components is independent. But
applying this assumption is not always correct. Because sometimes there may
be identical risk factors for a pair of people and people are exposed to the same
risk. For example, in twins, these common risk factors may be genetic or for
couples, these common risk factors may be from the environment. Readers can
refer to [1, 2, 3] and [4]. One classical model of dependent lives that captured
our attention is called the “common shock” model. This model assumes that the
lifetimes of two persons, say T1 and T2, are independent unless a common shock
causes the death of both. For example, a contagious deadly disease, a natural
catastrophe or a car accident may affect the lives of the two spouses. See [6, 7],
for details.

Recently, the parameters of these models have been estimated using the max-
imum likelihood estimation and EM algorithm. But the estimation of the pa-
rameters by the Bayesian method has not yet been investigated. As we know, the
maximum likelihood estimates do not always exist. Another important issue is the
convergence of the EM algorithm, which is highly dependent on the initial value
selection. Finally, it should be noted that calculating the exact confidence interval
for MLEs is not easy. The constructed confidence interval based on the maximum
likelihood method is determined using the asymptotic property of MLEs.
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In this paper, we use the absolutely continuous bivariate Gopmertz (ACBGP)
distribution for the modeling of dependent lives. Also, we assume that the scale
parameters have a Dirichlet-Gamma prior distribution. No specific prior distribu-
tions are considered for the shape parameter. It is only assumed that this prior
distribution is independent of the intended prior distribution for the scale param-
eters and also the probability density function is log-concave on (0,∞). It can be
seen that explicit expressions cannot be obtained for the Bayesian estimation of
parameters. Therefore, numerical methods should be used to calculate Bayesian
estimates. So, we propose the importance sampling procedure to generate sam-
ples from the posterior distribution of the parameters and to calculate the Bayes
estimations and also to construct the HPD credible intervals of the unknown pa-
rameters.

This paper is organized as follows: the ACBGP distribution is provided in
Section 2. The required assumptions for prior distributions and bivariate data
structures are explained in Section 3. The importance sampling structure, and
their corresponding HPD credible intervals are described in Section 4. A real
data set is analyzed to evaluate the proposed algorithm in Section 5. Finally, the
conclusions of this article are presented in Section 6.

2. ACBGP Distribution

In this section, we introduce a classical model of dependent lives based on Gom-
pertz distribution. Suppose Ti follows (∼)GP (α, λi) with probability density func-

tion fGP (t, α, λi) = αλeαte−λi(e
αt−1) for i = 0, 1, 2 and also they are independent.

Define Xi = min{T0, Ti}, for i = 1, 2. Then, the random vector X = (X1, X2) is a
bivariate Gompertz distribution and is denoted by BGP (α, λ0, λ1, λ2). The BGP
distribution has both an absolutely continuous part and a singular part. Note
that the absolutely continuous bivariate Gopmertz (ACBGP) distribution can be
obtained from the BGP distribution by removing the singular part and keeping
only the continuous part. The joint PDF of ACBGP can be written as

fACBGP (x1, x2) =

{
f1(x1, x2) = cfGP (x1, α, λ1 + λ0)fGP (x2, α, λ2), if x2 < x1,
f2(x1, x2) = cfGP (x1, α, λ1)fGP (x2, α, λ2 + λ0), if x1 < x2,

in which c is the normalizing constantand and c = λ0+λ1+λ2

λ1+λ2
.

2.1. Bivariate Data Set. We also assume that

D1 = {(x11, x21), . . . , (x1n, x2n)},

is a random sample from the absolutely continuous bivariate Gopmertz distribu-
tion. So, the notation I1 = {i : x2i < x1i}, I2 = {i : x2i > x1i}, |I1| = n1, |I2| = n2,
and n = n1+n2 will be used. Consequently, according to the observations, in this
case, the joint likelihood function is as follows:

ℓ(D1|α, λ0, λ1, λ2) = cn
∏
i∈I1

f1(x1i, x2i)
∏
i∈I2

f2(x1i, x2i)

= cnα2nλn1
1 λn2

2 (λ0 + λ2)
n1(λ0 + λ1)

n2

×eα{
∑

i∈I1
x1i+x2i+

∑
i∈I2

x1i+x2i}e−λ0{
∑

i∈I1
(eαx2i−1)+

∑
i∈I2

(eαx1i−1)}

×e−λ1{
∑

i∈I1
(eαx1i−1)+

∑
i∈I2

(eαx1i−1)}e−λ2{
∑

i∈I1
(eαx2i−1)+

∑
i∈I2

(eαx2i−1)}.
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3. Assumptions for Prior Distributions

In this section, we will describe some of the required prior assumptions.

(I): In the first step, we assume that λ = λ0 + λ1 + λ2 has a prior Γ(a, b)
distribution,

π0(λ|a, b) =
ba

Γ(a)
λa−1e−bλ, a > 0, b > 0.

Also, given λ, (λ1

λ ,
λ2

λ ) has a Dirichlet prior. We denote that it by
π1(.|a0, a1, a2) and the probability density fuction for λ0 > 0, λ1 > 0
and λ2 > 0 is

π1(
λ1
λ
,
λ2
λ
|λ, a0, a1, a2) =

Γ(a0 + a1 + a2)

Γ(a0)Γ(a1)Γ(a2)
(
λ0
λ
)a0−1(

λ1
λ
)a1−1(

λ2
λ
)a2−1.

Therefore, the joint prior of λ0, λ1 and λ2 is

π1(λ0, λ1, λ2|a, b, a0, a1, a2) =
Γ(ā)

Γ(a)
(bλ)a−ā ×

2∏
i=0

bai

Γ(ai)
λai−1
i e−bλi ,(1)

where ā = a0 + a1 + a2. The Eq. (1) is a Gamma-Dirichlet distribution
and we denote this as GD(a, b, a0, a1, a2).

(II): In the second step, we explain the required assumptions for the shape
parameter. We denote the prior distribution on α by π2(α). For this
prior distribution, it is only assumed that the support is non-negative on
(0,∞) and that its probability distribution is log-concave. Therefore,

π(α, λ0, λ1, λ2) = π1(λ0, λ1, λ2)π2(α).(2)

4. Bayesian Inference

In this section, the Bayesian estimation of parameters of ACBGP distribution
and their corresponding HPD credible intervals are obtained. So, the joint poste-
rior density of λi, i = 0, 1, 2 and α must be obtained using the prior distribution
presented in Eq. (2) as follows:

ℓ(λ0, λ1, λ2, α|D1) ∝ λn+a−ā(λ0 + λ2)
n1(λ0 + λ1)

n2

× 1

(λ1 + λ2)n
× Γ(a0, T0(α) + b)

× Γ(a1 + n1, T1(α) + b)× Γ(a2 + n2, T2(α) + b)

×
π2(α)α

2n exp{α[
∑
i∈I1 x1i + x2i +

∑
i∈I2 x1i + x2i]}

[T0(α) + b]a0 [T1(α) + b]n1+a1 [T2(α) + b]n2+a2
.

The Bayesian estimation of any function of λ0, λ1 and λ2 as θ(λ0, λ1, λ2, α) under
the squared error loss function is obtained as follows:

θ̂Bayes =

∫∞
0

∫∞
0

∫∞
0

∫∞
0
θ(λ0, λ1, λ2, α)ℓ(λ0, λ1, λ2, α|D1)dλ0dλ1dλ2dα∫∞

0

∫∞
0

∫∞
0

∫∞
0
ℓ(λ0, λ1, λ2, α|D1)dλ0dλ1dλ2dα

.(3)

It can be seen that phrase Expression (3) is not explicitly specified. The impor-
tance sampling method can be used to calculate the Bayesian estimates and the
corresponding HPD credible intervals.
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Algorithm.

Step 1: Use the method proposed by [5] to generate αi from the log-concave
density ℓ(α|D1).

Step 2: Generate (λji|αi,D1) ∼ Γ(aj + nj , Tj(αi) + b), for j = 0, 1, 2, i =
1, 2, . . . , N, n0 = 0.

Step 3: Therefore, the Bayes estimation is obtained as θ̂Bayes =
∑N

i=1 θih(λ0i,λ1i,λ2i)∑N
i=1 h(λ0i,λ1i,λ0i)

,

where h(λ0i, λ1i, λ2i) = λn+a−āi (λ0i + λ2i)
n1(λ0i + λ1i)

n2 1
(λ1i+λ2i)n

and

θi = θ(αi, λ0i, λ1i, λ2i).

4.1. Credible Intervals. The HPD credible interval of θ = θ(λ0, λ1, λ2) is
constructed to the same method. For this purpose, we follow the below algorithm.

Algorithm.

Step 1: Calculate wi =
h(λ0i,λ1i,λ2i)∑N

j=1 h(λ0j ,λ1j ,λ2j)
.

Step 2: Rearrange {(θ1, w1), . . . , (θN , wN )} as {(θ(1), w(1)), . . . , (θ(N), w(N))},
where θ(1) < . . . < θ(N) but w(i) are not ordered and are associated
with θ(i).

Step 3: Compute the consistent Bayes estimate of θp as θ̂p = θ(Np), where Np is

the integer satisfying
∑Np

i=1 w(i) ≤ p <
∑Np+1
i=1 w(i).

Step 4: Construct a 100(1−γ)% of θ as (θ̂δ, θ̂δ+1−γ), for δ = w(1), w(1)+w(2), . . . ,∑Nγ

i=1 w(i). Therefore, a 100(1− γ)% HPD credible interval of θ becomes

(θ̂δ∗ , θ̂δ∗+1−γ), where δ
∗ satisfies θ̂δ∗+1−γ − θ̂δ∗ ≤ θ̂δ∗+1−γ − θ̂δ for all δ.

5. Data Analysis

This data set include the remaining lifetime information of 100 persons from the
population of couples in the age range of 29 – 70 years at an insurance company
in Tehran. For this data set, we assume that parameter α has a prior Gamma
distribution function. As mentioned, we have no information about the values of
the hyper-parameters. Therefore, we should use the non-informative prior for the
Bayesian estimation of the parameters. We use the importance sampling method
to calculate parameter estimates using the Bayesian method. First, we need to
produce observations from ℓ(α|D1) using the method of [5]. Also, the histogram
of the generated samples as well as the posterior function of α, are presented in
Figure 1.

As mentioned, the purpose of this study is to estimate the parameters in
this joint survival model for actuarial calculations in joint life insurance products.
Now, using the Bayesian method, estimation of survival distribution parameters
using the proposed algorithm in importance sampling method for α, λ0, λ1 and
λ2 are obtained as 0.1053, 0.4850, 0.1034 and 0.1289, respectively. The 95% HPD
credible intervals for α, λ0, λ1 and λ2 are also obtained as (0.0805, 0.1386), (0.2869,
0.5148), (0.0985, 0.1387) and (0.0879, 0.1538), respectively.

6. Conclusion

In this paper, Bayesian estimation in the dependent lives models was investi-
gated based on the absolutely continuous bivariate Gopmertz (ACBGP). For this
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Figure 1. The histogram of the generated samples and the posterior

density function of α.

purpose, a prior dependent distribution for the scale parameters and a prior dis-
tribution for the shape parameter was considered. Also, we assumed that prior
distribution on the shape parameter is independent of the joint prior on λi. As
can be seen, Bayes’s estimates were not explicit in this case. Therefore, it was
recommended to use the importance sampling method to estimate the parame-
ters. We described in detail the structure of the importance sampling method for
calculating their estimates and corresponding HPD credible intervals. Finally, one
real data set were used to evaluate the performance of this method.
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Keywords: (p, q)-Laplacian equation, Fibering method, Nehari
manifold.
AMS Mathematical Subject Classification [2010]: 35J75,
35D30, 35P30.

1. Introduction

The Nehari manifold is closely related to the fibering maps, that is, maps of the
form t → I(tu), where I is the energy functional associated with the problem.
Brown [3] proved the existence of solutions for a semilinear elliptic equation in-
volving the sign-changing weight functions via the Nehari manifold and the fibering
method. Papageorgioua et al. [6] studied the existence of positive solutions for a
weighted p-Laplacian problem{

−div(ξ(x)|∇u|p−2∇u) = a(x)u−γ + λur, x ∈ Ω,

u = 0, x ∈ ∂Ω,

where Ω is a bounded domain with Lipschitz boundary in RN , 0 < γ < 1 and the
differential operator is a weighted p-Laplacian with a weight ξ ∈ L∞(Ω), ξ ≥ 0.

Recently, the existence of two weak solutions for a singular (p, q)-Laplacian
type equations with the singular terms is proved (See [1]).

In this paper, we are concerned with a quasi-linear problem, that is, a singular
(p, q)-Laplacian elliptic problem

−∆pu−∆qu+ θ(x)up−1 = β(x)up−1 + λa(x)u−γ + b(x)ur−1, x ∈ Ω,

u ≥ 0, x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1)

where Ω ⊂ RN is a bounded domain with smooth boundary. The real numbers λ,
p, q, γ and r are satisfying the assumptions

λ > 0, 0 < γ < 1, 1 < q < p < r < p∗,

∗Presenter
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where p < N and p∗ := Np
N−p . Here, ∆mu = div(|∇u|m−2∇u) is the m-Laplacian

operator for m ∈ {p, q}. Furthermore, θ ∈ Lm(Ω) is an indefinite function, where
m > N

p . The weight functions a, b, β ∈ L∞(Ω) and a(x), b(x) > 0 a.e. in Ω.

2. Preliminaries

In this section, we recall the necessary preliminaries and notations. Firstly, we
recall that the norm in Lebesgue space Lp(Ω) is

∥u∥Lp(Ω) =
(∫

Ω

|u(x)|pdx
) 1

p

,

and the Sobolev space W 1,p
0 (Ω) is the closure of C∞

0 (Ω) in W 1,p(Ω) endowed with
the norm

∥u∥p =
(∫

Ω

|∇u(x)|pdx
) 1

p

,

for every u in W 1,p
0 (Ω). Since Ω is bounded and q < p, we have the continuous

embedding W 1,p
0 (Ω) ↪→W 1,q

0 (Ω) such that

∥u∥q ≤ C∥u∥p,

where u ∈W 1,p
0 (Ω), for some positive constant C := C(N, p, q,Ω).

For simplicity, we set X :=W 1,p
0 (Ω) and X∗ :=W−1,p′

0 (Ω) (the dual space of
X), where 1

p +
1
p′ = 1.

The natural space to study (p, q)-Laplacian problems is Sobolev spaceW 1,p
0 (Ω).

Notice that (X, ∥ · ∥p) is a uniformly convex reflexive Banach space.
We consider the generalized eigenvalue problem{

−∆pu−∆qu+ θ(x)|u|p−2u = λ|u|p−2u, x ∈ Ω,

u = 0, x ∈ ∂Ω,
(2)

where Ω ⊂ RN is a bounded domain with smooth boundary, λ ∈ R and 1 < q < p.
Also θ ∈ Lm(Ω) for m > N

p . Recently, the fractional form of the problem (2) is

studied in [2].

Proposition 2.1. The problem{
−∆pu+ θ(x)|u|p−2u = λ|u|p−2u, x ∈ Ω,

u = 0, x ∈ ∂Ω,

where λ ∈ R, admits the first eigenvalue λ1,

λ1 := inf
{∫

Ω

|∇u|pdx+

∫
Ω

θ(x)|u|pdx :

∫
Ω

|u|pdx = 1
}
.(3)

Definition 2.2. We say that u ̸= 0, u ∈ X, is an eigenfunction of λ1, if the
following Euler-Lagrange equation holds for all functions v ∈ X∫

Ω

|∇u|p−2∇u∇vdx+

∫
Ω

θ(x)|u|p−2uvdx = λ1

∫
Ω

|u|p−2uvdx.

Moreover, we define

η1 := inf
{
∥u∥pp +

p

q
∥u∥qq +

∫
Ω

θ(x)|u|pdx :

∫
Ω

|u|pdx = 1
}
.(4)
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The number η1 is called the first generalized eigenvalue of (2).

Remark 2.3. Notice that λ1 = η1, where the values of λ1 and η1 are given
by (3) and (4). In addition the infimum of η1 is not attained.

Proposition 2.4. [5] Assume that the function β ∈ L∞(Ω) with β(x) ≤ λ1
a.e. in Ω and meas{x : β(x) < λ1} > 0, then there exists c > 0 such that∫

Ω

|∇u|pdx+

∫
Ω

θ(x)|u|pdx−
∫
Ω

β(x)|u|pdx ≥ c
∫
Ω

|∇u|pdx,

for each u ∈ X.

3. Two Solutions

The energy functional Jλ : X → R associated with (1) is defined as follows

Jλ(u) :=
1

p

(
∥u∥pp +

∫
Ω

θ(x)|u|pdx−
∫
Ω

β(x)|u|pdx
)

+
1

q
∥u∥qq −

λ

1− γ

∫
Ω

a(x)|u|1−γdx− 1

r

∫
Ω

b(x)|u|rdx,

for every u ∈ X. Notice that the functional Jλ is unbounded from below on the
space X. Nehari manifold is a good candidate for a subset of X such that the
functional Jλ is bounded on it and is as follows

Nλ := {u ∈ X \ {0} : ⟨J ′
λ(u), u⟩ = 0}.

Clearly, critical points of Jλ must lie on Nλ. The fibering map ϕ : R+ → R for the
functional Jλ is defined by ϕu(t) := Jλ(tu). These maps are introduced by Drabek
and Pohozaev in [4]. For every u ∈ X, we have

ϕu(t) =
tp

p

(
∥u∥pp +

∫
Ω

θ(x)|u|pdx−
∫
Ω

β(x)|u|pdx
)
+
tq

q
∥u∥qq

− λ t
1−γ

1− γ

∫
Ω

a(x)|u|1−γdx− tr

r

∫
Ω

b(x)|u|rdx.

Notice that tu ∈ Nλ if and only if ϕ′u(t) = 0 and especially u ∈ Nλ if and only if
ϕ′u(1) = 0. We decompose Nλ into three disjoint parts (See [7])

N+
λ = {u ∈ Nλ : ϕ′′u(1) > 0}, N0

λ = {u ∈ Nλ : ϕ′′u(1) = 0},
N−
λ = {u ∈ Nλ : ϕ′′u(1) < 0}.

A computation shows that Jλ is coercive and bounded below on Nλ. Thus we can
prove the following lemmas.

Lemma 3.1. Suppose u is a maximum or minimum of Jλ on Nλ and u /∈ N0
λ.

Then u is a critical point of Jλ.

Lemma 3.2. There exists λ0 > 0 such that for each λ ∈ (0, λ0), N
0
λ = ∅.

For applying the fibering method, we define the function Fu : R+ → R by

Fu(t) := tp+γ−1
(
∥u∥pp +

∫
Ω

θ(x)|u|pdx−
∫
Ω

β(x)|u|pdx
)

+ tq+γ−1∥u∥qq − tr+γ−1

∫
Ω

b(x)|u|rdx.
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Clearly, tu ∈ Nλ if and only if t is a solution of equation

Fu(t) = λ

∫
Ω

a(x)|u|1−γdx.

Since
∫
Ω
b(x)|u|rdx > 0, it is clear that Fu(t) → −∞ as t → ∞, F ′

u(t) > 0 for t
small enough and F ′

u(t) < 0 for t large enough. We prove that there exists unique
tmax > 0 such that F ′

u(tmax) = 0. It is worth noting that Fu is increasing in
(0, tmax) and decreasing in (tmax,∞). Then, there exist t1 < tmax and t2 > tmax

such that Fu(t1) = Fu(t2) = λ
∫
Ω
a(x)|u|1−γdx. That means t1u, t2u ∈ Nλ. Also,

F ′
u(t1) > 0 and F ′

u(t2) < 0 leads to t1u ∈ N+
λ and t2u ∈ N−

λ . We set

mλ := inf
u∈Nλ

Jλ(u), m
+
λ := inf

u∈N+
λ

Jλ(u), m
−
λ := inf

u∈N−
λ

Jλ(u).

By using the properties of fibering maps, we can prove the existence of two positive
solutions, which one of them is in N+

λ and the other one is in N−
λ .

Proposition 3.3. There exists λ̂ ∈ (0, λ0] and u
∗ ∈ N+

λ such that Jλ(u
∗) =

m+
λ = infN+

λ
Jλ, for every λ ∈ (0, λ̂). Moreover, u∗(x) ≥ 0 for every x ∈ Ω.

Proposition 3.4. If λ ∈ (0, λ̂), then the problem (1) admits a weak positive
solution u∗ ∈ X such that u∗ > 0 in Ω and Jλ(u

∗) < 0.

We can minimize Jλ on the Nehari manifold N−
λ and get the second non-

negative solution.

Proposition 3.5. There exists λ̃ ∈ (0, λ0] and v
∗ ∈ N−

λ such that Jλ(v
∗) =

m−
λ = infN−

λ
Jλ, for every λ ∈ (0, λ̃).

Proposition 3.6. If λ ∈ (0, λ̃), then v∗ is a weak solution of problem (1)
such that v∗ > 0 in Ω and Jλ(v

∗) > 0.

Now we state the main result of the paper.

Theorem 3.7. Assume that the function β ≤ λ1, where the value of λ1 is
given by (3) and meas{x : β(x) ≤ λ1} > 0. Then there exists λ∗ > 0 such that for
every λ ∈ (0, λ∗), the problem (1) admits at least two weak non-negative non-trivial
solutions.

By the above propositions, one can prove the existence of two weak solutions.

If we set λ∗ = min{λ̂, λ̃} and since N+
λ ∩N

−
λ = ∅, one can conclude that u∗ and

v∗ are distinct.
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1. Introduction

One of the practical and important issues in various branches of science is solving
the differential equations in conditions of uncertainty. The fuzzy concept is a
powerful tool for expressing uncertainty in phenomena, such as the imprecise initial
value or the boundary value problems. [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], for instance.
In this paper, we will consider a class of fuzzy differential equations (FDEs) which
appear in the dual form, named dual fuzzy differential equation (DFDE for short).

Consider a FDE in the following general form

f1
(
t, x(t), x′(t), x′′(t), . . . , x(n)(t)

)
= f2

(
t, x(t), x′(t), x′′(t), . . . , x(n)(t)

)
,(1)

where t is the independent variable and x′(t), x′′(t), . . . , x(n)(t) are first n deriva-
tives of the unknown fuzzy-valued function x : I ⊂ R→ RF and f1 and f2 are two
continuous fuzzy-valued functions. Such an equation is said to be in dual form if
the function x or at least one of the its derivatives up to order n appears on both
sides of the equation.

We point out that in the fuzzy case the Eq. (1) may be not rewritable as the
following equation

x(n)(t) = f
(
t, x(t), x′(t), x′′(t), . . . , x(n−1)(t)

)
,(2)

where f is a fuzzy-valued function. The first step in dealing with a FDE is to
apply an appropriate derivative concept (See [3, 7] for instance). Some results
of the existence and uniqueness of solutions to Eq. (2) as fuzzy initial value
problem under Hukuhara derivative concept are obtained in [10]. And the re-
sults of existence and uniqueness of solutions under generalized differentiability
concept (G-differentiability) to Eq. (2) of second order are found in [1]. Under G-
differentiability, Bede et al. [4, 5] have obtained the explicit formulas of solutions

∗Presenter

583



M. Chehlabi

to first-order fuzzy linear differential equations in form (2) and the explicit formu-
las of solutions related to other forms of whose equations are obtained in [2, 6].
To the best of our knowledge, FDEs in the dual case have not been studied so
far. Accordingly, in order to develop the results on FDEs, we study the problem
existence and uniqueness of solutions to a class of DFDEs emerged as follows:

x(n)(t) = f
(
t, x(t), x′(t), x′′(t), . . . , x(n)(t)

)
.(3)

We now give some definitions and introduce the necessary notation which will
be used throughout the paper, see [2, 4, 9].

The symbol RF denotes the set of all fuzzy numbers defined on real numbers
R. The metric structure d : RF ×RF → [0,+∞) is given in terms of the Hausdorff
distance by

d(u, v) = sup
α∈[0,1]

max{|u−α − v−α |, |u+α − v+α |}, u, v ∈ RF.

In this paper, we fix I = [t1, t2] and represent a fuzzy-valued function f on I
in the parametric form as [f(t)]α = [f−α (t), f+α (t)], ∀t ∈ I, ∀α ∈ [0, 1].

Definition 1.1. Let u, v ∈ RF . If there exists w ∈ RF such that, u = v + w
then w is called the H-difference of u, v and it is denoted as u⊖ v.

Definition 1.2. Let f : I → RF and t0 ∈ I and I ⊂ R is an open interval.
We say that f is generalized Hukuhara differentiable (GH-differentiable) at t0 if
there exists an element f ′(t0) ∈ RF such that either

1) for all h > 0 sufficiently small, ∃ f(t0 + h)⊖ f(t0), f(t0)⊖ f(t0 − h) and

lim
h→0+

f(t0 + h)⊖ f(t0)
h

= lim
h→0+

f(t0)⊖ f(t0 − h)
h

= f ′(t0),

or
2) for all h > 0 sufficiently small, ∃ f(t0)⊖ f(t0 + h), f(t0 − h)⊖ f(t0) and

lim
h→0+

f(t0)⊖ f(t0 + h)

(−h)
= lim
h→0+

f(t0 − h)⊖ f(t0)
(−h)

= f ′(t0).

Moreover, we say that f is (1)-differentiable at t0, if it is GH-differentiable at
t0 in sense (1) and f is (2)-differentiable at t0, if it is GH-differentiable at t0 in
sense (2).

In this paper, we assume that the fuzzy-valued functions f are (1)-differentiable
for all t ∈ I or are (2)-differentiable for all t ∈ I. Also, we denote by Cn(I,RF )
the set of continuous functions f : I → RF such that derivatives f ′, f ′′, . . . , f (n) :
I → RF exist as continuous functions.

2. Main Results

We know that the space C(I,RF ) of continuous functions f : I → RF is a complete
metric space with the distance

D(f, g) = sup
t∈I
{d(f(t), g(t))},

or generally
H(x, y) = sup

t∈I
{d(x(t), y(t))e−ρt},

where ρ ∈ R is fixed.
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Theorem 2.1. Let f be (2)-differentiable on I = [t1, t2] and assume that the
derivative f ′ is integrable over I. Then for each t ∈ I we have

f(t) = f(t2) + (−1)⊙
∫ t2

t

f ′(s)ds.

Proof. Let [f(t)]α = [f−α (t), f+α (t)], for each α ∈ [0, 1]. Since f is (2)-

differentiable,we have [f ′(t)]α = [f+α
′
(t), f−α

′
(t)]. Then[

f(t2) + (−1)⊙
∫ t2

t
f ′(s)ds

]α
= [f−α (t2), f

+
α (t2)] + (−1)⊙

[∫ t2

t
f+α

′
(s)ds,

∫ t2

t
f−α

′
(s)ds

]
=

[
f−α (t2)−

∫ t2

t
f−α

′
(s)ds, f+α (t2)−

∫ t2

t
f+α

′
(s)ds

]
= [f−α (t), f+α (t)] = [f(t)]α.

□
Definition 2.2. We say that x : I = [t1, t2] → RF is (1)(n)-solution ((2)(n)-

solution) to Eq. (1) on I, if x(t) and its derivatives up to order n − 1 are (1)-
differentiable ((2)-differentiable, respectively) for each t ∈ (t1, t2) and satisfy the
Eq. (1), for each t ∈ I.

Theorem 2.3.

i) The function x ∈ Cn1 (I,R) is (1)(n)-solution to Eq. (2), if and only if the
function y(t) = x(n)(t) satisfies the following integral equation

y(t) = f(t, (Iny)(t) + φn−1(t), (In−1y)(t) + φn−2(t), . . . , (I1y)(t) + φ0(t), y(t)),(4)

where

(Imy)(t) =
1

(m− 1)!

∫ t

t1

(t− s)m−1 ⊙ y(s)ds, m = 1, 2, . . . , n,

φm(t) =
dn−m−1

dt

(
n−1∑
i=0

(t− t1)i

i!
⊙ x(i)(t1)

)
, m = 0, 1, . . . , n− 1,

and x(0)(t) = x(t), x(1)(t) = x′(t) and x(2)(t) = x′′(t).

ii) The function x ∈ Cn2 (I,R) is (2)(n)-solution to Eq. (2), if and only if the
function y(t) = x(n)(t) satisfies the following integral equation

y(t) = f(t, (Jny)(t) + ψn−1(t), (Jn−1y)(t) + ψn−2(t), . . . , (J1y)(t) + ψ0(t), y(t)),(5)

where

(Jmy)(t) =
(−1)m

(m− 1)!

∫ t2

t

(s− t)m−1 ⊙ y(s)ds, m = 1, 2, . . . , n,

and

ψm(t) =
dn−m−1

dt

(
n−1∑
i=0

(−1)i(t2 − t)i

i!
⊙ x(i)(t2)

)
, m = 0, 1, . . . , n− 1.

Proof. Let us prove the case (ii), the proof is similar for case (i). At first it
is easy to see that

n−1∑
i=0

(−1)i(t2 − t)i

i!
⊙ x(i)(t2) ∈ Cn2 (I,R),
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and further

ψm(t) =

n−1∑
i=0

dn−m−1

dt

(
(−1)i(t2 − t)i

i!

)
⊙ x(i)(t2), m = 0, 1, . . . , n− 1.

For t ∈ [t1, t2], we get ∫ t2

t

x(n)(sn)dsn =

∫ t2

t

y(sn)dsn.

That gives, by Theorem 2.1,

x(n−1)(t) = x(n−1)(t2)−
∫ t2

t

y(sn)dsn = ψ0(t) + (J1y)(t).

Similarly, from the last equality we get

x(n−2)(t) = x(n−2)(t2)−
∫ t2

t

(
x(n−1)(t2)−

∫ t2

sn−1

y(sn)dsn
)
dsn−1

= x(n−2)(t2)− (t2 − t)⊙ x(n−1)(t2) +

∫ t2

t

∫ t2

sn−1

y(sn)dsndsn−1

= ψ1(t) +

∫ t2

sn−2

∫ sn

sn−2

y(sn)dsn−1dsn = ψ1(t) +

∫ t2

sn−2

(sn − sn−2)⊙ y(sn)dsn

= ψ1(t) +

∫ t2

t
(s− t)⊙ y(s)ds = ψ1(t) + (J2y)(t).

By recurrence,

x(t) = x(0)(t) = x(0)(t2)−
∫ t2

t
x(1)(s1)ds1 = x(t2)−

∫ t2

t

(
x(1)(t2)−

∫ t2

s1

x(2)(s2)ds2

)
ds1

= x(t2)− (t2 − t)⊙ x(1)(t2) +

∫ t2

t

∫ t2

s1

(
x(2)(t2)−

∫ t2

s2

x(3)(s3)ds3

)
ds2ds1

= x(t2)− (t2 − t)⊙ x(1)(t2) +
(t2 − t)2

2
⊙ x(2)(t2)−

∫ t2

t

∫ t2

s1

∫ t2

s2

x(3)(s3)ds3ds2ds1

= · · ·

=

n−1∑
i=0

(−1)i(t2 − t)i

i!
⊙ x(i)(t2) + (−1)n ⊙

∫ t2

t

∫ t2

s1

∫ t2

s2

· · ·
∫ t2

sn−1

x(n)(sn)dsndsn−1 · · · ds2ds1

= ψn−1(t) + (Jny)(t).

□

Theorem 2.4. Let f : I × Rn+1
F → RF be continuous, and suppose that

M0,M1, . . . ,Mn > 0 exist such that

d (f(t, u0, u1, . . . , un), f(t, v0, v1, . . . , vn)) <
n∑
i=0

Mid(ui, vi),

for all t ∈ I, u0, u1, . . . , un, v0, v1, . . . , vn ∈ RF and Mn < 1. Then the integral Eq.
(4) has a unique solution on I.

Theorem 2.5. Let f : I × Rn+1
F → RF be continuous, and suppose that

M0,M1, . . . ,Mn > 0 exist such that

d (f(t, u0, u1, . . . , un), f(t, v0, v1, . . . , vn)) <
n∑
i=0

Mid(ui, vi),
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for all t ∈ I, u0, u1, . . . , un, v0, v1, . . . , vn ∈ RF and Mn < 1. Then the integral Eq.
(5) has a unique solution on I = [t1, t2] with t2 satisfying the following condition

n∑
i=0

Mi
(t2 − t1)n−i

(n− i)!
< 1.

References

1. T. Allahviranloo, N. A. Kiani and M. Barkhordari, Toward the existence and uniqueness of
solutions of second-order fuzzy differential equations, Inform. Sci. 179 (2009) 1207–1215.

2. T. Allahviranloo and M. Chehlabi, Solving fuzzy differential equations based on the length
function properties, Soft Comput. 19 (2015) 307–320.

3. L. C. Barros, L. T. Gomes and P. A. Tonelli, Fuzzy differential equations: An approach via

fuzzification of the derivative operator, Fuzzy Sets Syst. 230 (2013) 39–52.
4. B. Bede and S. G. Gal, Solution of fuzzy differential equations based on generalized differen-

tiability, Commun. Math. Anal. 9 (2010) 22–41.
5. B. Bede and L. Stefanini, Solution of fuzzy differential equations with generalized differentia-

bility using LU-parametric representation, Eusflat (2011) 785–790.
6. M. Chehlabi and T. Allahviranloo, Positive or negative solutions to first-order fully fuzzy

linear differential equations under generalized differentiability, Appl. Soft Comput. 70 (2018)
359–370.
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Abstract. The two-sided shift maps are automorphisms and one-sided shift
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1. Introduction

Let A = {a, . . . , b} be the set of finite alphabets and X = {(xi)i∈Z, xi ∈ A}
be a two-sided shift space. The shift map on Z is defined as (σ(x))i = xi+1 for
i ∈ Z. Since the two-sided shift maps are defined for automorphisms, we have
(σ−1(x))i = xi−1. Sometimes a shift map is conjugate to some map f on a space
Y with an appropriate Markov partition. Then the orbit of the points in Z under
f are in one-to-one correspondence to their itineraries in X. There are some texts
describing different features of shift spaces and shift maps such as [1, 2, 3, 4, 5, 6].

If f is an endomorphism, then the map f and σ are semi-conjugate and the
endomorphism shift map is defined on an one-sided shift space. So, σ loses the
track of points in pre-images of f . Here we aim to introduce a generalized two-
sided shift map which represents the full orbit of endomorphism maps. Also we
generalize some concepts of classical shift maps to the generalized two-sided shift
spaces.

2. Generalized Two-Sided Endomorphism Shift Map

Let A = {a, . . . , b} and A′ = {a′, . . . , b′} be two finite sets of alphabets and Y
be the set of two-sided sequences over A′ whose admissible words of length n is
denoted by L′

n. Let φn : L′
n −→ A be a factor map. Define

xi =

{
yi ∈ A′, ∀i ≥ 0,
xi = φn(yi . . . yi+n−1) ∈ A, ∀i < 0.

(1)

Now define the generalized two-sided shift space as the set

ΣA,A′ := {x = (xi)i∈Z : xi satisfies(1)},
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and the generalized two-sided shift map on ΣA,A′ as

(σ(x))i =

{
φn(x0 . . . xn−1), if i = −1,
xi+1, otherwise.

Theorem 2.1. The generalized two-sided shift map is well-defined and the
generalized shift space is closed under the generalized two-sided shift map.

Define ΣA′ = {(x0, x1, . . .) : (xi)i∈Z ∈ ΣA,A′} and ΣA = {(. . . , x−2, x−1) :

(xi)i∈Z ∈ ΣA,A′}. Let βA,A′
(Σ) be the set of admissible blocks in ΣA,A′ and βA

n

and βA′

n be the subsets of βA,A′
(Σ) with alphabets in A and A′ respectively.

Some of the generalized two-sided shift spaces can be specified by a list of
forbidden blocks. It can be done by both specifying the forbidden blocks of the
ΣA′ part or the forbidden blocks of the hole space. Denote them by FA′ and F
respectively. In the later case, if the number and the length of blocks in F are
finite, then we call ΣA,A′ an M -step Markov space.

If the number and the length of blocks in F or FA′ are finite, then the space
ΣA,A′ can be represented by a graph. Each directed edge receives two labels, one
from A and one from A′. Walking in direction of edges and considering the labels
from A′, we get entries with non-negative indices and walking in opposite direction
of edges and picking the labels from A, we get the entries with negative indices of
a point x ∈ ΣA,A′ .

Definition 2.2. A point x = (xi)i∈Z ∈ Σ is a periodic point with period
m if for i ≥ 0, xmi = a′0, xmi+1 = a′1, . . ., xmi+m−1 = a′m−1 and also, xmi =
φn(x0, . . . , xn−1), xmi+1 = φn(x1, . . . , xn), . . ., xmi+m−1 = φn(xm−1, . . . , xm+n−2)
for i ≤ −1.

We represent the periodic orbit via its non-negative part.

Example 2.3. Let A′ = {a, b, c, d} and A = {0, 1} be two sets of alphabets
and FA′ = {ac, ba, bb, bc, cb, cc, cd, da} be the set of forbidden words. If φ(a) =
φ(b) = 1 and φ(c) = φ(d) = 0, then

x = (. . . , x−3, x−2, x−1; x0, x1, x2, x3, x4, . . .)
= (. . . , 0, 1, 1; d, b, d, c, a, . . .),

is a point in ΣA,A′ . This space can be shown by the graph in Figure 1. Let x =
(. . . , 1, 0, 0, 1, 0, 0; a, d, c, a, d, c, . . .) and y = (. . . , 1, 0, 0, 1, 0, 0; b, d, d, b, d, d, . . .) be
two periodic points. The negative indecis for negative part for both points is 100.
So, we represent the points via non-negative indices which are x = (a, d, c) and
y = (b, d, d). The negative indices are determined by the non-negative part and
the map ϕ.

Let Ln be the admissible words in Σ ⊆ ΣA,A′ .

Definition 2.4. For some natural number N , define the hN : Σ→ (LN )Z as

(hN (x))[i] := x[i, i+N−1],

and the Nth generalized higher block shift as hN (Σ).

Definition 2.5. For some natural number N , let γN : Σ→ (LN )Z be defined
as

(γN (x))[i] := x[iN, iN+N−1]
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Figure 1. This graph represents generalized two-sided shift
space ΣA,A′ with A′ = {a, b, c, d} and A = {0, 1}.

and define the Nth generalized higher power shift as γN (Σ).

Theorem 2.6. The N th generalized higher block shifts and N th generalized
higher power shifts of a generalized two-sided shift space are generalized two-sided
shift spaces.

Definition 2.7. Let ΣA,A′ and ΣC,C′ be two generalized shift spaces with
factor maps φn and φm respectively. For k ≥ n define the map Φ : Lk → C ∪C′ as

Φ(x[i, i+ℓ−1]) =

{
y′i ∈ C, if xi, . . . , xi+ℓ−1 ∈ A′,
yi ∈ C, if xi ∈ A.

(2)

If there exists ϕ : ΣA,A′ → ΣC,C′ defined by ϕ(x) = y satisfying (2), then it is
called the generalized sliding block code induced by map Φ.

Theorem 2.8. The generalized sliding block codes are generalized two-sided
shift spaces.

Theorem 2.9. Let ΣA,A′ and ΣC,C′ be two generalized two-sided shift spaces
with factor maps φn and φm and ϕ : ΣA,A′ → ΣC,C′ be a generalized shift sliding
block code. Then ϕ ◦ σA′ = σC′ ◦ ϕ.

Proof. Let x = . . . x−1;x0 x1 . . . ∈ ΣA,A′ and y = . . . y−1; y0 y1 . . . ∈ ΣC,C′ .
Suppose ϕ(x) = y according to equation Φ : Lk → C ∪ C′ defined in (2). For a
word x[i, i+k−1] ∈ Lk),

((σC′ ◦ ϕ)(x))[i] = ϕ(σC′(x))[i]
= Φ((σA′(x))[i, i+k−1]

= Φ(x[i+1, i+k])
= (ϕ ◦ σA′(x))[i].

□

Theorem 2.10. (Generalization of Curtis-Hedlund-Lyndon Theorem) Let ΣA,A′

and ΣC,C′ be generalized two-sided shift spaces with factor maps φn and φm respec-
tively. A map ϕ is a generalized sliding block code if and only if ϕ ◦ σA′ = σC′ ◦ ϕ
and there exists k ≥ n such that ϕ(x)i is a function of x[i, i+k−1] for −k ≤ i ≤ 1.

Proof. Since ΣA,A′ and ΣC,C′ are generalized two-sided shift spaces and ϕ
is a generalized sliding block code, so the restriction of ϕ(x)i to x[i, i+k−1] implies
the map Φ over x[i, i+k−1] for −k ≤ i ≤ 1 and the diagram be commutative. We
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prove the reverse direction. For the blocks x[−m,−1] ∈ βA′

n and x[0,m] ∈ βA
n , the

map Φ is defined and hence Φ is defined for all blocks in βA
n and βA′

n . The map
Φ is defined on the central blocks, so it is well-defined on all translations on them
in βA,A′

(Σ), which completes the proof. □
Theorem 2.11. Let ψ : ΣA,A′ → ΣC,C′ be a generalized sliding block code with

the block map Ψ : βA,A′

ℓ → C∪C′. Then there exists a generalized higher block space

Σ̃A,A′ of ΣA,A′ , which is conjugate to a generalized 1-block code ψ̃ : Σ̃A,A′ → ΣC,C′

via the conjugacy map h : ΣA,A′ → Σ̃A,A′ . Also, ψ̃ ◦ h = ψ.

Proof. Since ΣA,A′ is a generalized sliding block code, using Theorem 2.10,
there exists a map ϕ and a number k > 0 such that ϕ(x)i is a function of x[i, i+k−1]

for −k ≤ i ≤ 1 and ϕ ◦ σA′ = σC′ ◦ ϕ. For this k, take Σ̃A,A′ as Σ
[k]
A,A′ . Now let

h : ΣA,A′ → Σ̃A,A′ be the kth higher block code (h(x))[i] = x[i, i+k−1]. The map

h is a conjugacy. Define ϕ̃ as ϕ ◦ h−1 which becomes a 1-block map, see Figure 2.
□

Figure 2.
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Abstract. This paper deals with a family of one dimensional discontinuous
maps known as Baker like maps. For this family it is studied the problem

of existence of chaos according to the well known definition by Devaney. In
fact, it is shown that if f is a generalized semi-baker map with two branches
and its derivative greater than or equal to

√
2 , then the dynamical system

related to that is chaotic in the sense of Devaney.
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1. Introduction

Piecewise smooth dynamical systems have received a great deal of attention in
recent years. The essential feature of a piecewise smooth (PWS for short) system,
both continuous and discontinuous, which may greatly influence the dynamics,
is the presence of a so-called switching manifold at which the system’s function
changes its definition [1]. These systems represent adequate mathematical models
for many processes both in nature and engineering. Applications of these systems
range from earthquake dynamics to nano-actuator and include electronic devices
with relay or switching components (for example, buck/boost converters, mechan-
ical systems with stick-slip or impact phenomena) and in general all switching
systems occurring in various field as control theory, economics, biology and so on.

Nowadays many results related to dynamics of piecewise smooth systems and
in particular about chaotic dynamics in such systems are already published, es-
pecially those related to piecewise linear maps. For example in [3] and [6] some
relevant properties of the chaotic sets related to the piecewise linear maps with
constant slope, known as β−Transformation, are determined.

This paper is devoted to an important class of piecewise smooth expanding
maps of an interval into itself, constituted by N ≥ 2 branches called Baker like
maps. Regarding Baker like maps with N ≥ 2 branches, in [2] the authors give the
necessary and sufficient conditions for a discontinuous expanding map to be chaotic
in the whole interval in terms of homoclinic bifurcations. Also in [7] for Baker like
map with infinitely many branches the existence of full measure unbounded chaotic
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attractors which are persistent under parameter perturbation (also called robust)
has been proved.

Here we consider N = 2, that is a map from an interval into itself with
one discontinuity point, and give analytical sufficient conditions under which the
system is chaotic in the sense of Devaney. This subject is not new in the literature.
The basic tools are related to a Baker like map on the interval, with two branches
that corresponds to Lorenz maps, which has been deeply studied since many years
and is nowadays of common knowledge (See for example [4, 5, 8, 10]). In the
present paper a rigorous proof to the existence of chaos in the sense of Devaney
in that system is presented in terms of the derivatives of the branches. Here we
improve the results of chaotic dynamics of Baker like maps with two branches in
[9], which already published by same authors.

In the following, some basic concepts and notations are given, chaos in the
sense of Devaney is stated and Baker like map is introduced.

For convenience, suppose that I = [0, 1], and r ∈ N ∪ {∞}.

Definition 1.1. The map f : I −→ I is called a piecewise Cr-smooth one
dimensional dynamical system if there exist the points 0 = ξ0 < ξ1 < · · · < ξN−1 <
ξN = 1 such that f |(ξi, ξi+1)

is Cr-smooth.

Suppose that f is a piecewise Cr-smooth one dimensional dynamical system.
The orbit of the point x ∈ I is defined as

orb(x, f) := {fn(x) : n ∈ N ∪ {0}}.

The point x is periodic, if there is a nutral number n such that fn(x) = x. The
set of all periodic points is called to Per(f).

The PWS map f is topologically transitive in I, if for any pair of non-empty
open sets U and V of I there exists a natural number n such that fn(U)∩V ̸= ∅.
It is topologically mixing in I if for any pair of non-empty open sets U and V in
X there exists a natural number n such that for any m > n, fm(U) ∩ V ̸= ∅.

The word chaos was first introduced into mathematics by Li and Yorke. Then
in 1986 a precise mathematical definition of chaos was suggested by Devaney. In
terms of the PWS maps we have: a PWS map f : I −→ I is chaoticin the sense
of Devaney if Per(f) is dense in I, it is topologically transitive and has sensitive
dependence on initial conditions in I.

The 1D piecewise C1-smooth map which we are interested in defined as follows

Definition 1.2. Let N be a natural number and λ a real number both bigger
than one and real numbers ξ0 = 0 < ξ1 < · · · < ξN−1 < ξN = 1 are given. For each
1 ≤ i ≤ N suppose that Ii = [ξi−1, ξi) and fi : Ii −→ [0, 1) is a differentiable
map satisfying fi

′ > λ. Also, suppose that fi is surjective for all 1 < i < N and
f1−(ξ1) = 1 and fN+(ξN−1) = 0. Then map f : I −→ I given by

f(x) := fi(x) x ∈ Ii, f(1) := fN−(1),

is called a Baker-like map with N branches and expanding rate λ.

The Baker-like maps are a straightforward generalization of Baker maps and
Lorenz maps. It is worth to know that Baker like maps are conjugate with ex-
panding maps on S1 with one discontinuity point.
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2. Main Results

We begin this section by proving the following proposition.

Proposition 2.1. Suppose that f is a Baker-like map with λ >
√
2 and N = 2.

Then for each one of the intervals I1 and I2 and each interval (a, b) ⊂ Ii, there
are one interval Ji ⊂ (a, b) and one natural number k such that fk is continuous
on Ji and f

k(Ji) = Ii.

Proof. Without losing generality, we may assume that (a, b)∩{ξ1, f−1(ξ1)}
is an empty set. We prove this proposition via two following lemmas.

Lemma 2.2. There are one interval J ⊂ (a, b), one natural number r and one
index i ∈ {1, 2}, such that fr is continuous on J and fr(J) = Ii.

Proof. Let U0 := (a, b) and k1 ∈ N be the smallest number such that

ξ1 ∈ fk1(U0).

Notice that there is such k1 since f is an expanding map with λ >
√
2. Also

here k1 ≥ 2, since ξ1 /∈ U0∪f(U0). Moreover, f is a continuous and non decreasing
map on the intervals U0, f(U0), · · · fk1−1(U0). So 0, 1 /∈ fk1(U0). Let

U1 :=

{ (
fk1(a), ξ1

)
, 2
∣∣(fk1(a), ξ1)∣∣ > ∣∣fk1(U0)

∣∣,(
ξ1, f

k1(b)
)
, 2
∣∣(fk1(a), ξ1)∣∣ ≤ ∣∣fk1(U0)

∣∣.
By using mean value theorem two times, we have |U1| ≥

∣∣fk1 (U0)
∣∣

2 > λ2

2 |U0|.
By induction method, we construct finite sequences of the numbers {ki}ni=1 and
intervals {Ui}ni=0 as follows. For i ≥ 1 suppose that the number ki and the interval
Ui are characterized. Also suppose that f−1(ξ1) /∈ Ui, then there is the smallest
natural number ki+1 ≥ 2 such that ξ1 ∈ fki+1(Ui). Let

Ui+1 :=

{ (
fki+1(a∗), ξ1

)
, 2
∣∣(fki+1(a∗), ξ1

)∣∣ > ∣∣fki+1(Ui)
∣∣,(

ξ1, f
ki+1(b∗)

)
, 2
∣∣(fki+1(a∗), ξ1

)∣∣ ≤ ∣∣fki+1(Ui)
∣∣,

where a∗ := inf Ui and b∗ := supUi. With this notation, we have |Ui+1| > λ2

2 |Ui|
and this led to |Ui+1| > (λ

2

2 )i+1|U0|. Thus there is a natural number n such that

f−1(ξ1) ∈ Un, since λ >
√
2. Consequently, f(Un) contains at least one of the

intervals I1 and I2. Take index i ∈ {1, 2}, such that f(Un) contains Ii. There

is an interval Ũ ⊂ Un, such that f is continuous on Ũ and f(Ũ) = Ii. On the
other hand, the function fkn is continuous and non decreasing on the interval Un
and so Vn−1 := f−kn(Ũ) is a non empty interval of Un−1. For given 1 < j ≤ n,
let Vn−j := f−kn−j (Vn−j+1) that is a non empty interval of Un−j . Now take
r :=

∑n
j=0 kj + 1 and J := V0 that is a non empty interval of (a, b). Above

discussion says that fr is continuous on J since Vj ⊂ Uj , and moreover fr(J) = Ii
which completes the proof of the lemma. □

Lemma 2.3. For given i ∈ {1, 2}, there is one interval C ⊂ Ii and one natural
number s such that fs is continuous on C and fs(C) = I3−i.

Proof. If |I1| ≤ |I2| then let I∗ := I1 and I∗ := I2. Otherwise, let I∗ := I2
and I∗ := I1.

Claim 1: There is one interval C1 ⊂ I∗ such that f(C1) = I∗.

595



R. Makrooni, M. Pourbarat and N. Abbasi

By using mean value theorem on the intervals I1 and I2 and assumption λ >√
2, one obtains

√
2 < max{ 1−αξ1 , β

1−ξ1 }. For the intervals I1 and I2, two cases

are possible to occur. Case 1. |I1| ≤ |I2|. In this case I∗ = I1 and I∗ = I2. Thus,

I∗ = (0, ξ1) ⊂ (0, β) = f(I∗) since ξ1 ≤ 1−ξ1 and
√
2 < β

1−ξ1 . Case 2. |I1| > |I2|.
In this case I∗ = I2 and I∗ = I1. Thus, I∗ = (ξ1, 1) ⊂ (α, 1) = f(I∗) since

ξ1 > 1− ξ1 and
√
2 < 1−α

ξ1
.

This completed the proof of the lemma since I∗ ⊂ f(I∗).
Claim 2: There are one interval C2 ⊂ I∗ and one natural number t such that

f t is continuous on C2 and f t(C2) = I∗.
We prove the claim in the case of |I1| ≤ |I2| and the other case will be proved

in a similar way. In first case we have I∗ = I1 and I∗ = I2. If f(I1) contains
ξ1, then it contains I2. Thus, there is one interval C2 ⊂ I1 such that f(C2) = I1
and we take t = 1. Otherwise, I◦1 ∩ {ξ1, f−1(ξ1)} = ∅. By using Lemma 2.2, there
is a interval C2 ⊂ I1 and a natural number t such that f t is continuous on C2

and f t(C2) = I2. Note that f t(C2) is not the interval I1, because the sequence
{Ui}ni=0 with U0 = I◦1 , that we construct among the proof of the lemma, satisfying
|Ui| < |Ui+1| and so f(Un) contains I2. Depending on Ii is I∗ or I∗, above claim
gives the existence of a C ⊂ Ii and a natural number s such that fs is continuous
on C and fs(C) = I3−i. □

To prove the Proposition 2.1, assume that interval Ii and (a, b) ⊂ Ii are given.
From Lemma 2.2, there are one interval J ⊂ (a, b), one natural number r and one
index j ∈ {1, 2}, such that fr is continuous on J and fr(J) = Ij . If j=i, we let
k = r and Ji = J . Otherwise, from Lemma 2.4, there is one interval C ⊂ Ij and
one natural number s such that fs is continuous on C and fs(C) = I3−j = Ii.
Here, we let k = r + s. Since, fr is continuous on J and fr(J) = Ij , there is one
interval Ji ⊂ J , such that fr(Ji) = C. Consequently, fk(Ji) = Ii that completed
the proof of the theorem. □

The following theorem states that lower bound
√
2 for the derivation is enough

for occurrence of a full chaos.

Theorem 2.4. Suppose that f is a Baker-like map with λ >
√
2. Then f is

topologically mixing and Per(f) is dense in I.

Proof. To the first assertion, let U ⊂ [0, 1] be an open interval, ξ be the
discontinuity point, I1 = (0, ξ) and I2 = (ξ, 1). Then there exist n ∈ N such that
ξ ∈ fn(U). We can write fn(U) = V1 ∪V2, where V1 ⊂ I1 and V2 ⊂ I2. By Propo-
sition 2.1, there are open intervals U1 ⊂ V1 and U2 ⊂ V2 and positive numbers
k1, k2 ∈ N such that fn+k1(V1) = I1 and fn+k2(V2) = I2. So for n = max{k1, k2}
we have fn+k(U) = I1 ∪ I2. As long as α ≤ β, the map f is topologically mixing.
The second assertion obtain since Ji ⊂ Ii, fk(Ji) = Ii and f

k is continuous on Ji.
This completes the proof of the theorem. □

In the following example, map f has derivative smaller or equal to
√
2 and it

loses topological transitivity on [0, 1].

Example 2.5. Let λ ∈ (1,
√
2) and Baker-like map f as follows:

f(x) =

{
f1(x) = λx− λ

2 + 1, 0 ≤ x < 1
2 ,

f2(x) = λx− λ
2 ,

1
2 ≤ x ≤ 1.
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Since α = 1− λ
2 <

1
2 <

λ
2 = β, we have f(β) < 1

2 < f(α) and

f
(
(α, β)

)
= (1− λ2

2
+
λ

2
, 1) ∪ (0,

λ2

2
− λ

2
).

By applying map f , we obtain

f2
(
(α, β)

)
= (

λ

2
+
λ2

2
− λ3

2
, β) ∪ (α,

λ3

2
− λ2

2
− λ

2
+ 1).

Since 1 < λ <
√
2, then f2

(
(α, β)

)
⊂ (α, β). So f(β) < α < β < f(α), hence

f is not transitive in I.
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1. Introduction

Symbolic dynamics and homoclinic orbits have been studied for the last decades
(See for example [1, 3] and references therein). Today it is probably well known
that such systems have symbolic dynamics with finite degrees of freedom in the
inner region of the homoclinic orbits [2]. Here, we implement the global Poincare
map to show that a spatial symmetric ODE with spiral double homoclinic has
symbolic dynamics of all degrees of freedom in the outer region of the homoclinic
orbits. The ODE is

ẋ = ρx− ωy + F (x, y, z), ẏ = ωx+ ρy +G(x, y, z), ż = λz +H(x, y, z),

where λ > −ρ > 0, ω > 0 and F , G and H are C2 and nonlinear at the origin.
We also assume that the system posses a double symmetric (w.r.t. the origin)
homoclinic orbits Γ1,2, see Figure 1(A).

In [4, Chapt. 27], a Poincare map P̃ = p̃1 ◦ p̃0 was presented by combining two
inner Poincare maps p̃0 : Σ0 → Σ1 and p̃1 : Σ1 → Σ0 based on the cross sections
Σ0, Σ1 as below (See Figure 1(B)),

Σ0 =

{
(x, 0, z) :

ϵe2πρ/ω < x < ϵ,
0 < z < ϵ

}
, Σ1 =

{
(x, y, ϵ) :

0 < |x| < ϵ,
0 < |y| < ϵ

}
.

Theorem 1.1. [4, Ch. 27] The above Poincare map P̃ contains a chaotic
behavior caused by a symbolic dynamics of two degrees of freedom.

In what follows, we concern on constructing the outer Poincare map P =
p3 ◦ p2 ◦ p1 ◦ p0 by defining four cross sections Πi, i = 0, 1, 2, 3, and local Poincare
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maps pi : Πi→ Πi+1, (Π4 = Π0) (See Figure 1(C))

Π0 =

{
(x, 0, z) :

ϵe
2πρ
ω < x < ϵ,

−ϵ < z < 0

}
, Π1 = {(x, y,−ϵ) : |x|, |y| ≤ ϵ} ,

Π2 =

{
(x, 0, z) :

−ϵ < x < −ϵe
2πρ
ω ,

0 < z < ϵ

}
, Π3 = {(x, y, ϵ) : |x|, |y| ≤ ϵ}.

The main result of this paper is summarized as follows and the scheme of its
proof will be arranged in the next sections.

Theorem 1.2. For any N0 ∈ N, The above Poincare map P contains a sym-
bolic dynamic of N0 degrees of freedom which is caused by a N0-fold Smale Horse-
shoe.

Figure 1. (A): The double symmetric homoclinic orbit. (B),(C):
The corresponding cross sections.

2. Poincare Map P , Scheme of Construction

Since the ODE is symmetric w.r.t. the origin, so the Poincare maps p0 and p2 are
symmetric too. They are also constructed by continuing the flow generated by the
corresponding linearized system at the origin. It is easy to see that the time flight
for points (x, 0, z) ∈ Πi, i = 0, 2 to reach to Πj , j = 1, 3 is t = 1

λ log |ϵ/z|. So that

pi(x, 0, z) =Mi(x, 0, z)
T , where

Mi =

 | ϵz | ρλ cos(ωλ log | ϵz |) −| ϵz |
ρ
λ sin(ωλ log | ϵz |) 0

| ϵz |
ρ
λ sin(ωλ log | ϵz |) | ϵz |

ρ
λ cos(ωλ log | ϵz |) 0

0 0 | ϵz |

 , N =

 a b 0
0 0 0
c d 0

 .
The Poincare maps pj , j = 1, 3 are symmetric and they are approximated by

an affine map. Indeed Taylor expansion of p1 about (0, 0,−ϵ) yields to p1(x, y,−ϵ) ≈
(−ϵ, 0, 0)T +N.(x, y, 0)T , where a, b, c and d are constants and, N is given above.
Then, because of the symmetry, p3(x, y, ϵ) ≈ (ϵ, 0, 0)T +N.(x, y, 0)T . Thus, finally
we have the Poincare map P as below

P (x, 0, z) = (ϵ, 0, 0)T +NM2(−ϵ, 0, 0)T +NM2NM1(x, 0, z)
T ,

where M2 is computed for

z := z2 =

(
−ϵ
z

) ρ
λ
(
c cos

(
ω

λ
log
−ϵ
z

)
+ d sin

(
ω

λ
log
−ϵ
z

))
.
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It is easy to see that, the Poincare map P is defined just if z2 > 0, or equiv-
alently, c tan2( ω2λ log −ϵ

z ) − 2d tan( ω2λ log −ϵ
z ) − c < 0. If c > 0 (the case c < 0

is similar); then, for ∆ = d/c, we should have ∆ −
√
∆2 + 1 < tan( ω2λ log −ϵ

z ) <

∆+
√
∆2 + 1. Let ϕ1,2 = tan−1(∆±

√
∆2 + 1), then we find rectangles R1k, R

2
k ⊂ Π0,

(k = 0, 1, 2, . . .), given below such that for (x, 0, z) ∈ Rik, (i = 1, 2) we have z2 > 0.

R1k =

{
(x, 0, z) ∈ Π0 :

ϵe
2πρ
ω < x < ϵ,

−ϵe− λ
ω (2kπ) < z < −ϵe− λ

ω (2kπ+2ϕ1)

}
,

R2k =

{
(x, 0, z) ∈ Π0 :

ϵe
2πρ
ω < x < ϵ,

−ϵe− λ
ω (2kπ+2ϕ2) < z < −ϵe− λ

ω (2kπ)

}
.

Lemma 2.1. Let c > 0. The domain of the Poincare map P is

Dom(P ) =
∪

k≥0,i=1,2

Rik.

Let k = 0, 1, 2, . . . be fixed, then p1 ◦ p0(Rik), (i = 1, 2), are two distinct vertical
rectangles in Π2, see Figure 2(A).

Figure 2. (A): The domain of the global poincare map and its
image on Π2. (B),(C),(D): The process scheme of the symbolic
dynamic of N0 degrees of freedom.

3. Scheme of Proof of Theorem 1.2

Consider the cross section Π2 and for n = 0, 1, 2, . . . define the rectangles

Dn =

{
(x, 0, z) :

−ϵ ≤ x ≤ −ϵe
2πρ
ω ,

ϵe
−2π(n+1)λ

ω ≤ z < ϵe
−2πnλ

ω

}
⊆ Π2.

It is easy to see that Π2 = ∪n≥0Dn.

Lemma 3.1. Let a < 0 and k ≥ 0 be fixed. Then p3 ◦ p2(Dn) is a loop
strip witch intersects Π0 as Figure 2(B). Furthermore, any vertical strip V ⊂ Dn

completes a loop in p3 ◦ p2(Dn).

Thus, if k ≥ 0 is fixed, then from Lemma 2.1, there exists n0 ≥ 0 such that
if n ≥ n0 then p1 ◦ p0(Rik), (i = 1, 2), intersects Dn in two distinct vertical strips.
Therefore, from Lemma 3.1, P (Rik) = (p3 ◦ p2)

(
p1 ◦ p0(Rik)

)
, (i = 1, 2), makes an

infinitely many rounds loop which intersects Π0 in infinitely many folds, see Figure
2(C). It must be noted that a similar argument as Lemmas 2.1 and 3.1 holds if
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c < 0 and a > 0. Thus we may assume that the results above hold if ac < 0. The
following lemma completes the proof of the Theorem 1.2.

Lemma 3.2. Let 1 ≤ N0 ∈ N be fixed and ac < 0. There exists k ≥ 0 such
that P (Rik), (i = 1, 2), intersects Rik in 2N0 distinct vertical strips. These vertical
strips make a N0-fold Smale horseshoe which imposes a symbolic dynamic of N0

degrees of freedom, see Figure 2(D).
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1. Introduction

We consider the Sturm-Liouville equation of the form

−y′′ + q(t)y = λ2y, 0 < t < b,(1)

with Dirichlet boundary conditions

y(0) = 0 = y(b),(2)

and discontinuity conditions y( b2 + 0) = αy( b2 − 0),

y′( b2 + 0) = α−1y′( b2 − 0),
(3)

where λ is the spectral parameter, q(t) and α are real, q(t) ∈ C1([0, b]), α > 0 and
α ̸= 1.

Equation (1) often appears in mathematics, mathematical physics, mathe-
matical chemistry and other branches of natural sciences. Also, boundary value
problems with discontinuities inside the intervals mostly appear in physics, elec-
tronics and mechanics [2, 10].

If the function q(t) in (1) is known and we are going to find the eigenvalues
and the eigenfunctions of the problem (1)-(3), then the problem is called Direct.
If the function q(t) is unknown and the question arises as to what extent q(t) can
be reconstructed from given spectral data, then the problem is called Inverse.

∗Presenter
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Inverse spectral problems, reconstructing the operators from their spectral
characters, are divided into two categories: inverse eigenvalue problems and inverse
nodal problems. Inverse eigenvalue problems were studied by many researchers.
McLaughlin seems to have been the first researcher to consider the inverse nodal
problem in 1986 [5]. In this kind of problem, the eigenvalues togerher with the
roots of the eigenfunctions (nodal points) are used. After McLaughlin, other
researches studied the inverse problem with diverse conditions by using the nodal
points (For example, see [3, 6, 7]).

In recent years, some authors solved the inverse nodal problem with discon-
tinuity conditions without using Prüfer substitutions (For example, see [8, 9]).
Moreover, some authors used the Prüfer substitutions and solved the inverse nodal
problem without discontinuity conditions [1, 4].

In this paper, we give new Prüfer substitutions for discontinuous Sturm-
Liouville problem (1)-(3), differently from the classical Prüfer substitutions. Then,
by using the modified Prüfer substitutions, we present the asymptotic estimates of
the eigenvalues and the nodal points. Then, we present a constructive procedure
for the solution of the inverse problem in two cases, t < b

2 and t > b
2 .

2. Prüfer Substitutions and Preliminary Results

Let y(t, λ) be the solution of the Eq. (1) under the initial conditions

y(0, λ) = 0, y′(0, λ) = 1.

Using the well-known method (See, e.g., [2]), one can obtain that

y(t, λ) =
sin ρt

ρ
+O

(
1

ρ
exp(|τ |t)

)
,

as |ρ| → ∞, where ρ =
√
λ and τ = Imρ. Therefore, we get the following estimate:

y(t, λ) =
sin ρt

ρ
−cos ρt

2ρ2

∫ t

0

q(u)du+
1

2ρ2

∫ t

0

q(u) cos ρ(t− 2u)du+O

(
1

ρ3
exp(|τ |t)

)
.

Let us introduce the aptitude function R(t, λ) and the phase function Θ(t, λ),
which are defined according to the given solution y(t, λ) by y(t, λ) = R(t) sinΘ(λt),

y′(t, λ) = λR(t) cosΘ(λt),

for the Eq. (1). For non-trivial solution of (1), we assume that R is positive.
We are ready to define new Prüfer substitutions for the discontinuous problem

(1)-(3) as follows:

y(t, λ) = R(t) sin(λΘ(t)), if and only if t <
b

2
,

y(t, λ) = R(b− t) sin(λΘ(b− t)), if and only if
b

2
< t < b.

In the following theorem, we present the asymptotic form of the eigenvalues.

Theorem 2.1. The eigenvalues of the problem (1)-(3) have the form

λn =
2nπ

b
+

1

4nπ

{
β + (−1)n−1γ +

8δ2n
b

}
+O(

1

n2
),
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where

β =

∫ b

0

q(t)dt,

γ =

∫ b

0

q(t)dt− 2

∫ b
2

0

q(t)dt,

δn =


arcsin( 1√

1+α2
), if n is even,

− arcsin( |α|√
1+α2

), if n is odd.

3. Main Results

In this section, we obtain the nodal points and present a constructive procedure
for the solution of the inverse problem by using the nodal lengths.

Let λn be an eigenvalue of the problem (1)-(3), and {tjn}n−1
j=1 be the zeros of

the corresponding eigenfunction yn(t) = y(t, λn). In the following theorem, we
give the nodal points of (1)-(3).

Theorem 3.1. The nodal points of the problem (1)-(3) have the following
asymptotic estimates as n→∞:

tjn =
jb

n
+

b2

8n2π2

∫ bjn

0

q(u)du+O(
1

n3
), tjn ∈ (0,

b

2
),(4)

tjn =
jb

n
− jbδn
n2π

+
b2

8n2π2

∫ tjn

0

q(u)du(5)

− b2

8n2π2

∫ b
2

0

q(u)du+O(
1

n3
), tjn ∈ (

b

2
, b).

Denote the nodal lengths of y(t, λn) as follow:

ℓjn = tj+1
n − tjn, 1 ≤ j ≤ n− 1.

Applying (4)-(5), we have the following corollary.

Corollary 3.2. The nodal lengths of the problem (1)-(3) have the following
asymptotic estimates:

ℓjn =
2π

λn
+

1

2λ2n

∫ tj+1
n

tjn

q(u)du+ o(
1

λ2n
), tjn <

b

2
,

ℓjn =
2π

λn
+
δn
λn

+
1

2λ2n

∫ tj+1
n

tjn

q(u)du+ o(
1

λ2n
), tjn >

b

2
.

Denote the nodal set Tn = {tjn}n−1
j=1 . Now, we provide a constructive procedure

to obtain the solution of the inverse nodal problem.

Theorem 3.3. Fix ν = 0 ∨ 1. Given the nodal set Tn. For t ∈ (0, b2 ), the
function q(t) of (1) satisfies the following formula:

q(t) = lim
n→∞

8n2π2

b2

{nℓjn
b
− 1
}
+

1

b
(β + (−1)ν−1γ),

for j = jn(t) = max{j : tjn < t}.
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Theorem 3.4. Fix ν = 0∨ 1 and t ∈ ( b2 , b). Let T be a subset of nodal points
which is dense on (0, b). Then

q(t) = lim
n→∞

16n2π3

b2(2π + δn)

{nℓjn
b
− δn

2π
− 1
}
+

2π(β + (−1)ν−1γ)

b(2π + δν)
,

for j = jn(t) = max{j : tjn < t}.
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1. Introduction

A positive integer n is called a balancing number if 1 + 2 + 3 + · · · + (n − 1) =
(n + 1) + (n + 2) + (n + 3) + · · · + (n + r) for some nonnegative integer r and
calling r as the balancer corresponding to n. Balancing numbers are studied and
generalized in many ways (See [2, 3]). In [4], introduced k-balancing numbers,
denoted by {Bkn}∞n=0, as follows:

For any positive number k, balancing numbers {Bkn}∞n=0 is defined by

Bkn+1 = 6kBkn −Bkn−1, n ⩾ 1,(1)

with the initial conditions Bk0 = 0, Bk1 = 1. For example, let k = 1. We have
{B1

n}∞n=0 = {0, 1, 6, 37, . . . }.
One of the applications of sequences and their matrices is to use in coding

theory. In [5], Apostolic introduced the Fibonacci code which is used in the source
coding as well as in cryptography. Many authors study the generalized Fibonacci
code (See [1]). Here, we define the generalized balancing sequence and its matrice.
Then, we give the coding/decoding method.

2. Main Results

In this section, let k = 1. We generalize relation (1) as follows:

Definition 2.1. For m ⩾ 3, the generalized balancing sequence {Bm,t}∞t=0 is
defined by:

Bm,t = 6Bm,t−1 −Bm,t−2 − · · · −Bm,t−m, t ⩾ 1,

with the initial conditions Bm,0 = Bm,1 = · · · = Bm,t−2 = 0 and Bm,t−1 = 1.
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For example if m = 3, we have {B3,t}∞t=0 = {0, 0, 1, 6, 35, . . .}.

Definition 2.2. Form ⩾ 3, let Qm be anm×m generalized balancing matrix.
We have

Qm =


6 −1 −1 · · · −1 −1
1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0

 ,

Theorem 2.3. For n ⩾ 1 and m = 3, we have

Qn3 =

B3,n+2 −B3,n+1 +B3,n −B3,n+1

B3,n+1 −B3,n +B3,n−1 −B3,n

B3,n −B3,n−1 +B3,n−2 −B3,n−1

 ,
and B3,t is the element of the generalized balancing sequence.

Proof. By using an induction method on n, setting m = 3 and n = 1 and
by Definition 2.2 we have

Q3 =

6 −1 −1
1 0 0
0 1 0

 .
Suppose that the statement holds for n = k. Therefore, for n = k + 1 we have

(Q3)
k+1 =

6 −1 −1
1 0 0
0 1 0

B3,3+k−1 −(B3,3+k−2 +B3,3+k−3) B3,3+k−2

B3,3+k−2 −(B3,3+k−3 +B3,3+k−4) B3,3+k−3

B3,3+k−3 −(B3,3+k−4 +B3,3+k−5) B3,3+k−4


=

 B3,3+k −(B3,3+k−1 +B3,3+k−2) B3,3+k−1

B3,3+k−1 −(B3,3+k−2 +B3,3+k−3) B3,3+k−2

B3,3+k−2 −(B3,3+k−3 +B3,3+k−4) B3,3+k−3

 .
□

Now, we are ready to generalize the idea of the nth power of the matrix Q3

to the nth power of the matrix Qm(m > 3).

Theorem 2.4. For n ⩾ 1 and m ⩾ 4, we have

Qnm =


Bm,n+m−1 a e · · · −(Bm,n+m−2 +Bm,n+m−3) −Bm,n+m−2

Bm,n+m−2 b f · · · −(Bm,n+m−3 +Bm,n+m−4) −Bn+m−3

Bm,n+m−3 c g · · · −(Bm,n+m−4 +Bm,n+m−5) −Bm,n+m−4

...
...

...
. . .

...
...

Bm,n d h · · · −(Bm,n−1 +Bm,n−2) −Bm,n−1

 ,
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where

a = −(Bm,n+m−2 +Bm,n+m−3 + · · ·+Bm,n),

b = −(Bm,n+m−3 +Bm,n+m−4 + · · ·+Bm,n−1),

c = −(Bm,n+m−4 +Bm,n+m−5 + · · ·+Bm,n−2),

d = −(Bm,n−1 +Bm,n−2 + · · ·+Bm,n−m+1),

e = −(Bm,n+m−2 +Bm,n+m−2 + · · ·+Bm,n+1),

f = −(Bm,n+m−3 +Bm,n+m−4 + · · ·+Bm,n),

g = −(Bm,n+m−3 +Bm,n+m−4 + · · ·+Bm,n−1),

h = −(Bm,n−1 +Bm,n−2 + · · ·+Bm,n−m),

and Bm,t is the element of the generalized balancing sequence.

Proof. Similarly Theorem 2.3, we can prove. □
Example 2.5. We have

Q3
4 =


B4,6 −(B4,5 +B4,4 +B4,3) (B4,5 +B4,4) −B4,5

B4,5 −(B4,4 +B4,3 +B4,2) (B4,4 +B4,3) −B4,4

B4,4 −(B4,3 +B4,2 +B4,1) (B4,3 +B4,2) −B4,3

B4,3 −(B4,2 +B4,1 +B4,0) (B4,2 +B4,1) −B4,2

 =


203 −42 −41 −35
35 −7 −7 −6

6 −1 −1 −1
1 0 0 0

 .
According to Theorem 2.4, we can obtain the following results.

Corollary 2.6. For n, t ⩾ 1, we have

(Qnm)× (Qtm) = (Qtm)× (Qnm) = (Qn+tm ).

Corollary 2.7. The determinant of Qnm is equal to (−1)nm.

Here, we find the coding and decoding on the generalized balancing matrix
Qnm and get its error detection and correction.

For m ⩾ 3 and an initial message Mm×m, we will name a transformation
E = M × Qnm as the generalized balancing matrix coding and a transformation
M = E × Qnm−1 as the generalized balancing matrix decoding. Also, the matrix
E is a code matrix. Now, we explain the proposed the method by an example.

Example 2.8. Suppose m = 3, n = 4 and

M =

1 2 4
2 4 3
1 0 2

 .
We have,

Q4
3 =

B3,6 −(B3,5 +B3,4) B3,5

B3,5 −(B3,4 +B3,3) B3,4

B3,4 −(B3,3 +B3,2) B3,3

 =

1177 −238 −203
203 −41 −35
35 −7 −6

 .
By the above notations, we have

E =M ×Q4
3 =

1 2 4
2 4 3
1 0 2

×
1177 −238 −203
203 −41 −35
35 −7 −6

 =

1723 −348 −297
3271 −661 −564
1274 −252 −215

 .
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Also, we obtain

M = E ×Q4
3
−1

=

1723 −348 −297
3271 −661 −564
1274 −252 −215

×
 1 −7 7
−7 43 −14
14 −91 57

−1

=

1 2 4
2 4 3
1 0 2

 .
Now, we get the determinant of the code matrix E. The code matrix E is

defined by E =M ×Qnm. According to Corollary 2.7, we have

detE = det(M ×Qnm) = detM × detQnm = detM × (−1)mn.

Therefore, it is clear that the determinant of the initial message M is connected
with the determinant of the code message E. So, we obtain the determinant of
the matrix M . det(M) treats as a controller of entries of the code matrix E
received from the communication channel. After receiving the code matrix E and
computing the determinant of M , we will compute the determinant of E. Then,
we will compare them together. If detE = ±detM , this means the matrix E has
passed from the communication channel without error. Otherwise, according to
the matrix E of the order, we havem×m “single”, “double”, . . . , “m2-fold” errors.
Thus,

1Cm2 + 2Cm2 + · · ·+m2Cm2 = 2m
2

− 1.

For example, let m = 3. According to the matrix E of the order 3 × 3, we
have “single”, “double”, . . ., “nine-fold” errors. The first assumption is that there
exists only one error in the matrix E received from the communication channel.
It’s clear that there are nine different cases for it as follows:

(1)

 a e2 e3
e4 e5 e6
e7 e8 e9

 , (2)

e1 b e3
e4 e5 e6
e7 e8 e9

 , (3)

e1 e2 c
e4 e5 e6
e7 e8 e9

 ,
(4)

e1 e2 e3
d e5 e6
e7 e8 e9

 , (5)

e1 e2 e3
e4 e e6
e7 e8 e9

 , (6)

e1 e2 e3
e4 e5 f
e7 e8 e9

 ,
(7)

e1 e2 e3
e4 e5 e6
g e8 e9

 , (8)

e1 e2 e3
e4 e5 e6
e7 h e9

 , (9)

e1 e2 e1
e4 e5 e6
e7 e8 i

 ,
where a, b, . . . , i are possible “destroyed” entries. From det(E) = (−1)nm×det(M),
we have

(1)a(e5e9 − e6e8)− e2(e4e9 − e6e7) + e3(e4e8 − e5e7) = (−1)nm × detM,

(2)e1(e5e9 − e6e8)− b(e4e9 − e6e7) + e3(e4e8 − e5e7) = (−1)nm × detM,

...

(9)e1(e5i− e6e8)− e2(e4i− e6e7) + e3(e4e8 − e5e7) = (−1)nm × detM.
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In a similar way, we will obtain a double error for the matrix E. For example, we
consider a bivariate case for matrix E as follows: a b e3

e4 e5 e6
e7 e8 e9

 ,
which possible cases are

(
9

2

)
= 36. Similarly, we obtain “triple”, “four-fold”, . . .,

“nine-fold” errors, which the total number of cases is(
9

1

)
+

(
9

2

)
+ · · ·+

(
9

9

)
= 29 − 1.

Therefore, there are 29 − 1 = 511 errors.
The generalized balancing matrix coding/decoding is calculated very quickly

by computer. Also, the correcting ability and detection ability of this coding
method is very high in comparison with a classical algebraic coding-decoding
method.
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this work, we propose the rough-neural networks (R-NNs) for the one-step
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1. Introduction

Time series (TS) prediction is an important field of science that has many ap-
plications in different aspects such as economic,medical sciences and engineering.
Due to the essence of natural processes and the effects of uncertainties and noises,
TS prediction is a challenging subject in the literature, and the researchers try to
achieve the efficient methodologies in this context.

One of the most powerful approaches in the prediction of TS is the artificial
neural networks (ANNs) [5, 6, 7]. ANNs are computational objects that can
model the nonlinear processes. They are motivated from the nervous system of
human beings. In fact, ANNs are networks of some computational units called
neurons, where their connections contain some parameters. These parameters are
adjusted with some learning algorithms. In recent years, ANNs are used in many
applications and their usefulness have been proved.

Due to the existence of noises and uncertainties in the real TS, the conventional
ANNs have some problems in their predictions. To cope with the uncertainties
in the TS predictions, in this work the rough-neural networks (R-NNs) have been
proposed to predict the nonlinear TS. R-NNs are proposed by Lingers on the basis
of rough set theory [9]. They contain some rough neurons that help them to
handel the uncertainties. A rough neuron is a pair of conventional neurons called
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the upper and lower bound neurons, where the information exchange between
them. In recent years they have been used in some applications such as traffic
volume prediction [9] and system identification [1, 2, 3, 4] and electricity price
forecasting [8].

This work concentrate on the prediction of Mackey-Glass (M-G) TS using R-
NNs. M-G TS is a benchmark problem in this context. This TS is considered as
the outputs of a continuous-time dynamic system and then, it is identified with
R-NNs. An online Lyapunove-based learning algorithm is used to train R-NNs.

The reminder of this work is structured as follows. In Section 2, a brief intro-
duction about the TS prediction is given. In Section 3, the R-NNs are introduced
concisely. In Section 4, the problem of TS prediction using R-NNs is considered
and a Lyapunov-based learning algorithm is proposed for training R-NNs. In
Section 5, the M-G TS is predicted using R-NNs. The conclusions are stated in
Section 6.

2. Time Series Prediction

A TS is a set of data {x(t)}∞t=0, where t show the time index. Theoretically,
x(t) may be considered as a continuous function with the variable t [7]. In the
real processes, the sampled data are used to achieve a discrete dataset. In the
prediction of TS using neural networks, the past values are used to forecast the
future values. In other words, we try to find the function g such that

x(t+ d) = g(x(t), x(t− 1), . . . , x(t− T )),

where T is the number of time steps. If d is chosen 1, then we have the one-step
ahead prediction and if d > 1, then we have the multi-step ahead prediction.

3. Rough-Neural Networks in TS Predictions

This section gives the structure of R-NN in TS prediction and computes its output.
Consider the R-NN, where the hidden neurons are rough and the output neurons
are conventional, as shown in Figure 1. We show the output vector of R-NN with
x̂(t+ 1) and the input vector of R-NN with

x = [x(t), x(t), x(t− 1), x(t− 1), . . . , x(t− T ), x(t− T ), 1]T ,

where x is the lower bound, and x is the upper bound of x, and T is the number
of time steps. The component 1 in the vector x shows the input corresponding to
the biases. Let V and V be the parameters between the inputs and hidden lower
bound neurons and the parameters between the inputs and hidden upper bound
neurons, respectively. Suppose that W and W be the parameters between the
hidden lower bound neurons and output neurons and the parameters between the
hidden upper bound neurons and output neurons, respectively.

Further, let O, and O the outputs of lower bound neurons in the hidden
layer and the outputs of upper bound neurons in the hidden layer, respectively.
Besides, ϕ shows the activation function in the hidden layer. Then, according to
the definition of rough neurons we have [2, 9]:

O = min
(
ϕ, ϕ

)
, O = max

(
ϕ, ϕ

)
,
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Figure 1. Structure of R-NN in TS prediction.

where ϕ = ϕ(V x), ϕ = ϕ(V x). The output x̂(t+ 1) of R-NN is given by

x̂(t+ 1) =WO +WO =W min
(
ϕ, ϕ

)
+W max

(
ϕ, ϕ

)
.

Consider the n-vectors δ and δ such that δj + δ
j
= 1, δj , δ

j
= 0 or 1 (j =

1, 2, . . . , n), and

δjϕj(I) + δ
j
ϕj(I) ≤ ϕj(I), ϕj(I), δjϕj(I) + δjϕj(I) ≥ ϕj(I), ϕj(I).

Then, we can write the the output of R-NN in the form

x̂(t+ 1) = Cϕ(V x) +Dϕ(V x),(1)

where C =Wdiag(δ) +Wdiag(δ) and D =Wdiag(δ) +Wdiag(δ).

4. Time Series Prediction Using Rough-Neural Networks

According to the nature of TS, it can be considered as the outputs of a dynamic
system (without inputs) ż(t) = f(z(t)) where z(t) is the state vector of this system.
Let A is a Hurwitz matrix and f(z(t)) = Az(t) + g(z(t)), where g is the nonlinear

part of f . Now, assume that R-NN can model g using the parameters Ĉ, D̂, V̂ and

V̂ . Thus, using the Eq. (1), we can write

˙̂z = Aẑ+ Ĉϕ
(
V̂ x
)
+ D̂ϕ

(
V̂ x
)
,

where

˙̂
W = e

[
min(ϕ, ϕ)

]
Γ−1
1 ,

˙̂
W = e

[
max(ϕ, ϕ)

]
Γ−1
2 ,

˙̂
V = Γ−1

3 (ϕ
′
)T ĈT exT ,

˙̂
V = Γ−1

4 (ϕ
′

)T D̂T exT .

These online learning laws have been derived on the basis of Lyapunov stability
theory. In [2], a Lyapunov-based learning algorithm is proposed for R-NNs in the
identification of nonlinear discrete-time dynamic systems, where in the present
work, the derivation of learning laws is done for the continuous-time processes. In
the applications the continuous-time models are more reliable than discrete-time
models [1].
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Figure 2. The M-G TS, their predictions and the errors in the
testing of MLP with 64 hidden neurons (part (A)) and and R-NN
with 20 hidden rough neurons (part (B)), in the presence of noises
(SNR=20).

5. Mackey-Glass TS Prediction

The M-G TS is generated using the equation

ż(t) =
0.2z(t− τ)

1 + z10(t− τ)
− 0.1z(t),(2)

where τ = 17. In this work, we used the four existing values z(t), x(t − 6),
x(t − 12), x(t − 18) for the one-step ahead prediction of this TS. The one-step
ahead prediction of (2) is done by MLP and R-NN, where the activation functions
of hidden neurons are sinusoidal.

Table 1. MSEs of MLP and R-NN models in the prediction of
M-G TS. The column nh denotes the number of hidden (rough)
neurons.

Model nh Parameters MSE

MLP 32 160 0.0011
MLP 64 320 0.0009
R-NN 10 160 0.0007
R-NN 20 320 0.0005

The initial values of parameters in the models are some random numbers
between -0.5 and 0.5. The input vector of MLP is x = [z(t), z(t− 6), z(t− 12), 1]T
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and the input vector of R-NN is

x = [z(t), z(t), z(t− 6), z(t− 6), z(t− 12), z(t− 12), 1]
T
.

The design matrix A is chosen as [−25]. The algorithm design parameters for
MLP are chosen as nh = 32, 64, Γ1,Γ2 = 100Inh×nh

,where Γ1 and Γ2 denote
the learning rates. The algorithm design parameters for R-NN are chosen as
nh = 10, 20, Γ1,Γ2,Γ3,Γ4 = 100Inh×nh

,where Γ1, Γ2, Γ3 and Γ4 denote the
learning rates. The sampling time for this simulation is chosen as 0.02.

The MSEs of one-step ahead prediction of M-G TS with MLP and R-NN
models are listed in Table 1. According to the number of parameters given in
the column “Parameters” of the Table 1, the performance of MLP with 32 and
64 hidden neurons are comparable with the performance of R-NN with 10 and 20
hidden rough neurons, respectively. The M-G TS, their predictions and the errors
in the testing of MLP with 64 hidden neurons and and R-NN with 20 hidden
rough neurons (in the presence of noises (SNR=20)), are shown in Figure 2. From
the Table 1 and Figure 2, we can conclude that the performance of R-NN in the
prediction of M-G TS is better than MLP.

6. Conclusion

In this work, we propose the rough-neural networks (R-NNs) for the prediction
of Mackey-Glass time series, where the model are trained with a Lyapunov-based
learning algorithm. Simulation results show the efficiencies of R-NNs. Future
works focus on the usage of R-NNs for the prediction of real-world time series
data. In addition, we try to utilize the R-NNs to solve the nonlinear regression
problems in the other fields of science and engineering.
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1. Introduction

Assume that G is a connected finite graph not containing loop or multiple edges.
Its vertex and edge sets are represented by V (G) and E(G), respectively. The
greatest distance between a vertex u ∈ V (G) and other vertices of G is called the
eccentricity of u.

A graph invariant is a numerical value associated to a graph that is preserved
under graph isomorphisms. In recent years, several graph invariants based on the
graph theoretical notion of eccentricity have been proposed, most of which are
successfully applied in QSAR and QSPR studies in chemistry.

The eccentric connectivity index is one of the best-known vertex-eccentricity-
based graph invariants. This invariant was suggested in 1997 by Sharma et al. [9]
as

ξc(G) =
∑

v∈V (G)

dG(v)εG(v) =
∑

vu∈E(G)

(
εG(v) + εG(u)

)
,

where dG(v) and εG(v) denote the degree and eccentricity of v, respectively. The
total eccentricity ζ(G) is the sum of all vertex eccentricities of G.

Malik [7] put forward the inverse total eccentricity index of G as

ζ−1(G) =
∑

v∈V (G)

1

εG(v)
.

Hua and Miao [6] proposed the eccentric connectivity coindex as

ξ
c
(G) =

∑
vu/∈E(G)

(
εG(v) + εG(u)

)
.

The bound of the above summation is on non-adjacent vertex pairs of G.
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The connective eccentricity index of G was introduced by Gupta et al. [4] as

ξce(G) =
∑

v∈V (G)

dG(v)

εG(v)
=

∑
vu∈E(G)

( 1

εG(v)
+

1

εG(u)

)
.

The inverse connective eccentricity index of G was proposed by Malik [7] as

ξ−1
ce (G) =

∑
v∈V (G)

εG(v)

dG(v)
.

Ashrafi and Ghorbani [2] introduced the modified eccentric connectivity index
of G as

ξc(G) =
∑

v∈V (G)

δG(v)εG(v),

in which δG(v) =
∑
vu∈E(G) dG(u).

Gupta et al. [5] considered the eccentric adjacency index of G as

ξad(G) =
∑

v∈V (G)

δG(v)

εG(v)
.

The eccentric harmonic index of G was defined by Ediz [3] as

He(G) =
∑

vu∈E(G)

2

εG(v) + εG(u)
.

The non-self-centrality number was put forward by Xu et al. [10] as

N(G) =
1

2

∑
v,u∈V (G)

|εG(v)− εG(u)| .

Many graphs are composed of simpler ones by the use of operations on graphs
and, as a consequence, the properties of the resulting graphs are strongly connected
to the properties of their building blocks. From that fact, the study of composite
graphs is an important research subject in graph theory. In this paper, we consider
some distance-based graph invariants including the above- mentioned ones, and
study them for some families of composite graphs.

2. Main Results

Here, we consider some families of composite graphs such as double graphs, ex-
tended double covers, and strong double graphs, and study the relation between
some distance-based graph invariants of the resulting graphs with the correspond-
ing invariants of the parent graph. In this section, we assume that G has n
vertices, m edges, and υ vertices of degree n − 1. We also assume that, V (G) =
{u1, u2, . . . , un}, V = {v1, v2, . . . , vn} and W = {w1, w2, . . . , wn}.

2.1. Double Graph. The double graph D[G] of G is a graph with vertex set
V ∪W and edge set {vivj , wiwj , viwj , vjwi : uiuj ∈ E(G)} (See [8]).

Theorem 2.1.

1) ξ
c
(D[G]) = 2

(
2ξ
c
(G) + ζ(G) + υ

)
.

2) ξce(D[G]) = 2
(
2ξce(G)− υ(n− 1)

)
.

3) ξ−1
ce (D[G]) = ξ−1

ce (G) + υ
n−1 .
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4) ξc(D[G]) = 8
(
ξc(G) +

∑
εG(ui)=1 δG(ui)

)
.

5) ξad(D[G]) = 4
(
2ξad(G)−

∑
εG(ui)=1 δG(ui)

)
.

6) He(D[G]) = 4He(G)− υ
3 (υ + 2n− 3).

7) N(D[G]) = 4
(
N(G)− υ(n− υ)

)
.

2.2. Extended Double Cover. The extended double cover ED[G] of G is
a graph with vertex set V ∪W and edge set {viwj , vjwi : uiuj ∈ E(G)} ∪ {viwi :
1 ≤ i ≤ n} (See [1]).

Theorem 2.2.

ξ
c
(ED[G]) = 2

(
ξ
c
(G) + (n− 1)ζ(G) + 2(n(n− 1)−m)

)
.

Theorem 2.3. If G ≇ Kn, then

ξce(ED[G]) <
1

2

(
ξce(G) + ζ−1(G) + 2m+ n

)
.

Let ID(G) =
∑n
i=1

1
dG(ui)

. This invariant is known as the inverse degree of G.

Theorem 2.4. If G ≇ K2, then

ξ−1
ce (ED[G]) <

1

2

(
ξ−1
ce (G) + ID(G) + ζ(G) + n

)
.

Let M1(G) =
∑n
i=1 dG(ui)

2. This invariant is called the first Zagreb index.

Theorem 2.5.

ξc(ED[G]) = 2
(
ξc(G) + 2ξc(G) + ζ(G) +M1(G) + n+ 4m

)
.

Theorem 2.6. If G ≇ Kn, then

ξad(ED[G]) <
1

2

(
ξad(G) + 2ξce(G) +M1(G) + ζ−1(G) + 4m+ n

)
.

Theorem 2.7. If G ≇ Kn, then

He(ED[G]) <
1

4

(
2He(G) + ζ−1(G) + 2m+ n

)
.

Theorem 2.8.
N(ED[G]) = 4N(G).

2.3. Strong Double Graph. The strong double graph SD[G] of G is a graph
with vertex set V ∪W and edge set {vivj , wiwj , viwj , vjwi : uiuj ∈ E(G)}∪{viwi :
1 ≤ i ≤ n} (See [8]).

Theorem 2.9.

1) ξ
c
(SD[G]) = 4ξ

c
(G).

2) ξce(SD[G]) = 4
(
ξce(G) + ζ−1(G)

)
.

3) ξ−1
ce (SD[G]) < 1

4

(
ξ−1
ce (G) + 2ζ(G)

)
.

4) ξc(SD[G]) = 2
(
4ξc(G) + 4ξc(G) + ζ(G)

)
.

5) ξad(SD[G]) = 2
(
4ξad(G) + 4ξce(G) + ζ−1(G)

)
.

6) He(SD[G]) = 4He(G) + ζ−1(G).
7) N(SD[G]) = 4N(G).
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Abstract. The computational study of genome rearrangements is one of the
most important research area in computational biology and bioinformatics.
In this paper, we define a novel graph data structure as a rearrangement

model for whole genome alignment in large scales. This model is capable
of realizing non-collinear changes as well as collinear changes. Also we apply
our rearrangement graphical model to present a dynamic programing method

for alignment of an arbitrary sequence to a pan-genome reference which is
encoded as an outerplanar graph. In this method, a gapped alignment is
considered, where the gaps could be affine, linear or constant.

Keywords: Genome analysis, Graph theory, Multiple alignment,
Genome rearrangement.
AMS Mathematical Subject Classification [2010]: 92B05,
92C05, 92C42.

1. Introduction

The analysis of genome rearrangements has started from 1983, when Dobzhansky
and Sturtevant [1] observed that the evolution of certain Drosophila species could
be explained using a sequence of reversals. In 1988, Jeffrey Palmer [2] observed
some interesting patterns in the evolution of plant organelles and he compared the
mitochondrial genomes of cabbages and turnips. The aim of genome rearrange-
ment is to investigate the order of homologous segments and infer genomic dis-
tances based on the number of breakpoints or predict scenarios of evolutionary
changes. Graphs can assist in improving genome comparison through multiple
alignments and also analysis of rearrangements. In addition, graphs provide an
intuitive representation of similarities and changes between genomes, and so visu-
alize alignment structures.

2. Method

To represent the common structure between homologous segments in a set of
whole genome sequences, we define the concept of “Alignment-set” as follows: An
“Alignment-set” is a set of maximal homologous segments with maximal length
and denoted by A-set. The size of “A-set” is the number of aligned segments.
Note that each A-set may contain multiple segments of the same genome when
there is some duplication in a genome. The essential information about possible
inversions is the orientation of segments with respect to each other and not the
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orientation of the A-set representation. An adjacency of two A-sets ∂1, ∂2 ∈
∑
S is

called a breakpoint if they are adjacent in at least two segments but not in all their
segments. Figure 1, is shown an example of 4 breakpoints in multiple alignment
of 3 sequences.

3. Discussion

We construct a graph G which every A-set is a vertex of G and there is an edge
between two A-sets if there adjacency between two segments of them. In fact,
the graph G is an adjacency graph. Since one A-set may contain more than one
segment from the same genome, each A-set can be adjacent to itself and also
there may be multiple edges between two vertices. Using pDFS Algorithm [3],
we compute biconnected components of G. Since in [4] has shown that a graph is
outerplanar if and only if every one of its biconnected components is outerplanar,
we restrict the outerplanarity to biconnected subgraphs. In [5] a conceptually
simple algorithm is presented to determine if a graph is a maximal outerplanar
or outerplanar graph. So we apply MOP − TEST Algorithm [5] to recognize
outerplanar and non-outerplanar subgraphs. If all of the connected components
of G are outerplanar graphs, then we do not need to third step and we can skip
that. But if there is one or more non-outerplanar components, they contain some
minors isomorphic to K4 or K2,3. By merging two adjacency-connected vertices of
K4 minors and two non-adjacency vertices of K2,3 minors, we form graph G to an
outerplanar graph G1. Finally, to make our graph biconnected, we need to make it
bridgeless. In the second step, if there is any bridge as a biconnected component,
we easily merge vertices of that bridge just like you see in Figure 2.

Figure 1. Breakpoints in multiple alignment.

4. Conclusion

Genome rearrangements problem consists of finding the evolution between genomes
by solving a combinatorial puzzle to find the shortest sequence of rearrangements
that can transform each genome into another. In this paper, we described a new
graph theoretical data structure as a genome rearrangement model which rep-
resents and analyss repeat segments in a set of related genomes. Our method
determines an outer planar graph model for multiple alignment of whole genome
sequences. Also, this graph representation provides a circular visualization to
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Figure 2. The graph G according to 3 sequences ATCG-
GTTGGGATCGT (Red), ATCAGGATGATCGT (Green) and
ATCTGGCCATAGG (Blue).

simplify the study of evolutionary relationships between aligned genomes. Com-
paring with traditional alignment matrix or partial order alignment graph, our
model is more flexible by classification non-collinear structural changes like in-
version, translocations and duplications as well as collinear changes like insertion
and deletion. This rearrangement model can be use in computational analysis of
cancer genomic data and other chromosomal aberrations.
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Abstract. In this paper, numerical solution of the Coronavirus disease 2019

(COVID-19) model is presented on the basis of nonstandard finite difference
(NSFD) scheme. At first, the positivity and boundedness of the model are
discussed. Afterwards, the stability analysis of the equilibrium point model is
discussed in detail. The nonstandard finite difference scheme is implemented

to study the dynamic behaviours COVID-19 model. Numerical results show
that the NSFD scheme approach is easy to be implemented and accurate
when applied to COVID-19 model.

Keywords: Boundedness, COVID-19, Nonstandard finite difference
scheme, Positivity, Stability.
AMS Mathematical Subject Classification [2010]: 34D05,
92D30.

1. Introduction

Modeling and simulation are important decision tools that can be useful to con-
trol human diseases [1]. Since each disease exhibits its own particular biological
characteristics, the model need to be adapted to each specific case in order to be
able to tackle real situations. Coronavirus disease 2019 is an infections disease
emerging in China that has rapidly spread in other countries. This is a new virus
and a completely new situation. In March 2020, the disease was confirmed in more
than 118000 cases reported in 114 countries [2]. The virus spreads from human-
to-human via droplets or through contaminated surfaces which in turn enter the
nasal mucosa or mucosa eyes through touch. Disease is characterized by cough,
fever and sore throat and may result in virus induced pneumonia and progressive
respiratory failure owing to alveolar damage caused by the virus. As a result, the
mortality rates from the illness also relatively high. Mathematical modeling pro-
vides a tool to better understand the transmission dynamics of infectious diseases
[3]. These models are one of the most widely used to describe the dynamics of
epidemics. In this framework, the changes in the populations of several classes of
interacting individuals are described using ordinary differential equations (ODEs).
It is not always possible to find the exact solution of the nonlinear models that
have at least these ODEs. Therefore, it is sometimes more useful to find numerical
solutions of these type systems in order to program easily and visualize the results.
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Whenever continuous dynamic systems have been converted into discrete system,
the properties of continues systems are not transferred fully to the the discrete
systems in the case of large stepsize in the discrete systems. However, if we use
NSFD scheme, the properties of the continuous dynamic systems can be preserved
into its discrete counterpart. The NSFD scheme is developed for compensating
the weakness, such as numerical instability that may be caused by standard finite
difference (SFD) scheme. In this research, we apply susceptible, exposed, infected
and recovered (SEIR) framework to model the dynamic of COVID-19. A sensible
model for the COVID-19 at time t is a system of form

S′(t) = −βSI,
E′(t) = λ+ βSI − σE,
I ′(t) = σE − γI − µI,
R′(t) = γI,
S(0) = S0, E(0) = E0, I(0) = I0, R(0) = R0 .

(1)

In this model, S(t) is the number of susceptible population in the community
of time t, E(t) is the number of exposed (but not infectious) people at time t, I(t)
stands the number of infected people at time t and R(t) denotes the number of
recovered people at time t. Here β is rate the susceptible individual may become
exposed to the Coronavirus, σ is passing the time to show the symptoms of COVID-
19 or time to identify clinically as positive to the virus, γ is rate the patient can
be recovered, µ is rate the patients whose condition is critical can end up losing
their lives and λ is rate of virus infection from the exposed people who arrived
from the other countries.

Since, the exact solution of the model (1) cannot be easily derived, therefore a
numerical approach is used. A number of numerical methods has been developed
to solve systems of ordinary differential equations (ODEs). However, the available
methods such as standard finite difference schemes and Runge-Kutta sometimes
fail to generate the main properties of the model such as stability and positivity.
In fact, this can lead to the incorrect interpretation of studied phenomena. The
NSFD scheme is the numerical scheme that can be used to simulate the solutions
of mathematical model. It is found that the NSFD schemes overcome the weakness
of the standard finite difference and Runge-Kutta methods. The reminder of the
paper is organized as follows. In Section 2, we prove positivity and boundedness
of the solution model of (1). Section 3 deals with stability analysis of COVID-
19 model. In Section 4 we provide a summary of the important feature of the
procedures for constructing NSFD scheme for systems of ODEs. In continuation,
we formulated a NSFD scheme for the COVID-19 model. Finally, Numerical
experiments are included to show the efficiency of the NSFD scheme.

2. Positivity and Boundedness

In this section, we prove positivity and boundedness of the solution model of (1).
We remark that, the 4th-equation of system (1) is not coupled with the other
equations. Thus, we can consider the first three equations of that system.

Theorem 2.1. If S(0), I(0) and E(0) > 0, then S(t), I(t) ≥ 0 and E(t) ≥ 0.

Proof. Since the EI-coordinate plane is invariant under the flows of system,
therefore for all t ≥ 0, S(t) > 0. Let A = {t ≥ 0 : E(t) < 0} and B = {t ≥
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0 : I(t) < 0}, we will show that C = A ∪ B = ∅. Suppose that C ̸= ∅ and
t0 = inf(C). So, t0 > 0 and for all t ∈ (0, t0], I(t) ≥ 0 and E(t) ≥ 0. Now,
we show that E(t0) ̸= 0. Suppose that E(t0) = 0, it follows that from the third

equation of system (1) dE(t0)
dt = λ + βS(t0)I(t0) > 0. Hence, there is ε > 0

such that dE(t)
dt > 0, for all second t ∈ (t0 − ε, t0 + ε) ⊆ (0, +∞). Therefore

E(t0) > E(t0 − ε) ≥ 0. This clearly forces E(t0) > 0. By a similar argument,
we conclude that I(t0) > 0. Therefore t0 ̸= inf(C) and we conclude that C is
empty. □

Lemma 2.2. Let K(t) be a derivative function from [0, +∞] to R such that
K(t) ≥ 0 for every t ≥ 0. If α > 0, β ∈ R, such that K ′(t)+αK(t) ≤ β, for every

t ≥ 0, then K(t) ≤ K(0) + β
α .

Lemma 2.3. If S(0), E(0) ≥ 0 and I(0) > 0, then S(t) ≤ S(0), for every
t ≥ 0.

Proof. By (1) it is obvious that dS
dt = −βSI ≤ 0. So, for all t ≥ 0, S(t) ≤

S(0). □

Lemma 2.4. If K(t) = S(t) +E(t), then K(t) ≤ L, where L = S(0) +E(0) +
λ+σS(0)

σ .

Proof. Our proof starts with the observation that K ′(t) = λ − σE. So
K ′(t) + σK(t) = λ + σS(t) ≤ λ + σS(0). Therefore by the previous lemma

K(t) ≤ K(0) + λ+σS(0)
σ . This establishes the formula. □

Lemma 2.5. If G(t) = S(t) +E(t) + I(t) then G(t) ≤M , where M = G(0) +
λ+(γ+µ)L

γ+µ .

Proof. Our proof is based on the fact that G′(t) = λ− (γ + µ)I(t). Conse-
quently, G′(t) + (γ + µ)G(t) = λ + (γ + µ)K(t) ≤ λ + (γ + µ)L. It follows that

G(t) ≤ G(0) + λ+(γ+µ)L
γ+µ . □

3. Stability Analysis of the COVID-19 Model

To evaluate the equilibrium points of the system Eq. (1), let

− βSI = 0,

λ+ βSI − σE = 0,

σE − γI − µI = 0.

Then the equilibrium point is E = (0, λσ ,
λ

γ+µ ).

Theorem 3.1. System (1) is always locally asymptotically stable around E.

Proof. At the equilibrium point E, the Jacobian matrix is

J(E) =


−β λ

γ + µ
0 0

β
λ

γ + µ
−σ 0

0 σ −γ − µ

 .
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The corresponding eigenvalues are λ1 = −β λ
γ+µ , λ2 = −σ and λ3 = −γ−µ. Since

λi < 0, i = 1, 2, 3, therefore the equilibrium point E is asymptotically stable. □

4. A Nonstandard Finite Difference Scheme for the COVID-19 Model

The NSFD schemes were firstly proposed by Mickens for ODEs. To describe a
NSFD scheme, we consider an ODE such as

x′(t) = f(t, x, λ), x(0) = x0, t ∈ [0, tf ],(2)

where λ is a parameter. Given a discretization tn = nh.
NSFD scheme is constructed by following two main steps. First, the derivative

of the left-hand side of Eq. (2) is replaced by a discrete from x′(tk) ≈ xk+1−xk

Φ(h,λ) ,

where xk is an approximation of x(tk) and 0 < Φ(h) < 1 with Φ(h) = h+O(h2).
Second, the nonlinear term in the (2) is replaced by a nonlocal discrete approx-
imation F (t, xk+1, xk, . . . , λ) depending on some of the previous approximation
[4, 5, 6, 7]. Hence, the gained scheme is described as follows

Φ(xk+1)− Φ(xk)

Φ(h, λ)
= F (t, xk+1, xk, . . . , λ) .

Examples of the denominator function that satisfy the above condition are

h, sin(h), 1 − e−h, 1−e−h

λ . The second NSFD scheme requirement is that the
dependent functions should be modeled on the discrete time computational grid.
For example, the terms x2 and xy can be approximated using xnxn+1 and xn+1yn,
respectively. Applying the NSFD scheme, we obtain the following discrete model
for model (1) 

Sk+1 − Sk
Φ1(h)

= −βSk+1Ik ,

Ek+1 − Ek
Φ2(h)

= λ+ βSk+1Ik − σEk+1 ,

Ik+1 − Ik
Φ3(h)

= σEk+1 − (γ + µ)Ik+1 .

(3)

Rearranging the Eq. (3), we get
Sk+1 =

Sk
1 + hβIk

,

Ek+1 =
Ek + λΦ2(h) + βΦ2(h)Sk+1Ik

1 + σΦ2(h)
,

Ik+1 =
σΦ3(h)Ek+1 + Ik
1 + (γ + µ)Φ3(h)

,

(4)

where

Φ1(h) = h, Φ2(h) =
eσh − 1

σ
, Φ3(h) =

e(γ+µ)h − 1

γ + µ
.

The Eq. (4) should be computed in sequence, because the value of Sk+1 is used
for calculating the value Ek+1, which is then used to calculate the value of Ik+1.
Observe that right hand side of (4) is always positive for all stepsize h. Therefore,
solution of (4) is always positive with any positive initial value and stepsize.
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5. Numerical Results

In this section, the numerical solutions of the proposed NSFD scheme on three
cases are presented. In the first simulation we consider the parameter values
β = 0.07, γ = 0.24, µ = 0.02, σ = 1.4 and λ = 0.000205 with initial condition value
S0 = 20, E0 = 30 and I0 = 25 for simulating time 1000s and stepsize h = 0.2.
Figure 1 shows that the NSFD scheme (4) converges to the equilibrium point
E = (0, 0.000146, 0.000125). In Figure 2 the numerical solutions of NSFD scheme
(4) are depicted by choosing β = 0.7, γ = 0.14, µ = 0.06, σ = 0.13 and λ = 3 with
initial condition S0 = 20, E0 = 30, I0 = 25 and stepsize h = 0.5. The Figure 2
confirms that (Sk, Ek, Ik) converges to the equilibrium point E = (0, 23.07, 15).
Finally, In Figure 3 we have plotted the behaviour of the NSFD scheme for the
value parameters β = 0.7, γ = 0.14, µ = 0.06, σ = 0.13 and λ = 100 for simulating
time t = 1000s and stepsize h = 0.2. The Figure 3 confirms that (Sk, Ek, Ik)
approaches the equilibrium point solution E = (0, 789, 23, 500). The results show
that the numerical solutions of the proposed NSFD scheme preserves the main
properties of the COVID-19 model such positivity and stability.
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Figure 1. Numerical simulation with h = 0.2 for NSFD scheme
in E − I plane.
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Figure 2. Numerical simulation with h = 0.5 for NSFD scheme
in E − I plane.
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Figure 3. Numerical simulation with h = 0.2 for NSFD scheme
in E − I plane.
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Abstract. As generalizations and alternatives of classical algebraic struc-
tures there have been introduced in 2019 the Neutro Algebraic Structures (or

Neutro Algebras) and Anti Algebraic structures (or Anti Algebras). Unlike
the classical algebraic structures, where all operations are well-defined and all
axioms are totally true, in Neutro Algebras and Anti Algebras the operations
may be partially well-defined and the axioms partially true or respectively

totally outer-defined and the axioms totally false. These Neutro Algebras
and Anti Algebras form a new field of research, which is inspired from our
real world. In this paper, we study neutrosophic quadruple algebraic struc-
tures and Neutro Quadruple Algebraic Structures. Neutro Quadruple Group

is studied in particular and several examples are provided. It is shown that
(NQ(Z),÷) is a Neutro Quadruple Group. Substructures of Neutro Quadru-
ple Groups are also presented with examples.
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1. Introduction

It was started from Paradoxism, then to Neutrosophy, and afterwards to Neutro-
sophic Set and Neutrosophic Algebraic Structures. Paradoxism [10] is an interna-
tional movement in science and culture, founded by Smarandache in 1980s, based
on excessive use of antitheses, oxymoron, contradictions, and paradoxes. During
the three decades (1980-2020) hundreds of authors from tens of countries around
the globe contributed papers to 15 international paradoxist anthologies. In 1995,
Smarandache extended the paradoxism (based on opposites) to a new branch of
philosophy called neutrosophy (based on opposites and their neutrals), that gave
birth to many scientific branches, such as: neutrosophic logic, neutrosophic set,
neutrosophic probability and statistics, neutrosophic algebraic structures, and so
on with multiple applications in engineering, computer science, administrative
work, medical research etc. Neutrosophy is an extension of Yin-Yang Ancient Chi-
nese Philosophy and of course of Dialectics. From Classical Algebraic Structures to
Neutro Algebraic Structures and Anti Algebraic Structures. In 2019 Smarandache
[8] generalized the classical glgebraic structures to Neutro Algebraic Structures (or
Neutro Algebras) whose operations and axioms are partially true, partially indeter-
minate, and partially false as extensions of Partial Algebra, and to Anti Algebraic
Structures (or AntiAlgebra) whose operations and axioms are totally false. “Al-
gebra” can be: groupoid, semigroup, monoid, group, commutative group, ring,
field, vector space, BCK-Algebra, BCI-Algebra, K-algebra, BE-algebra, etc. (See
[1]-[7]).

In the present paper, we study neutrosophic quadruple algebraic structures
and Neutro Quadruple Algebraic Structures. Neutro Quadruple Group is studied
in particular and several examples are provided. It is shown that (NQ(Z),÷) is
a Neutro Quadruple Group. Substructures of Neutro Quadruple Groups are also
presented with examples.

The sets of natural/integer/rational/real/complex numbers are respectively
denoted by N ⊆ Z ⊆ Q ⊆ R ⊆ C.

The Neutrosophic Quadruple Numbers and the Absorbance Law were intro-
duced by Smarandache in 2015 [9]; they have the general form:
N = a + bT + cI + dF, where a, b, c, d may be numbers of any type (natural, in-
teger, rational, irrational, real, complex, etc.), where “a” is the known part of the
neutrosophic quadruple number N , while “bT + cI + dF” is the unknown part of
the neutrosophic quadruple number N ; then the unknown part is split into three
subparts: degree of confidence (T ), degree of indeterminacy of confidence (non-
confidence) (I), and degree of non-confidence (F ). N is a four-dimensional vector
that can also be written as: N = (a, b, c, d).

There are transcendental, irrational etc. numbers that are not well known,
they are only partially known and partially unknown, they may have infinitely
many decimals. Not even the most modern supercomputers can compute more
than a few thousands decimals, but the infinitely many left decimals still remain
unknown. Therefore, such numbers are very little known (because only a finite
number of decimals are known), and infinitely unknown (because an infinite num-

ber of decimals are unknown). Take for example:
√
2 = 1.4142 . . . .
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2. Arithmetic Operations on the Neutrosophic Set of Quadruple
Numbers

Definition 2.1. A neutrosophic set of quadruple numbers denoted byNQ(X)
is a set defined by

NQ(X) = {(a, bT, cI, dF ) : a, b, c, d ∈ R or C},
where T, I, F have their usual neutrosophic logic meanings.

Definition 2.2. A neutrosophic quadruple number is a number of the form
(a, bT, cI, dF ) ∈ NQ(X). For any neutrosophic quadruple number (a, bT, cI, dF )
representing any entity which may be a number, an idea, an object, etc, a is called
the known part and (bT, cI, dF ) is called the unknown part. Two neutrosophic
quadruple numbers x = (a, bT, cI, dF ) and y = (e, fT, gI, hF ) are said to be equal
written x = y if and only if a = e, b = f, c = g, d = h.

Multiplication of two neutrosophic quadruple numbers cannot be carried out
like multiplication of two real or complex numbers. In order to multiply two
neutrosophic quadruple numbers a = (a1, a2T, a3I, a4F ), b = (b1, b2T, b3I, b4F ) ∈
NQ(X), the prevalence order of {T, I, F} is required.

Two neutrosophic quadruple numbersm = (a1, b1T, c1I, d1F ) and n = (a2, b2T,
c2I, d2F ) cannot be divided as we do for real and complex numbers. Since the
literal neutrosophic components T , I and F are not invertible, the inversion of a
neutrosophic quadruple number or the division of a neutrosophic quadruple num-
ber by another neutrosophic quadruple number must be carried out a systematic
way. Suppose we are to evaluate m/n. Then we must look for a neutrosophic
quadruple number p = (x, yT, zI, wF ) equivalent to m/n. In this way, we write

m/n = p

⇒ (a1, b1T, c1I, d1F )

(a2, b2T, c2I, d2F )
= (x, yT, zI, wF )

⇔ (a2, b2T, c2I, d2F )(x, yT, zI, wF ) ≡ (a1, b1T, c1I, d1F ).(1)

Assuming the prevalence order T ≻ I ≻ F and from the equality of two
neutrosophic quadruple numbers, we obtain from Eq. (1)

a2x = a1,

b2x+ (a2 + b2 + c2 + d2)y + b2z + b2w = b1,

c2x+ (a2 + c2 + d2)z + c2w = c1,

d2x+ (a2 + d2)w = d1,

a system of linear equations in unknowns x, y, z and w. By similarly assuming the
prevalence order T ≺ I ≺ F , we obtain from Eq. (1)

a2x = a1,

b2x+ (a2 + b2)y = b1,

c2x+ c2y + (a2 + b2 + c2)z = c1,

d2x+ d2y + d2z + (a2 + b2 + c2 + d2)w = d1,

a system of linear equations in unknowns x, y, z and w.
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3. Neutrosophic Quadruple Algebraic Structures, Neutrosophic
Quadruple Algebraic Hyper Structures and Neutro Quadruple

Algebraic Structures

3.1. Neutrosophic Quadruple Algebraic Structures and Neutrosophic
Quadruple Algebraic Hyper Structures. Let NQ(X) be a neutrosophic
quadruple set and let ∗ : NQ(X) × NQ(X) → NQ(X) be a classical binary
operation on NQ(X). The couple (NQ(X), ∗) is called a neutrosophic quadruple
algebraic structure. The structure (NQ(X), ∗) is named according to the classical
laws and axioms satisfied or obeyed by ∗.

If ∗ : NQ(X) × NQ(X) → P(NQ(X)) is the classical hyper operation on
NQ(X). Then the couple (NQ(X), ∗) is called a neutrosophic quadruple hyper
algebraic structure; and the hyper structure (NQ(X), ∗) is named according to
the classical laws and axioms satisfied by ∗.

3.2. Neutro Quadruple Algebraic Structures. In this section unless oth-
erwise stated, the optimistic prevalence order T ≻ I ≻ F will be assumed.

Definition 3.1. LetNQ(G) be a nonempty set and let ∗ : NQ(G)×NQ(G)→
NQ(G) be a binary operation on NQ(G). The couple (NQ(G), ∗) is called a neu-
trosophic quadruple group if the following conditions hold:

(QG1) x ∗ y ∈ G ∀x, y ∈ NQ(G) [closure law].
(QG2) x ∗ (y ∗ z) = (x ∗ y) ∗ z ∀x, y, z ∈ G [axiom of associativity].
(QG3) There exists e ∈ NQ(G) such that x ∗ e = e ∗ x = x ∀x ∈ NQ(G) [axiom

of existence of neutral element].
(QG4) There exists y ∈ NQ(G) such that x ∗ y = y ∗ x = e ∀x ∈ NQ(G) [axiom

of existence of inverse element], where e is the neutral element of NQ(G).
If in addition ∀x, y ∈ NQ(G), we have

(QG5) x ∗ y = y ∗ x, then (NQ(G), ∗) is called a commutative neutrosophic
quadruple group.

Definition 3.2. [Neutro Sophication of the law and axioms of the neutro-
sophic quadruple]

(NQ(G)1) There exist some duplets (x, y), (u, v), (p, q),∈ NQ(G) such that x∗y ∈ G
(inner-defined with degree of truth T) and [u ∗ v = indeterminate (with
degree of indeterminacy I) or p ∗ q ̸∈ NQ(G) (outer-defined/falsehood
with degree of falsehood F)] [Neutro Closure Law].

(NQ(G)2) There exist some triplets (x, y, z), (p, q, r), (u, v, w) ∈ NQ(G) such that
x ∗ (y ∗ z) = (x ∗ y) ∗ z (inner-defined with degree of truth T) and [[p ∗
(q ∗ r)]or [(p ∗ q) ∗ r] = indeterminate (with degree of indeterminacy I) or
u∗ (v ∗w) ̸= (u∗v)∗w (outer-defined/falsehood with degree of falsehood
F)] [NeutroAxiom of associativity (Neutro Associativity)].

(NQ(G)3) There exists an element e ∈ NQ(G) such that x ∗ e = e ∗ x = x (inner-
defined with degree of truth T) and [[x∗e]or[e∗x] = indeterminate (with
degree of indeterminacy I) or x ∗ e ̸= x ̸= e ∗ x (outer-defined/falsehood
with degree of falsehood F)] for at least one x ∈ NQ(G) [Neutro Axiom
of existence of neutral element (Neutro Neutral Element)].
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(NQ(G)4) There exists an element u ∈ NQ(G) such that x ∗ u = u ∗ x = e (inner-
defined with degree of truth T) and [[x∗u]or[u∗x)] = indeterminate (with
degree of indeterminacy I) or x ∗ u ̸= e ̸= u ∗ x (outer-defined/falsehood
with degre of falsehood F)] for at least one x ∈ G [Neutro Axiom of exis-
tence of inverse element (Neutro Inverse Element)], where e is a Neutro
Neutral Element in NQ(G).

(NQ(G)5) There exist some duplets (x, y), (u, v), (p, q) ∈ NQ(G) such that x ∗ y =
y ∗ x (inner-defined with degree of truth T) and [[u ∗ v]or[v ∗ u] =
indeterminate (with degree of indeterminacy I) or p ∗ q ̸= q ∗ p (outer-
defined/falsehood with degree of falsehood F)] [Neutro Axiom of com-
mutativity (Neutro Commutativity)].

Definition 3.3. A Neutro Quadruple Group NQ(G) is an alternative to the
neutrosophic quadruple group Q(G) that has at least one NeutroLaw or at least
one of {NQ(G)1, NQ(G)2, NQ(G)3, NQ(G)4} with no Anti Law or Anti Axiom.

Definition 3.4. A Neutro Commutative Quadruple Group NQ(G) is an al-
ternative to the commutative neutrosophic quadruple group Q(G) that has at
least one Neutro Law or at least one of {NQ(G)1, NQ(G)2, NQ(G)3, NQ(G)4}
and NQ(G)5 with no Anti Law or Anti Axiom.

NeutroClosure of ÷ over NQ(Z)
For the degree of truth, let a = (0, 0T, I, 0F ) ∈ NQ(Z). Then

a÷ a =
(0, 0T, I, 0F )

(0, 0T, I, 0F )
= (1− k1 − k2, 0T, k1I, k2F ) ∈ NQ(Z), k1, k2 ∈ Z.

For the degree of indeterminacy, let a = (4, 5T,−2I,−7F ), b = (0,−6T, I, 3F ) ∈
NQ(Z). Then

a÷ b = (4, 5T,−2I,−7F )
(0,−6T, I, 3F )

=

(
4

0
, ?T, ?I, ?F

)
̸∈ NQ(Z).

For the degree of falsehood, let a = (0, 0T, 0I, F ), b = (0, 0T, 0I, 2F ) ∈ NQ(Z).
Then

a÷ b = (0, 0T, 0I, F )

(0, 0T, 0I, 2F )
=

(
1

2
− k, 0T, 0I, kF

)
̸∈ NQ(Z), k ∈ Z.

Neutro Associativity of ÷ over NQ(Z)
For the degree of truth, let a = (6, 6T, 6I, 6F ), b = (2, 2T, 2I, 2F ),
c = (−1, 0T, 0I, 0F ) ∈ NQ(Z). Then

a÷ (b÷ c) = (6, 6T, 6I, 6F )÷ ((2, 2T, 2I, 2F )÷ (−1, 0T, 0I, 0F ))
= (6, 6T, 6I, 6F )÷ (−2, 0T, 0I, 0F )
= (−3, 0T, 0I, 0F ).

(a÷ b)÷ c = ((6, 6T, 6I, 6F )÷ (2, 2T, 2I, 2F ))÷ (−1, 0T, 0I, 0F )
= (3, 0T, 0I, 0F )÷ (−1, 0T, 0I, 0F )
= (−3, 0T, 0I, 0F ).
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For the degree of indeterminacy, let a = (4,−T, 2I,−7F ), b = (0, T, 0I,−8F ),
c = (0, 0T, 9I,−F ) ∈ NQ(Z). Then

a÷ (b÷ c) = (4,−T, 2I,−7F )÷ ((0, T, 0I,−8F )÷ (0, 0T, 9I,−F ))

= (4,−T, 2I,−7F )÷
(
8− k, 1

8
T,−9I, kF

)
, k ∈ Z

= (?, ?T, ?I, ?F ).

(a÷ b)÷ c = ((4,−T, 2I,−7F )÷ (0, T, 0I,−8F ))÷ (0, 0T, 9I,−F )

=

(
4

0
, ?T, ?I, ?F

)
÷ (0, 0T, 9I,−F )

= (?, ?T, ?I, ?F ).

For the degree of falsehood, let a = (0, 5T, 0I, 0F ), b = (0, T, 0I, 0F ), c =
(5, 0T, 0I, 0F ) ∈ NQ(Z). Then

a÷ (b÷ c) = (0, 5T, 0I, 0F )÷ ((0, T, 0I, 0F )÷ (5, 0T, 0I, 0F ))

= (0, 5T, 0I, 0F )÷
(
0,

1

5
T, 0I, 0F

)
= (25− k1 − k2 − k3, k1T, k2I, k3F ) ∈ NQ(Z), k1, k2, k3 ∈ Z.

(a÷ b)÷ c = ((0, 5T, 0I, 0F )÷ (0, T, 0I, 0F ))÷ (5, 0T, 0I, 0F )

= (5− k1 − k2 − k3, k1T, k2I, k3F )÷ (5, 0T, 0I, 0F ), k1, k2, k3 ∈ Z

=

(
1

5
(5− k1 − k2 − k3),

1

5
k1T,

1

5
k2I,

1

5
k3F

)
̸∈ NQ(Z).

Existence of Neutro Unitary Element and Neutro Inverse Element in
NQ(Z) w.r.t. ÷

Let a = (0, T, 0I, 0F ), b = (0, 0T, I, 0F ), c = (0, 0T, 0I, F ) ∈ NQ(Z). Then

a÷ a =
(0, T, 0I, 0F )

(0, T, 0I, 0F )
= (1− k1 − k2 − k3, k1T, k2I, k3F ) , k1, k2, k3 ∈ Z.(2)

b÷ b =
(0, 0T, I, 0F )

(0, 0T, I, 0F )
= (1− k1 − k2, 0T, k1I, k2F ) , k1, k2 ∈ Z.(3)

c÷ c =
(0, 0T, 0I, F )

(0, 0T, 0I, F )
= (1− k, 0T, 0I, kF ) , k ∈ Z.(4)

a÷ b =
(0, T, 0I, 0F )

(0, 0T, I, 0F )
= (−(k1 + k2), T, k1I, k2F ) , k1, k2 ∈ Z.(5)

b÷ a =
(0, 0T, I, 0F )

(0, T, 0I, 0F )
= (−(k1 + k2 + k3), k1T, k2I, k3F ) , k1, k2, k3 ∈ Z.(6)

For the degree of truth, putting k1 = 1, k2 = k3 = 0 in Eq. (2), k1 = 1, k2 = 0
in Eq. (3) and k = 1 in Eq. (4) we will obtain a ÷ a = a, b ÷ b = b and
c ÷ c = c. These show that a, b, c are respectively Neutro Unitary Elements and
Neutro Inverse Elements in NQ(Z).

For the degree of falsehood, putting k1 ̸= 1, k2 ̸= k3 ̸= 0 in Eq. (2), k1 ̸=
1, k2 ̸= 0 in Eq. (3) and k ̸= 1 in Eq. (4) we will obtain a÷ a ̸= a, b ÷ b ̸= b and
c ÷ c ̸= c. These show that a, b, c are respectively not Neutro Unitary Elements
and Neutro Inverse Elements in NQ(Z).
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Neutro Commtativity of ÷ over NQ(Z)
For the degree of truth, putting k1 = 1, k2 = k3 = 0 in Eq. (2), k1 = 1, k2 = 0 in
Eq. (3) and k = 1 in Eq. (4) we will obtain a ÷ a = a, b ÷ b = b and c ÷ c = c.
These show the commutativity of ÷ wrt a, b and c NQ(Z).

For the degree of falsehood, putting k1 = k2 = k3 = 1 in Eq. (5) and Eq. (6),
we will obtain a÷ b = (−2, T, I, F ) and b÷ a = (−3, T, I, F ) ̸= a÷ b. Hence, ÷ is
Neutro Commutative in NQ(Z).

Definition 3.5. Let (NQ(G), ∗) be a neutrosophic quadruple group. A
nonempty subset NQ(H) of NQ(G) is called a Neutro Quadruple Subgroup of
NQ(G) if NQ(H), ∗) is a neutrosophic quadruple group of the same type as
(NQ(G), ∗).

Example 3.6.

i) For n = 2, 3, 4, . . . (NQ(nZ),−) is a Neutro Quadruple Subgroup of
(NQ(Z),−).

ii) For n = 2, 3, 4, . . . (NQ(nZ),×) is a Neutro Quadruple Subgroup of
(NQ(Z),×).

Example 3.7.

i) Let NQ(H) = {(a, bT, cI, dF ) : a, b, c, d ∈ {1, 2, 3}} be a subset of the
Neutro Quadruple Group (NQ(Z4),−). Then (NQ(H),−) is a Neutro
Quadruple Subgroup of (NQ(Z4),−).

ii) Let NQ(K) = {(w, xT, yI, zF ) : a, b, c, d ∈ {1, 3, 5}} be a subset of the
Neutro Quadruple Group (NQ(Z6),×). Then (NQ(H),×) is a Neutro
Quadruple Subgroup of (NQ(Z6),×).

4. Conclusion

We have in this paper studied neutrosophic quadruple algebraic structures and
Neutro Quadruple Algebraic Structures. Neutro Quadruple Group was studied in
particular and several examples were provided. It was shown that (NQ(Z),÷) is
a Neutro Quadruple Group. Substructures of Neutro Quadruple Groups were also
presented with examples.
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Abstract. In this paper, we deal with the order conditions of a family of an
additive semi-implicit Runge-Kutta schemes for solving ordinary differential
equations (ODEs). It is shown that for the multi-dimensional case, some of

extracting order conditions must be added to the order conditions obtained
from these methods in the one-dimensional case.
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1. Introduction

The effects of viscosity, heat conduction, diffusion and hypersonic flows often con-
tain non equilibrium processes of thermal excitations and chemical reactions be-
cause of high gas temperature and high speeds. One of the major difficulties
in computing such flows is the stiffness of the governing equations in tempo-
ral integrations. So, additive semi-implicit Runge-Kutta methods for stiff semi-
discrete systems of ordinary differential equations for transient hypersonic flows
with thermo-chemical non-equilibrium systems are considered by some authors
[1, 2]. For example, the researchers in [2] have studied on three different semi-
implicit Runge-Kutta methods for additively split differential equations in the
form of u′ = f(u)+g(u), where f is treated by explicit Runge-Kutta methods and
g is simultaneously treated by three implicit Runge-Kutta methods. They have
formulated parameter identification as a multi-dimensional problem. They have
derived the coefficients of up to third-order accurate additive semi-implicit Runge-
Kutta methods. Also, they have considered a general s-stage additive semi-implicit
Runge-Kutta methods as follows:

un+1 = un +
s∑
i=1

wiKi,

Ki = h

f(un +
i−1∑
j=1

bijKj) + g(un +
i−1∑
j=1

cijKj + aiKi)

 .(1)

The parameters wi, bij , cij and ai are coefficients were be determined from accuracy
and stability conditions. Authors in [2] obtained the order conditions of methods
(1) such that these methods are of up to third-order and then authors in [1]
used this order conditions for nonstiff systems. Authors in [2] declared that these

∗Presenter
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order conditions are obtained based on Taylor expansion. Therefore, in this work,
we focus on the specialized way which exploit the order conditions for the multi-
dimensional ODEs. In the following, we proof that based on the multi-dimensional
Taylor expansion one must has 9 order conditions instead of 8 order conditions,
when we want to obtain the third order method.

2. Extracting Order Conditions for the Multi-Dimensional ODEs

At first we consider ODE system

x′(t) = F (t, x(t)), t ∈ [t0, T ], x(t0) = x0,(2)

where x0 ∈ Rd and d ≥ 1 is positive integer and F : [t0, T ] × Rd −→ R. Without
lose of generality, instead of system (2) we can consider autonomous form

x′(t) = F (x(t)), t ∈ [0, T ], x(t0) = x0,

where x0 ∈ Rd and d ≥ 1 is positive integer and F : Rd −→ R. Therefore in this
case for stepsize h, according to multi-dimensional Taylor expansion, for the Ith
component of x(t0 + h) we have

xI(t0 + h) = xI0 + hF I +
h2

2!
(F ′F )I +

h3

3!
(F ′′(F, F ) + F ′(F ′(F )))I +O(h4),

where the components of vectors are denoted by superscript indices which chosen
as capitals and

(F ′F )I =

d∑
J=1

F J
∂F I

∂xJ
,(3)

(F ′′(F, F ))I =

d∑
J,L=1

F JFL
∂2F I

∂xJ∂xL
,(4)

(F ′(F ′(F )))I =
d∑

J,L=1

FL
∂F I

∂xJ
∂F J

∂xL
.(5)

Now if we put F = f + g then we have

xI(t0 + h) = xI0 + h(f + g)I +
h2

2!
((f + g)′(f + g))I

+
h3

3!
((f + g)′′((f + g), (f + g)) + (f + g)′((f + g)′((f + g))))I +O(h4),

and so according to (3)-(5) we get,

xI(t0 + h) = xI0 + h(f + g)I +
h2

2!

(
d∑

J=1

(f + g)J
∂f I

∂xJ
+

d∑
J=1

(f + g)J
∂gI

∂xJ

)

+
h3

3!

 d∑
J,L=1

(f + g)J(f + g)L
∂2f I

∂xJ∂xL
+

d∑
J,L=1

(f + g)J(f + g)L
∂2gI

∂xJ∂xL

+

d∑
J,L=1

(f + g)L
∂f I

∂xJ
∂fJ

∂xL
+

d∑
J,L=1

(f + g)L
∂f I

∂xJ
∂gJ

∂xL
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+
d∑

J,L=1

(f + g)L
∂gI

∂xJ
∂fJ

∂xL
+

d∑
J,L=1

(f + g)L
∂gI

∂xJ
∂gJ

∂xL

+O(h4).

Therefore based on multi-dimensional Taylor expansion of xI(t0 + h) the method
is of first order if:

w1 + w2 + w3 = 1,

second order if

w2b21 + w3(b31 + b32) =
1

2
,

w1a1 + w2(a2 + c21) + w3(a3 + c31 + c32) =
1

2
,

third order if

w2b
2
21 + w3(b31 + b32)

2 =
1

3
,

w3b21b32 =
1

6
,

w2a2b21 + w3(b21c32 + a3(b31 + b32)) =
1

6
,(6)

w2b21a1 + w3(a1b31 + a2b32 + c21b32) =
1

6
,(7)

w1a
2
1 + w2(a

2
2 + c21(a1 + a2)) + w3(a1c31 + c32(a2 + c21) + a3(a3 + c31 + c32)) =

1

6
,

w1a
2
1 + w2(a2 + c21)

2 + w3(a3 + c31 + c32)
2 =

1

3
,

while authors in [1, 2] obtained 8 order conditions. This is due to the fact that
in one dimensional case (d = 1) the terms

d∑
J,L=1

(f + g)L
∂f I

∂xJ
∂gJ

∂xL
,

and

d∑
J,L=1

(f + g)L
∂gI

∂xJ
∂fJ

∂xL
,

be equal while for multi-dimensional case (d > 1) the situation is different and
these are not equal. Indeed, in the case of d = 1 instead of order conditions
(6)-(7), we have the following order condition

w2(b21a2 + b21a1) + w3(a1b31 + a2b32 + c21b32 + b21c32 + a3b31 + a3b32) =
1

3
.

3. Conclusion

In this study, we investigate the order conditions of a family of an additive semi-
implicit Runge-Kutta schemes for solving ordinary differential equations. Also, we
consider some recent attempts about these methods. Finally, we proved that in
the multi-dimensional problem (d > 1) we must have 9 order conditions instead of
8 order conditions obtained by [1, 2].
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Abstract. This article we consider a nonlinear inverse problem related to
an equation modeling shallow water under small rotation. By using noisy
data, we apply two B-Splines with different levels, the quitic B-spline and
septic B-spline, to study this problem. For both levels, we prove the stability

and convergence analysis. The results show that an excellent estimation of
the unknown functions of the nonlinear inverse problem.

Keywords: Shallow water, Inverse problem, Quartic B-spline,
Stability.
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1. Introduction

It is known that the KdV-Burgers equation

ut + buxxx + uux − auxx = f(x, t),

was derived in [10] as a dissipated version of the KdV equation

ut + buxxx + uux = f(x, t),(1)

to describe the propagation of undular bores in shallow water, and weakly non-
linear plasma waves with certain dissipative effects. Ignoring the dissipation term
the KdV equation, has solitary wave solutions. In this paper, we consider the
Ostrovsky-Burgers equation

(ut + buxxx + uux − auxx)x = γu+ f(x, t).(2)

Equation (2) was appeared in modeling internal waves in the ocean or surface
waves in a shallow channel with an uneven bottom under the effects of the inter-
facial friction (See [5, Chapter 1] and [6, 11]). In (2), and the positive constants
γ and a are the rotation and friction coefficients, respectively. The function f
denotes the external force and b is the dispersion coefficient which its sign is re-
lated to the type of dispersion. Ignoring the dissipation term uxx, (2) leads to the
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Ostrovsky equation which was derived by Ostrovsky in 1978 [9] to model weakly
nonlinear surface and internal waves in a rotating ocean; see also [3, 4]. It was
also demonstrated in [8] that the nonlinear oblique magneto-acoustic waves in a
rotating plasma can be described by (1). A model of the propagation of long
internal waves in a deep rotating fluid can be found in [2]. If one considers the
limit of no high-frequency dispersion b = 0, the resulting equation is called the
OstrovskyHunter equation [1]. It is worth noting that in spite of similarity of
structures of (1) and the KdV equation, the Ostrovsky equation, unlike the KdV
equation, is evidently nonintegrable by the method of inverse scattering transform
[4].

In the present paper, we study numerically Eq. (2) in the domain (x, t) ∈
[0, 1]× [0, T ] with the final time T , the initial condition

u(x, 0) = p(x), x ∈ [0, 1],(3)

and boundary conditions

u(0, t) = f1(t), ux(0, t) = f2(t), t ∈ [0, T ],(4)

u(1, t) = g1(t), ux(1, t) = g2(t), uxx(1, t) = g3(t), t ∈ [0, T ],(5)

where p(x), g1(t), g2(t), g3(t) and f(x, t) are continuous known functions, while
f1(t), f2(t), and the wave amplitude u(x, t) are unknown which remain to be
determined. Here, we consider two numerical methods to find the solutions of
(2), Collocation method based on septic B-spline basis functions and quintic B-
spline basis functions. It is known that the use of B-splines have many different
features and are effective in numerical works. One of the most important feature
is that the conditions on the continuity of functions are built-in and have the
smooth interpolation functions. On the other hand, as the support of each B-
spline is embedded only on a few sub-intervals, the resulting matrix related to the
discretized equation will be tightly banded.

Moreover, if one combine with collocation, the solution procedure will be clear
and shorten.

2. Main Results

We first use the Septic B-spline collection method, region of the solution of the
problem is restrained over 0 ≤ x ≤ 1. The Eqs. (2)-(5) will be solved with the
over-specified conditions

u(a, t) = h1(t), ux(a, t) = h2(t), uxx(a, t) = h3(t),(6)

where t ∈ [0, T ] and 0 < a < 1 is a fixed point. We define the septic B-spline
Bj(x) for j = −3(1)N + 3 as in [7]. Now let Um(x, t) ∈ ζ be the B-spline approx-

imation to the exact solution u(x, t) in the form Um(x, t) =
∑m+3
j=−3 cj(t)Bj(x).

By substituting the trial functions Bj into the above identity, the nodal values of

U,U
′
, U

′′
, U

′′′
, U (4) and U (5) are obtained in terms of the element parameters cm
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by

Um = cm−3 + 120cm−2 + 1191cm−1 + 2416cm + 1191cm+1 + 120cm+2 + cm+3,

U ′
m =

7

h
(−cm−3 − 56cm−2 − 245cm−1 + 2451cm+1 + 56cm+2 + cm+3),

U ′′
m =

42

h2
(cm−3 + 24cm−2 + 15cm−1 − 80cm + 15cm+1 + 24cm+2 + cm+3),

U ′′′
m =

210

h3
(−cm−3 − 8cm−2 + 19cm−1 − 19cm+1 + 8cm+2 + cm+3),

U (4)
m =

840

h4
(cm−3 − 9cm−1 + 16cm − 9cm+1 + cm+3),

U (5)
m =

2520

h5
(−cm−3 + 4cm−2 − 5cm−1 + 5cm+1 − 4cm+2 + cm+3).

First we use the following finite difference approximation to discretize

unt =
un+1 − un

k
and un =

un+1 + un

2
, where un = u(x, tn) and u0 = u(x, 0) =

p(x). The nonlinear term is linearized by using the quasi-linearization formula:

f(un+1, un+1
x ) = f(un, unx) + (un+1 − un)∂f

n

∂u + (un+1
x − unx)

∂fn

∂ux
. By replacing the

approximate solution U with u, and using the nodal values U and the derivatives
of U , System, consists of (N +1) linear equation with (N +7) unknowns. To have
a unique solution of the above system we are required the over-specified condi-
tion (6). Suppose that a = xs, 1 ≤ s ≤ N − 1, thusly we have u(xs, t) = h1(t),
ux(xs, t) = h2(t) and uxx(xs, t) = h3(t), where t ∈ [0, T ] Hence, we derive that
AC = B is a system of (N + 7) linear equations with (N + 7) unknowns.

We notice that the matrix A is ill-condition, so we obtain solution of system
AC = B by using the Tikhonov regularization method.we check the convergence

of our algorithm Suppose that U(x) =
∑N+3
j=−3 cjBj(x) is the B-spline collocation

approximation of u(x). The following lemma and theorem will be important in
our analysis that proofs of them have been done.

Lemma 2.1. If {B−3, B−2, B−1, B0, . . . , BN , BN+1, BN+2, BN+3} be the septic
B-spline, then

∣∣∣∑N+3
j=−3Bj(x)

∣∣∣ ≤ 7456 for x ∈ [0, 1].

Theorem 2.2. Let u ∈ C8[0, 1] be an exact solution of (2) such that
∣∣∣∂8u(x,t)

∂x8

∣∣∣ ≤
L for all x and t. If U(x, t) is the numerical approximation by our method of u,
then ∥u(x)− U(x)∥ ≤ O(k + h4).

Also we will solve the inverse problem (2) by a new modification of the quintic
Bsplines collocation method with the over-specified conditions u(a, t) = h1(t) and
ux(a, t) = h2(t), where t ∈ [0, tf ], 0 < a < 1 is a fixed point. We consider the
quintic B-splines [12]. Let Um(x, t) ∈ ζ be the B-spline approximation to the exact

solution u(x, t) in the form Um(x, t) =
∑m+2
j=−2 cj(t)Bj(x), where cj(t) are time

dependent parameters determined by the boundary and collocation conditions.
Substituting the trial functions Bj into the above equation, the nodal values of U ,
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U ′, U ′′, U
′′′

and U (4) are obtained in terms of the element parameters cm by

Um = cm−2 + 26cm−1 + 66cm + 26cm+1 + cm+2,

U ′
m =

5

h
(−cm−2 − 10cm−1 + 10cm+1 + cm+2),

U ′′
m =

20

h2
(cm−2 + 2cm−1 − 6cm + 2cm+1 + cm+2),

U ′′′
m =

60

h3
(−cm−2 + 2cm−1 − 2cm+1 + cm+2),

U (4)
m =

120

h4
(cm−2 − 4cm−1 + 6cm − 4cm+1 + cm+2).

(7)

System, contains (N + 1)-linear equation with (N + 5) unknowns. To have a
unique solution of the above system, we are required the above over-specified
condition. Assume that a = xs, 1 ≤ s ≤ N − 1. Equation (5) holds and moreover
u(xs, t) = h1(t), ux(xs, t) = h2(t), where t ∈ [0, T ]. If we consider m = s in (7),
then we have

h1(tn+1) = cn+1
s−2 + 26cn+1

s−1 + 66cn+1
s + 26cn+1

s+1 + cn+1
s+2 ,

h2(tn+1) =
5

h
(cn+1
s−2 + 10cn+1

s−1 − 10cn+1
s+1 − c

n+1
s+2 ),

g1(tn+1) = cn+1
N−2 + 26cn+1

N−1 + 66cn+1
N + 26cn+1

N+1 + cn+1
N+2,

g2(tn+1) =
5

h
(cn+1
N−2 + 10cn+1

N−1 − 10cn+1
N+1 + cn+1

N+2).

Consequently, AC = B is a system of (N + 5) linear equations with (N + 5)-
unknown functions. We notice that the matrix A is ill-condition, so we obtain
solution of system AC = B by using the Tikhonov regularization method. Similar
to the convergence of the previous part, we need to recall the following lemma and
theorem that proofs of them have been done,

Lemma 2.3. The B-splines {B−2, B−1, B0, . . . , BN , BN+1, BN+2} satisfies the
following inequality

∣∣∣∑N+2
j=−2Bj(x)

∣∣∣ ≤ 186 for x ∈ [0, 1].

Theorem 2.4. Let u(x, t) ∈ C6[0, 1] be the exact solution of (2) such that∣∣∣∂6u(x,t)
∂x6

∣∣∣ ≤ L. Assume that U(x, t) is the numerical approximation by our methods,

then ∥u(x)− U(x)∥ ≤ O(k + h2).

We investigated the stability for both methods by applying Von-Neuman sta-
bility analysis.

Example 2.5. In our first example, we consider the nonlinear inverse problem
(2) and (3)-(5), where a = 1, b = 5 and γ = 3 with the initial data u(x, 0) = sin(x),
and the external force f(x, t) = cos(t+x)+ 3

2 sin(t+x)+ cos2(t+x)− sin2(t+x).
An exact solutions of this problem is u(x, t) = sin(x + t) with u(0, t) = f1(t) =
sin(t), ux(0, t) = f2(t) = cos(t). Tables 1-3 show total error S for some values of
N for each method.

We have employed successfully the septic B-spline and the quintic B-spline
method to estimate unknown boundary conditions in an inverse problem related
to the Ostrovsky-Burgers equations (2) and (3)-(5). By comparing the numerical
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Table 1. The comparison between exact and numerical solutions
of Example 2.5 for u(0.1, t), |u(0.1, t)− u∗(0.1, t)|, by the Quintic
and Septic B-spline methods with N = 30, 50, 100.

N=30 N=50 N=100

t quintic Septic quintic Septic quintic Septic

0.1 4.8e− 04 7.2e− 06 8.7e− 04 6.5e− 05 1.4e− 03 4.5e− 05

0.5 1.7e− 03 1.5e− 05 2.7e− 03 1.8e− 08 3.5e− 03 2.2e− 05

1 3.0e− 03 2.5e− 06 4.2e− 03 3.3e− 06 5.2e− 03 2.1e− 05

Sf1 5.9758e− 05 1.1963e− 06 8.7071e− 05 1.4328e− 06 1.1311e− 04 1.3533e− 06

Table 2. The comparison between exact and numerical solutions
of Example 2.5 for f1(t), |f1(t)−f∗1 (t)|, by employing the Quintic
and Septic B-spline methods with N = 30, 50, 100.

N=30 N=50 N=100

t quintic Septic quintic Septic quintic Septic

0.1 1.9e− 05 1.9e− 05 1.1e− 04 5.9e− 05 1.2e− 04 1.9e− 06

0.5 8.2e− 04 2.8e− 05 6.2e− 04 1.3e− 05 4.0e− 04 2.0e− 07

1 1.6e− 03 1.5e− 06 1.1e− 03 3.7e− 06 6.5e− 04 4.6e− 07

Sf1 3.1833e− 05 1.1633e− 06 2.3106e− 05 1.1575e− 06 1.3381e− 05 9.8944e− 07

Table 3. The comparison between exact and numerical solutions
of Example 2.5 for f2(t), |f2(t)−f∗2 (t)|, by the Quintic and Septic
B-spline methods with N = 30, 50, 100.

N=30 N=50 N=100

t quintic Septic quintic Septic quintic Septic

0.1 4.9e− 03 1.9e− 03 3.6e− 04 6.3e− 03 1.2e− 02 7.7e− 04

0.5 2.8e− 02 3.7e− 03 2.8e− 02 2.4e− 03 4.0e− 02 1.5e− 04

1 5.2e− 02 3.5e− 03 5.5e− 02 3.0e− 04 6.5e− 02 1.1e− 04

Sf1 9.6783e− 04 7.7698e− 05 0.0012 8.3921e− 05 0.0013 3.1064e− 05

results, we showed that the accuracy and stability of the septic B-spline method
is more than ones for the the quintic B-spline method. Since, the associated
coefficient matrix in the septic B-spline method and quintic B-spline method are
usually ill-conditioned,we have used the Tikhonov regularization method to obtain
a stable numerical approximation of solution.
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Abstract. In this work, we propose the radial basis function (RBF) par-
tition of unity method (PUM) for system of steady-state diffusion-reaction
equations with discontinuous coefficients in 2D. The collocation based RBF-
PUM is a local mesh-free method that reduces the computational cost of

the global versions. To ensure the stability of the solution, as the shape pa-
rameter ε goes to zero, the RBF-QR algorithm is employed. This algorithm
bypasses troubles associated with the determination of ε and enables us to
get higher accuracy. Our results show the potential of proposed method in

handling arbitrary interfaces and relatively large scale domains.
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1. Introduction

In the past decades, research utilizing mesh-free methods have gained significant
attention in solving engineering problems. Especially, in the simulation of prob-
lems consisting of different materials or the same material but at different states,
in which the coefficients of the partial differential equations (PDEs) might have
discontinuities along the material interfaces. Such problems are known as interface
problems. For many applications in real-world problems, the material interfaces
and boundaries can be complicated and very irregular. However for geometri-
cally large-scale problems, the computational cost related to dense matrices is the
main issue of the global methods [1]. This research is devoted to a localized RBF
method, the collocation based RBF partition of unity method (RBF-PUM) [2, 3].
This method leads to well-conditioned discrete systems which allow us to address
large-scale problems. In this method, the domain is covered by a collection of
overlapping patches.

However, we face with numerical ill-conditioning for small values of shape
parameter ε that correspond to increasing flatness of C∞ RBFs. Note that the
near-flat parameter regime is often of particular computational interest in terms
of accuracy. It has been found out that this difficulty can be bypassed by apply-
ing proper algorithms [3, 4]. The stable RBF algorithms make the choice of ε
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much less critical. One type of these algorithms is the RBF-QR algorithm which
includes a change from the C∞ Gaussian basis function to a better-conditioned
basis. Therefore, we employ the RBF-QR algorithm that allows stable evaluations
for any small ε [5, 6]. Our aim of this paper is to investigate the local RBF-PUM in
solving the steady-state coupled diffusion-reaction system in 2D involving compli-
cated interface within relatively large domain sizes. Let Ω ⊂ R2 is separated into
two disjoint subdomains Ω− and Ω+ by an interface Γ such that Ω = Ω+∪Ω−∪Γ.
Consider the following general steady-state coupled diffusion-reaction system with
Dirichlet boundary conditions,

−div(α(x)∇u(x)) + β1(x)u(x) + β2(x)v(x) = f1(x),(1)

−div(σ(x)∇v(x)) + γ1(x)v(x) + γ2(x)u(x) = f2(x), x ∈ Ω±,(2)

where the coefficients may have finite discontinuities along the interface. The
jumps in solutions and their derivatives can be specified as jump conditions across
the interface, i.e.,

[u(x)]Γ = h1(x), [αun(x)]Γ = h2(x),(3)

[v(x)]Γ = k1(x), [σvn(x)]Γ = k2(x), x ∈ Γ,(4)

where vector n is the unit normal direction pointing to Ω+ side.

1.1. The RBF-QR Partition of Unity Method. To apply the partition of

unity method for a problem, a set of overlapping patches {Ωj}Np

j=1 are constructed

to cover the domain Ω, i.e., Ω ⊆
∪Np

j=1 Ωj . Note that there should be an upper
bound K for the number of patches that overlap at any x ∈ Ω. The global
approximant û(x) in Ω is created as follow

û(x) =

Np∑
j=1

wj(x)ûj(x),(5)

where ûj(x) are the local approximants on the patches Ωj , j = 1, . . . , Np. The

weight functions {wj(x)}Np

j=1 are non-negative and compactly supported on Ωj , j =

1, . . . , Np that satisfy
∑Np

j=1 wj(x) = 1 for x ∈ Ω. Also, the weights must be
sufficiently smooth according to the differential operators of the problem to be
solved. We use the Shepard’s method applied to the compactly supported C2

Wendland function to construct the weight functions, i.e.,

wj(x) =
φj(x)

Np∑
i=1

φi(x)

, j = 1, . . . , Np,

where the function φ(r) need to be mapped in Ωj [2]. Let ϕ be a RBF and{
xjk

}Nj

k=1
be the local set of nodes in patch Ωj . The local approximant ûj(x) for

every patch Ωj is defined as follow

ûj(x) =

Nj∑
k=1

αjkϕ(∥x− xjk∥),(6)
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where
{
αjk

}Nj

k=1
denotes the unknowns. By evaluating (6) at

{
xjk

}Nj

k=1
we have

Ûj = Ajαj ,(7)

in which Ûj = [ûj(x
j
1), ûj(x

j
2), . . . , ûj(x

j
Nj

)]T , αj = [αj1, α
j
2, . . . , α

j
Nj

]T , and (Aj)i,k

= ϕ(∥xji −xjk∥), i, k = 1, . . . , Nj . In this work, the Gaussian RBF is used to guar-
antee the invertibility of Aj for distinct nodes. Using (7), the local approximant
ûj (6) is written as

ûj(x) = Φj(x)αj = Φj(x)(Aj)−1Ûj ,(8)

where Φj(x) = [ϕ(∥x−xj1∥), ϕ(∥x−xj2∥), . . . , ϕ(∥x−xjNj
∥)]. Now, the local differ-

entiation matrices are computed in order to obtain derivatives of ûj(x) in patch
Ωj . To do this, we apply the differential operator L to (8) and evaluate it at{
xjk

}Nj

k=1
. For each patch Ωj , the differentiation matrix for operator L is obtained

as

AjL = Φj
L(A

j)−1,(9)

where (Φj
L)i,k = Lϕ(∥xij − xjk∥), i, k = 1, . . . , Nj . By applying operator L to (5)

and using (8), we have

Lû(x) =
Np∑
j=1

L(wj(x)Φj(x))(Aj)−1Ûj .

Consider the global set of nodes as {xk}Nk=1. To evaluate Lû(x) at these nodes,

i.e., LÛ = [Lû(x1),Lû(x2), . . . ,Lû(xN )]
T
, we compute L(wj(x)Φj(x))(Aj)−1 in

patch Ωj . We apply the product derivative rule and Eq. (9) to get the local
matrices as follow

Dj
L1

=W jAjL1
+W j

L1
I; L1 = ∂

∂x ,

Dj
L2

=W jAjL2
+ 2W j

L1
AjL1

+W j
L2
I; L2 = ∂2

∂x2 ,

where W j = diag(wj(x
j
1), . . . , wj(x

j
Nj

)),W j
L = diag(Lwj(xj1), . . . ,Lwj(x

j
Nj

)), and

I is an Nj ×Nj identity matrix. The global differentiation matrix DL is a sparse
matrix assembled by the computed local matrices. This sparsity is important to
make a reduction in the computer time and memory usage for large-scale problems
[2]. The RBF-QR algorithm is performed by a change from the Gaussian basis to
a more stable one. This new basis is a finite expansion of nearly flat RBFs, that is
truncated at imax; for details on the selected imax see [5]. Now, the calculation of
RBF-QR basis ψ at x = (r, θ) is breifly expressed. First, the matrix C is defined

which is of size N ×M , M = (imax+1)(imax+2)
2 and k-th row of this matrix is as

follow

[c0,0(xk), c1,0(xk), s1,0(xk), c2,0(xk), c2,1(xk), s2,1(xk), . . . , simax,m(xk)] ,

where ci,j(xk) = υ(rk) cos(Θk), si,j(xk) = υ(rk) sin(Θk) and

υ(r) = b2j+mti−2je
−ε2r2 ri 1F2(ζi,j , ηi,j , ε

4r2), Θ = (2j +m)θ,
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m =

{
0, i = 2k,

1, i = 2k + 1,
ti =

{
1
2 , i = 0,

1, i > 0,
bj =

{
1, j = 0,

2, j > 0.

The arguments of function 1F2 are ζi,j =
i−2j+m+1

2 and ηi,j = [i−2j+1, i+2j+m+2
2 ].

We also have an M ×M matrix as

E = diag(E0,0, E1,0, E1,0, E2,0, E2,1, E2,1, . . . , Eimax,m),

with entries

Ei,j =
ε2i

2i−2j−1( i+2j+m
2 )!( i−2j−m

2 )!
.

We QR-factorize matrix C as C = Q[R1 R2], where Q is an unitary matrix,

R1 is an N ×N upper triangular matrix. We define R̃ = E−1
1 R−1

1 R2E2, where E1

and E2 are diagonal blocks of sizes N ×N and (M −N)× (M −N), respectively.
Then, we compute an M × 1 vector as

P (x) =
[
P c0,0(x), P

c
1,0(x), P

s
1,0(x), P

c
2,0(x), P

c
2,1(x), P

s
2,1(x), . . . , P

s
imax,m(x)

]T
,

where for i = 0, . . . , imax, we have{
P ci,j(x) = ω(r) cos(Θ), j = 0, . . . , i−m2 ,

P si,j(x) = ω(r) sin(Θ), j = 1−m, . . . , i−m2 , Θ ̸= 0,

and ω(r) = e−ε
2r2r2jPi−2j(r), where Pl(r) is the l-th order Chebyshev polynomial

of the first kind. The RBF-QR basis is finally calculated as

[ψ1(x), ψ2(x), . . . , ψN (x)]
T
=
[
IN R̃

]
P (x).

To solve the problem under consideration by using the proposed method, the
Eqs. (1)-(4) are discretized at the corresponding collocation nodes and RBF-QR
partition of unity approximation is used for all derivatives.

2. Numerical Results

Example 2.1. The parameter values are chosen to be (α−, α+) = (sin(2x −
y) + 3, 1 + ex+2y), (σ−, σ+) = (x + y + 3, 2 + sin(x + y)), (β1, β2) = (x2 + y2 +
1, cos(xy) + 2), (γ1, γ2) = (x2 + y2 + 1, ex+y). The exact solutions are given as{

u−(x, y) = sin(x+ y),
u+(x, y) = x3 − y3,

{
v−(x, y) = cos(x+ y),
v+(x, y) = x3 + y3.

We consider a complex interface geometry given as r(θ) = 2 + 2
5 cos(θ) +

3
10 sin(6θ), θ ∈ [0, 2π] within [−4, 4]2. Here, the tuple (N−, N+, np−, np+) is de-

fined, where N± is the number of Halton-type nodes in Ω±, and np± is the patch
numbers. In this example, the obtained results of the RBF partition of unity
method (PUM) with RBF-QR partition of unity method (PUM-QR) are com-
pared and the abilities of proposed method (PUM-QR) are shown in solving the
coupled system (1)-(4) involving discontinous variable coefficients and complex in-
terface. Figure 1(a), shows the problem domain and the corresponding patches for
(866, 1905, 26, 52). Figure 1(b) displays the L∞ absolute error versus ε for PUM
and PUM-QR methods. We observe the PUM-QR method not only improves the
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Figure 1. (a) The distribution of corresponding patches in do-
main, (b) the behavior of error as a function of ε, (c) the numerical
solution for u (d) and for v using PUM-QR for ε = 0.01.

accuracy still but also implements in a numerically stable way. While a break-
down occurs in PUM error curve for small ε, the PUM-QR is able to overcome
this instability. The graphs of numerical solutions are shown in Figures 1(c) and
1(d) using PUM-QR method for ε = 0.01 and (866, 1905, 26, 52).
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1. Introduction

As we know, the common CGS method is one of the best methods to solve the
non-symmetric linear system

Ax = b, A ∈ Rn×n, x ∈ Rn.(1)

The bi-conjugate gradient or Bi-CG method is an iterative method which can
be apply to solve the large sparse non-symmetric linear system Ax = b. This
method based on the non-symmetric Lanczos procedure [1]. To remove the trans-
pose of A (AT ) in the Bi-CG method and to gain faster convergence, the common
conjugate gradient squared algorithm was developed by Sonneveld, where in exact
arithmetic, terminates with true solution after j ≤ n steps [2]. The common CGS
method to solve (1) is expressed in Algorithm 1.

Algorithm 1. Common CGS algorithm for solving (1)

Set r0 = b−Ax0 and choose r̃0 so that ρ0 = r̃T0 r0 ̸= 0.

p0 = u0 = r0; v0 = Ap0;

for j = 0, 1, 2, . . .

vj = Apj ; σj = r̃T0 vj ;

αj = ρj/σj ;

qj = uj − αjApj ;
xj+1 = xj + αj(uj + qj);

rj+1 = rj − αjA(uj + qj);

ρj+1 = r̃T0 rj+1; βj = ρj+1/ρj ;

uj+1 = rj+1 + βjqj ;

pj+1 = rj+1 + βj(qj + βjpj);
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end

Here, we obtain a new variant of the common CGS method by using the Lanc-
zos algorithm and the recurrence property of the orthogonal vectors.

The rest of the paper is as follows. In the next section, the three-term re-
currence variant of the conjugate gradient squared algorithm for solving (1) is
obtained and in the final section, we show the comparative results.

2. Three-Term Recurrence Variant of Conjugate Gradient Squared
Algorithm

By using the recurrence property of the orthogonal vectors, the residual polynomi-
als rj(t) and r̃j(t) associated with the j-th Bi-CG iterative method should satisfy
a three-term recurrence. So we consider a three-term recurrence of the form

rj+1(t) = ρj(rj(t)− γjtrj(t)) + δjrj−1(t),(2)

and

r̂j+1(t) = ρ̂j(r̃j(t)− γ̃jtr̃j(t)) + δ̃j r̃j−1(t).(3)

Also, using the consistency conditions rj(0) = 1 and r̃j(0) = 1 for every j, we have

rj+1(t) = ρj(rj(t)− γjtrj(t)) + (1− ρj)rj−1(t),(4)

and

r̃j+1(t) = ρ̃j(r̃j(t)− γ̃jtr̃j(t)) + (1− ρ̃j)r̃j−1(t).(5)

If rj(0) = 1, r̃j(0) = 1 and rj−1(0) = 1, r̃j−1(0) = 1, then rj+1(0) = 1, r̃j+1(0) =
1. Applying the Eqs. (4) and (5) for the sequence of residual vectors,

rj+1 = ρj(rj − γjArj) + (1− ρj)rj−1,(6)

and

r̃j+1 = ρ̃j(r̃j − γ̃jAT r̃j) + (1− ρ̃j)r̃j−1.(7)

Using inherent property of Bi-CG method which implies that < ri, r̃j >= 0, i ̸= j,
Eqs. (6) and (7) we have

< rj+1, r̃j >= ρj(< rj , r̃j > −γj < Arj , r̃j >) + (1− ρj) < rj−1, r̃j >= 0,

thus

γj =< rj , r̃j > / < Arj , r̃j >, j = 0, 1, . . . .

Similarly

γ̃j =< rj , r̃j > / < Arj , r̃j >= γj , j = 0, 1, . . . .

For computing ρj and ρ̃j

< rj+1, r̃j−1 >= ρj(< rj , r̃j−1 > −γj < Arj , r̃j−1 >)+(1−ρj) < rj−1, r̃j−1 >= 0,

thus

−ρjγj < Arj , r̃j−1 > +(1− ρj) < rj−1, r̃j−1 >= 0,

or equivalently

−ρjγj < rj , A
T r̃j−1 > +(1− ρj) < rj−1, r̃j−1 >= 0.(8)
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Calculating < rj , A
T r̃j−1 > from Eq. (7), we have

< rj , A
T r̃j−1 >= − 1

ρ̃j−1γj−1
< rj , r̃j > .(9)

Substituting Eq. (9) in Eq. (8) and after some calculating

ρj = (1− γj
γj−1

< rj , r̃j >
< rj−1, r̃j−1 >

1

ρ∗j−1
)−1,

and similarly

ρ̃j = (1− γj
γj−1

< rj , r̃j >
< rj−1, r̃j−1 >

1
ρj−1

)−1.

Like CGS algorithm, we want to omit the AT in the Bi-CG and to gain faster
convergent method. For this purpose we define the auxiliary vector

pj(t) =
rj(t)− rj+1(t)

ρjγjt
,(10)

so

rj+1 = rj − αjApj , αj = ρjγj .(11)

Substituting rj+1 from Eq. (11) in Eq. (10) and after some calculating, we obtain

pj+1 = rj+1 + βjpj , βj =
αj
αj+1

(ρj+1 − 1).

The residual vector at every step j of the Bi-CG method can be considered as

rj = ϕj(A)r0,

where ϕj is a polynomial of degree j satisfying the condition ϕj(0) = 1. Similarly,
the conjugate-direction polynomial πj(t) can be expressed by

pj = πj(A)r0,

where the ϕj is a polynomial of degree j. From the Bi-CG method, the directions

r̃j and ϕ̃j can be defined as the same recurrences as rj and πj , where A is replaced
by AT , that means

r̃j = ϕj(A
T )r̃0, p̃j = πj(A

T )r̃0.

So the scalar γj , ρj and ρ̃j are given by

γj =
< rj , r̃j >
< Arj , r̃j >

=
< ϕ2j (A)r0, r̃0 >

< Aϕ2j (A)r0, r̃0 >
,

ρj = (1− γj
γj−1

< rj , r̃j >
< rj−1, r̃j−1 >

1
ρ̃j−1

)−1 = (1− γj
γj−1

< ϕ2j (A)r0, r̃0 >

< ϕ2j−1(A)r0, r̃0 >
1

ρ̃j−1
)−1,

ρ̃j = (1− γj
γj−1

< rj , r̃j >
< rj−1, r̃j−1 >

1
ρj−1

)−1 = (1− γj
γj−1

< ϕ2j (A)r0, r̃0 >

< ϕ2j−1(A)r0, r̃0 >
1

ρj−1
)−1,

which shows that if we get a recursion for the vectors ϕ2j (A)r0, then computing
γj , ρj and ρ̃j are not difficult.

The derivation of the method is as follows. Very similarity to the obtaining
CGS method (See [1], pages 681-683) and due to existing restrictions, we ignore de-
tails. The resulting algorithm is named by CGS - Three Term Recurrence Variant
and is given follows.
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Algorithm 2. CGS-Three Term Recurrence Variant (CGS-TTRV) for solving
(1).
Set r0 = b−Ax0 and choose r̃0 so that t0 = r̃T0 r0 ̸= 0.

p0 = u0 = r0; ρ0 = ρ̃0 = 1; v0 = Ar0; σ0 = r̃T0 v0; γ0 = t0/σ0;

for j = 0, 1, 2, . . . ,

vj = Arj ; σj = r̃T0 vj ;

αj = ρj/σj ;

qj = uj − αjApj ;
xj+1 = xj + αj(uj + qj);

rj+1 = rj − αjA(uj + qj);

tj+1 = r̃T0 rj+1; vj+1 = Arj+1; σj+1 = r̃T0 vj+1;

γj+1 = tj+1/σj+1;

ρj+1 = (1− tj+1γj+1
tjγj

1
ρ̃j

)−1;

ρ̃j+1 = (1− tj+1γj+1
tjγj

1
ρj )

−1;

αj+1 = ρj+1γj+1;

βj =
αj
αj+1

(ρj+1 − 1);

uj+1 = rj+1 + βjqj ;

pj+1 = rj+1 + βj(qj + βjpj);

end

The new method occupies the same storage as the common formulation be-
cause of no more matrix-vector product than that.

Table 1. The computational time(s) and the number of iterations.

Matrix name Cond nnz CGS CGS-TTRV
Iter Time Iter Time

MHD416A 4.1600e+02 416 58 0.0135 58 0.0131
ADD20 1.7637e+04 13151 289 1.3188 276 1.8673
IBM32 3.4242e+07 935 1 0.0023 1 0.0022
LOP163 4.3782e+4 224 34 0.0117 1 0.0034
ABB313 1.5439e+0 313 8 0.0101 8 0.0110
ADD32 2.1363e+02 19848 57 1.0535 57 1.5407
CK656 1.1802e+07 3884 353 0.0774 353 0.0982
JGL009 1.9267e+50 50 6 0.0104 6 0.0091
TOLS90 2.4913e+04 1746 101 0.0108 106 0.0101
BFW782A 4.6250e+03 7514 292 0.1413 292 0.1927
PLAT1919 4.9059e+02 17159 118 0.3418 119 0.5170
IMPCOL-B 2.6670e+05 271 402 0.0168 391 0.0101
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3. Numerical Examples

Consider the linear system Ax = b, where the coefficient matrix A chosen form [3].
We considered the zero vector as an initial vector and for simplicity, the vector b
is chosen such that x = (1, 1, . . . , 1)T is the exact solution. The stopping criterion
||rj ||2 < 10−10 is used, where rj = b − Axj is the j-th residual. Table 1 presents
CPU Times in seconds (Time), the iteration numbers (Iter), the number of nonzero
entries (nnz) and the condition number of the coefficient matrix (Cond).
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Abstract. Similar to the deterministic calculus, most of the stochastic dif-
ferential equations and random ordinary differential equations (RODEs) do
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1. Introduction

Random ordinary differential equations (RODEs) have a stochastic process in their
vector field functions and can be investigated pathwise as deterministic ODEs.
They have been used in a wide range of applications such as biology, medicine,
population dynamics and engineering [3] and play an important role in the theory
of random dynamical systems, however, they have been long overshadowed by
SDEs.

When the noise is regular noise, there is, in fact, a close connection between
RODEs and SDEs. On the other hand, Doss and Sussmann proved that any finite
dimensional SDE with commutative noise can be transformed to a RODE and it
was later generalized to all SDEs [1]. In this paper we consider simulation of some
numerical methods for RODEs which are derived by fractional brownian motion.

Let (Ω,F , (Ft)t≥0,P) be a filtered probability space, and BH = (BHt )t≥0 be
a one-dimensional standard (Ft)-adapted fractional Brownian motion with Hurst
parameter H ∈ ( 12 , 1) i.e., BH is a continuous centered Gaussian process with
covariance function

E(BHt BHs ) =
1

2
(t2H + s2H − |t− s|2H).

For H = 1
2 , B

H is a standard Brownian motion, while for H ̸= 1
2 , it is neither

a semi martingale nor a Markov process and it does not have independent incre-
ments. Moreover the increment of the process in an interval [s, t] has a normal
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distribution with zero mean and variance(
E
(
BHt −BHs

)2) 1
2

= |t− s|H .

As a consequence, the process BH has α-Hölder continuous paths for all α ∈ (0,H).
If H > 1/2, then the process (BHt , t ≥ 0) exhibits a long-range dependence, that
is, if

r(n) = E(BH1 (BHn+1 −BHn )),

then
∞∑
n=1

rn =∞.

A fractional Brownian motion is also self-similar, that is, (BHαt, t ≥ 0) has the
same probability law as (αHBHt , t ≥ 0) [2, 5]. A process satisfying this property is
called a self-similar process with the Hurst parameter H. Since in many problems
related to network traffic analysis, mathematical finance, and many other fields the
processes under study seem empirically to exhibit the selfsimilar properties, and
the long-range dependent properties, and since the fractional Brownian motions
are the simplest processes of this kind, it is important to have a systematic study
of these processes and to use them to construct other stochastic processes.

The stochastic (Wiener) integral with respect to fractional Brownian motions
for deterministic kernels is easily defined as follows.

Lemma 1.1. [4] Let L2(0, T ) denotes the space of equivalence classes of mea-
surable functions f such that∫ T

0

∫ T

0

f(s)f(t)|s− t|2H−2dsdt <∞.

If f, g ∈ L2(0, T ) then

E
(∫ T

0

f(u)dBHu

∫ T

0

g(v)dBHv

)
= H(2H − 1)

∫ T

0

∫ T

0

f(u)g(v)|u− v|2H−2dudv.

2. Main Results

Suppose T > 0, (Ω,F , (Ft)t≥0,P) be a probability space. Consider the following
random ordinary differential equation

dX(t)

dt
= f

(
BHt , X(t)

)
, X(0) = x0.(1)

Our aim is to obtain the numerical solution of the above equation by some
implicit methods. Consider the following implicit averaged Euler scheme (IAES):

Xn+1 = Xn + f (In, Xn+1)∆, n = 0, 1, . . . ,

and the implicit averaged midpoint scheme (IAMS) given by

Xn+1 = Xn + f

(
In,

1

2
(Xn +Xn+1)

)
∆, n = 0, 1, . . . ,

where

In =
1

∆

∫ (n+1)∆

n∆

BHs (ω)ds, ω ∈ Ω.(2)
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Convergence of the above methods has been investigated in [1], for the case ζt is
Hölder continuous, i.e, a real number θ ∈ (0, 1) and a random variable Θ : Ω →
[0,∞) are available, such that

∥ζt(ω)− ζs(ω)∥ ⩽ Θ(ω)|t− s|θ, ω ∈ Ω.

Since fractional brownian motion is continuous stochastic process with Hölder
continuous sample paths, therefore it satisfies the necessary condition of the sto-
chastic process for the convergence of the above methods. Therefore we can con-
sider the above numerical methods for the solution of (1). But because the incre-
ments of the fractional Brownian motions need not be independent, simulation of
In it not so easy.

Our aim is to explain simulation of the proposed methods with the stochastic
process defined in (2). For this aim we need to obtain the distribution of In.
Trivially

E(In) = 0,

and we have

In =
1

∆

∫ ∆

0

BHs (ω)ds =
1

∆

(
BH∆ (ω)∆−

∫ ∆

0

sdBHs (ω)

)
.

Let

Pn =

∫ ∆

0

sdBHs (ω).

Therefore by Lemma 1.1

E(P 2
n) = E

{(∫ ∆

0

sdBHs

)(∫ ∆

0

tdBHt

)}
= γH

∫ ∆

0

∫ ∆

0

st|s− t|2H−2dsdt

= γH

∫ ∆

0

∫ s

0

ts(s− t)2H−2dtds+ γH

∫ ∆

0

∫ t

0

st(t− s)2H−2dsdt

=
∆2H+2

2H + 2
,

(3)

where γH = H(2H − 1). Also

E(BH∆ (ω)Pn) = E

{(∫ ∆

0

sdBHs

)(∫ ∆

0

dBHt

)}
= γH

∫ ∆

0

∫ ∆

0

s|s− t|2H−2dtds

= γH

∫ ∆

0

∫ s

0

s(s− t)2H−2dtds+ γH

∫ ∆

0

∫ t

0

s(t− s)2H−2dsdt

=
1

2
∆2H+1.

(4)
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Therefore by (3) and (4) we get

E(I2n) =
1

∆2
E
(
BH∆ (ω)∆− Pn

)2
=

1

∆2

(
∆2E(BH∆ (ω))2 + E(P 2

n)− 2∆E(BH∆ (ω)Pn)
)

=
1

∆2

(
∆2H+2 +

∆2H+2

2H + 2
−∆2H+2

)
=

∆2H

2H + 2
.

Therefore In, n = 0, . . . , N − 1 are N (0, ∆2H

2H+2 )-distributed random variables.
Also because the increments of the fractional brownian motions are not nec-

essarily independent we should obtain E(InIm), for n,m = 0, . . . , N −1 which can
be obtained similarly to the above calculations.

For simulating of In, n = 0, . . . , N − 1 let

V = (I0, . . . , IN−1),

by Cholesky decomposition the covariance matrix V V ⊤ can be written as LL⊤,
where L is a N × N lower triangular matrix. It can be proved that such a de-
composition exists since V V ⊤ is a symmetric positive definite matrix. Afterwards,
the samples of In for n = 0, . . . , N − 1 are generated by multiplying a vector with
N independent and identically distributed standard normal components with a
square lower triangular matrix L.
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Abstract. Here, we propose a local meshless collocation method to solve
two-dimensional (2D) Klein-Kramers equation with a fractional derivative in
the Riemann-Liouville sense, in the time term. The radial basis function-

differential quadrature method (RBF-DQ) has been employed to estimate
the spatial directions. To discrete the time-variable, we employ two different
strategies with convergence orders O(τ1+α) and O(τ2−α) for 0 < α < 1.

Keywords: Fractional Klein-Kramers, RBF-differential quadrature
method, Local meshless collocation method, Riemann-Liouville
fractional derivatives.
AMS Mathematical Subject Classification [2010]: 26A33,
34K37, 35R11.

1. Introduction

1.1. Considered Equation. The time fractional Klein-Kramers equation
can be derived based on the generalized Chapman-Kolmogorov equation for a
Markovian process as follows [3]

∂v

∂t
= 0D

1−α
t

[
−γy ∂

∂x
+ γ

∂

∂y

(
ηy − F (x)

m

)
+

γη

mβ

∂2

∂y2

]
v + f,(1)

0 < x, y < L, 0 < t ≤ T,
v(x, y, t) = ψ(x, y), (x, y) ∈ ∂Ω, 0 < t < T,

v(x, y, 0) = ω(x, y), 0 < x, y < L,

where 0 < α < 1. The Rieman-Liouville fractional partial derivative of order 1−α
is defined by

0D
1−α
t u(x, y, t) =

1

Γ(α)

∂

∂t

t∫
0

u(x, y, η)

(t− η)1−α
dη.

2. Main Result

2.1. The Meshless Local RBF-DQ (LRBF-DQ) Technique. The local
RBF-DQ method is a meshfree RBF collocation base method. In this method
the unknown function v can be approximated by direct use of the RBFs and the
m-th derivative can be calculated by applying the differential quadrature (DQ)
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technique. Let the computational domain Ω ⊂ R2. We consider a set of distinct
points such as {(xi1, yi1), (xi2, yi2), . . . , (xini

, yini
)} in each support domain related to

(xi, yi) ∈ Ω with ni nodes. In the DQ method, the m-th derivative at a reference
point can be approximate based on the linear combination of function values at
all nodes into its support domain. Here, the weight coefficients can be determined
by the following smooth function

∂mv(x, y)

∂xm

∣∣∣∣
(x,y)=(xi,yi)

=

ni∑
j=0

wm,xi,j v(xij , y
i
j), i = 0, 1, 2, . . . , N.

Since in this method RBFs are used as a basis functions, we have

∂mϕj(x, y)

∂xm

∣∣∣∣
(x,y)=(xi,yi)

=

ni∑
k=0

wm,xi,k ϕj(x
i
k, y

i
k), i, j = 0, 1, 2, . . . , ni, i ̸= j,

By collocating the nodes {(xi1, yi1), (xi2, yi2), . . . , (xini
, yini

)}, we arrive at the
following system

∂mϕ0(xi,yi)
∂xm

∂mϕ1(xi,yi)
∂xm

...
∂mϕni

(xi,yi)

∂xm


︸ ︷︷ ︸[

∂mϕ(xi,yi)

∂xm

]

=


ϕ0(x

i
0, y

i
0) ϕ0(x

i
1, y

i
1) . . . ϕ0(x

i
ni
, yini

)
ϕ1(x

i
0, y

i
0) φ1(x

i
1, y

i
1) . . . ϕ1(x

i
ni
, yini

)
...

...
. . .

...
ϕni(x

i
0, y

i
0) ϕni(x

i
1, y

i
1) . . . ϕni(x

i
ni
, yini

)


︸ ︷︷ ︸

[A]


w

(m,x)
i,0

w
(m,x)
i,1
...

w
(m,x)
i,ni


︸ ︷︷ ︸

[wx]

,


∂mϕ0(xi,yi)

∂ym
∂mϕ1(xi,yi)

∂ym

...
∂mϕni

(xi,yi)

∂ym


︸ ︷︷ ︸[

∂mϕ(xi,yi)

∂ym

]

=


ϕ0(x

i
0, y

i
0) ϕ0(x

i
1, y

i
1) . . . ϕ0(x

i
ni
, yini

)
ϕ1(x

i
0, y

i
0) φ1(x

i
1, y

i
1) . . . ϕ1(x

i
ni
, yini

)
...

...
. . .

...
ϕni(x

i
0, y

i
0) ϕni(x

i
1, y

i
1) . . . ϕni(x

i
ni
, yini

)


︸ ︷︷ ︸

[A]


w

(m,y)
i,0

w
(m,y)
i,1
...

w
(m,y)
i,ni


︸ ︷︷ ︸

[wy]

,

we obtain

[wx,m] = [A]−1[
∂mφ(xi, yi)

∂xm
],

[wy,m] = [A]−1[
∂mφ(xi, yi)

∂ym
].

2.2. Time Discretization Schemes. Let tk = kτ, for k = 0, 1, . . . , N,
where τ = T/N is the time step. By integrating from Eq. (1) on the [tk, tk+1], we
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have

v(x, y, tk+1) − v(x, y, tk) =

tk+1∫
tk

f(x, y, s)ds

+Iα0+

[
−γy ∂

∂x
+ γ

∂

∂y

(
ηy − F (x)

m

)
+

γη

mβ

∂2

∂y2

]
v(x, y, tk+1)

−Iα0+
[
−γy ∂

∂x
+ γ

∂

∂y

(
ηy − F (x)

m

)
+

γη

mβ

∂2

∂y2

]
v(x, y, tk).

Now, for 0 ≤ k ≤ N − 1, we have

(1− ηµ1) v
k+1 +ϖ1y

∂vk+1

∂x
−ϖ1

(
ηy − F (x)

m

)
∂vk+1

∂y
−ϖ2

∂2vk+1

∂y2

= vk +
k−1∑
j=0

(λj+1 − λj){−yϖ1
∂vk−j

∂x
+ ηϖ1v

k−j

+ϖ1(ηy −
F (x)

m
)
∂vk−j

∂y
+ϖ2

∂2vk−j

∂y2
}+ τfk+1 + Eα,

in which |Eα| < Cτ1+α and ϖ1 = γτα

Γ(2−α) , ϖ2 = γη
mβ

τα

Γ(2−α) . Removing the small

term Eα, yields

(1−ϖ1η)V
k+1 +ϖ1y

∂V k+1

∂x
−ϖ1

(
ηy − F (x)

m

)
∂V k+1

∂y
−ϖ2

∂2V k+1

∂y2
(2)

= V k + τfk+1 +
k−1∑
j=0

(λj+1 − λj){−ϖ1y
∂V k−j

∂x
+ ηϖ1V

k−j

+ϖ1

(
ηy − F (x)

m

)
∂V k−j

∂y
+ϖ2

∂2V k−j

∂y2
},

where 0 ≤ k ≤ N − 1. The convergence order of the presented first time-discrete
scheme (FTDS), in Eq. (2) is O(τ1+α) in time variable [4].

Now, by multiplying both sides of (1) by the fractional Riemann-Liouville
integral operator 0D

α−1
t , and using the properties of fractional operators [2], yield

c
0D

α
t v(x, y, t) = γ

[
−y ∂

∂x
+

∂

∂y

(
ηy − F (x)

m

)
+

η

mβ

∂2

∂y2

]
v(x, y, t) +H(x, y, t),(3)

in which 0D
α−1
t (f(x, y, t)) = H(x, y, t), Also, 0D

α
t is the Caputo fractional oper-

ator is as follows

∂αu(x, y, t)

∂tα
=

1

Γ(1− α)

∫ t

0

∂u(x, y, s)

∂s

ds

(t− s)α
.

Lemma 2.1. Let 0 < β < 1 and u(t) ∈ C2[0, tk]. Then∣∣∣∣∣ 1
Γ(1−β)

tk∫
0

u′(t)
(tk−t)β

dt− τ−β

Γ(2−β)

[
b0u(tk)−

k−1∑
m=1

(bk−m−1 − bk−m)u(tm)− bk−1u(t0)

]∣∣∣∣∣
≤ 1

Γ(2−β)

[
1−β
12

+ 22−β

2−β
− (1 + 2−β)

]
max

0≤t≤tk
|u′′(t)|τ2−β ,

where bm = (m+ 1)1−β −m1−β.
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Now, consider Eq. (3) at point (x, y, tk)

c
0D

α
t v(x, y, tk) =

[
−γy ∂

∂x
+ γ

∂

∂y

(
ηy − F (x)

m

)
+

γη

mβ

∂2

∂y2

]
v(x, y, tk)+G(x, y, tk).

Employing Lemma 2.1, yields

(µ− ηγ)vk + γy
∂vk

∂x
− γ

(
ηy − F (x)

m

)
∂vk

∂y
− γη

mβ

∂2vk

∂y2

= µ

k−1∑
j=1

(bk−j−1 − bk−j)vk + µbk−1v
0 +Gk +Rα,

where 1 ≤ k ≤ N , in which |Rα| ≤ Cτ2−α, µ = τ−α

Γ(2−α) . By deleting small term

Rα, we can write

(µ− ηγ)V k + γy
∂V k

∂x
− γ

(
ηy − F (x)

m

)
∂V k

∂y
− γη

mβ

∂2V k

∂y2
(4)

= µ
k−1∑
j=1

(bk−j−1 − bk−j)V j + µbk−1V
0 +Gk,

where 1 ≤ k ≤ N .The convergence order in time variable of the second time-
discrete scheme (STDS) presented in (4) is O(τ2−α).

3. Numerical Results

The numerical experiments carried out by utilizing MATLAB R2017b on a Core
i5 (3.6 GHz) PC with 8 Gigabyte of RAM.

Example 3.1. Consider the 2D fractional Klein-Kremers Eq. (1) with α =
0.75 , where f(x, y, t) has been chosen such that the exact solution is a Gaussian
pulse with the following form

u(x, y, t) = t3 exp

(
(x− 0.5)

2
+ (y − 0.5)

2

−β

)
.

Numerical solution of this problem in an irregular domain has been considered
in [1]. Dehghan et al. have proposed two meshless methods, MLPG and RBF
collocation methods, for this problem. Table 1 shows the results of the presented
LRBF-DQ method against their results in an irregular domain with the same
discritization parameters. The considered irregular domain is shown in Figure 1,
clearly. Figure 1 shows the graphs of approximate solution and absolute error at
different final times with 400 nodes and τ = 10−3 using the LRBF-DQ method
and the first time discrete scheme.
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Table 1. Comparison between absolute errors of presented
LRBF-DQ method and MLPG and RBF collocation methods [1]
with h = 1/10 and different τ at T = 1.

LRBF-DQ RBF collocation MLPG

τ ∥U∗ − U∥∞ ∥U∗ − U∥2 ∥U∗ − U∥∞ ∥U∗ − U∥2 ∥U∗ − U∥∞ ∥U∗ − U∥2

1/10 4.5183e− 3 3.0501e− 2 3.5125e− 3 2.5947e− 2 1.8311e− 1 8.8324e− 1
1/20 1.4125e− 3 5.2732e− 3 1.5704e− 3 5.1632e− 3 6.1827e− 2 1.1062e− 1
1/40 5.1571e− 4 9.0811e− 4 7.3764e− 4 1.5063e− 3 2.0411e− 2 7.3348e− 2

1/80 9.1266e− 5 3.1782e− 4 1.6752e− 4 6.2702e− 4 4.7921e− 3 2.6172e− 2
1/160 6.0729e− 5 1.8105e− 4 8.5202e− 5 3.1429e− 4 2.7421e− 3 6.0258e− 3

Figure 1. Approximate solution and absolute error at different
final times with 400 nodes and τ = 10−2 using the LRBF-DQ
method.
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Abstract. In this paper, the existence solution of an inverse source prob-

lem related to a space fractional diffusion equation is studied. To this end,
we consider a methodology, involving minimization of a cost functional to
identify the unknown source function f = f(x, t). Firstly, the stability of the
corresponding direct problem is proved and then the continuity of the cost

functional is concluded. Using these results the existence solution of the in-
verse source problem is given in an appropriate compact subset of admissible
functions.
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1. Introduction

We study the inverse problem associated with the following space fractional diffu-
sion problem

ut(x, t)−
1

2
RDα

xu(x, t)−
1

2
R
xD

αu(x, t) = f(x, t), (x, t) ∈ QT ,(1)

u(0, t) = u(ℓ, t) = 0, t ∈ (0, T ),(2)

u(x, 0) = ϕ(x), x ∈ Λ,(3)

where ut :=
∂u
∂t , Λ = (0, ℓ), QT = Λ × (0, T ) and 1 < α < 2. Here RDα

xu(x, t)

and R
xD

αu(x, t) denote the left and right Riemann-Liouville fractional derivatives,
respectively, which are defined for x ∈ (0, ℓ) by

RDα
xu(x, t) =

1

Γ(2− α)
d2

dx2

∫ x

0

u(ξ, t)

(x− ξ)α−1 dξ,

R
xD

αu(x, t) =
1

Γ(2− α)
d2

dx2

∫ ℓ

x

u(ξ, t)

(ξ − x)α−1 dξ.
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The inverse problem here consists of determining the source term f = f(x, t)
from the measured data at the final time

u(x, T ) = ψ(x).(4)

The function ψ(x) is assumed to be the measured output data and also the func-
tions f and ϕ are the inputs data. In this context, the inverse source problem
(1)-(4) and the problem (1)-(3) for a given f will be referred as the problem (ISP)
and the direct problem, respectively.

It is worth to point out that for α = 1 and α = 2, the ISP (1)-(4) is a classical
ISP and has been studied by some researchers [1, 2]. But to our knowledge, there
are a few works on inverse source space fractional diffusion equations.

Let us denote by χ := L2(QT ), the set of admissible unknown source functions
f . Evidently, the set χ is closed and convex. The weak solution of the direct
problem (1)-(3) will be defined as the function u ∈ Bα/2(QT ) satisfying the integral
identity

Π(u, v) = F (v), ∀v ∈ Bα/2(QT ),

where the bilinear form Π(·, ·) is defined by

Π(u, v) := (ut, v)L2(QT ) −
1

2

(
RD

α
2
x u,

R
xD

α
2 v
)
L2(QT )

− 1

2

(
R
xD

α
2 u,RD

α
2
x v
)
L2(QT )

,

and the functional F (·) is given by F (v) := (f, v)L2(QT ). Here

Bα(QT ) := L∞ ((0, T ), L2(Λ)) ∩ L2 ((0, T ),H
α
0 (Λ)) ,

is a Banach space with respect to the norm

∥v∥Bα(QT ) =

(
max
0≤t≤T

∥v(·, t)∥2L2(Λ) + ∥v∥
2
L2((0,T ),Hα

0 (Λ))

)1/2

,

where L2((0, T ),H
α
0 (Λ)) =

{
v | ∥v(· , t)∥Hα

0 (Λ) ∈ L2(0, T )
}
, endowed with the norm

∥v∥L2((0,T ),Hα
0 (Λ)) =

∥∥∥∥v(·, t)∥Hα
0 (Λ)

∥∥∥
L2(0,T )

.

In the above definition Hα
0 (Λ) denotes the usual fractional Sobolev space with

respect to the norm ∥·∥Hα
0 (Λ) (For more details see [1]). Now suppose that f ∈ χ

and ϕ ∈ L2(Λ). Then it is proved that the weak solution u ∈ Bα/2(QT ) of the
direct problem (1)-(3) exists and is unique [3, 4]. We denote this weak solution by
u(x, t; f) corresponding to a given f ∈ χ. If this function satisfies the additional
condition (4), then it must satisfy the equation

u(x, t; f) |t=T = ψ(x), x ∈ Λ.(5)

However, due to measurement errors in practice, exact equality in the above
equation is usually not achieved [1]. For this reason, we define a quasi solution
of the inverse problem as a solution of a minimization problem. In doing so, find
f∗ ∈ χ such that

J(f∗) = inf
f∈χ

J(f),
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where

J(f) =

∫ ℓ

0

(u(x, t; f) |t=T − ψ(x))2dx.

Clearly, if J(f∗) = 0, then the quasi solution f∗ ∈ χ is a strict solution of the
inverse problem (1)-(4) and also f∗ ∈ χ satisfies the functional Eq. (5). To prove
the existence of the quasi solution, one needs to have, existence and uniqueness of
the weak solution of direct problem (See [4]), stability of the problem (See Lemmas
2.1 and Corollary 2.2), continuity of the functional J (See Lemma 2.3), having a
compact subset of admissible functions χ (See Theorem 2.4).

In next section, we give some explanations about above requirements.

2. Existence Theorem of the Quasi Solution

Let f and f+δf ∈ χ be source functions. We denote by u(x, t; f) and u(x, t; f+δf)
the corresponding solutions of the problem (1)-(3). Then

δu(x, t; f) := u(x, t; f + δf)− u(x, t; f),

is the solution of the following problem

δut(x, t)−
1

2
RDα

x δu(x, t)−
1

2
R
xD

αδu(x, t) = δf(x, t),(6)

δu(0, t) = δu(ℓ, t) = 0, t ∈ (0, T ),(7)

δu(x, 0) = 0, x ∈ Λ.(8)

The first variation ∆J of the cost functional J is

∆J(f) := J(f + δf)− J(f)

= 2

∫ ℓ

0

(u(x, t; f) |t=T − ψ(x) )δu(x, t; f) |t=T dx

+

∫ ℓ

0

(δu(x, t; f) |t=T )2dx,

where δu(x, t; f) is the solution of (6)-(8).

Lemma 2.1. Let f, f + δf ∈ χ be given source functions. If u = u(x, t; f)
is the solution of direct problem (1)-(3) and p = p(x, t) is the solution of adjoint
problem

pt(x, t) +
1

2
RDα

xp(x, t) +
1

2
R
xD

αp(x, t) = 0, (x, t) ∈ QT ,(9)

p(0, t) = p(ℓ, t) = 0, t ∈ (0, T ),(10)

p(x, T ) = q(x), x ∈ Λ,(11)

with an arbitrary function q = q(x) ∈ L2(Λ), then the following integral identity
holds ∫ ℓ

0

q(x)δu(x, t; f) |t=T dx =

∫ T

0

∫ ℓ

0

δf(x, t)p(x, t)dxdt.(12)

Proof. Multiply (6) by p and integrate over QT to get

(δut, p)L2(QT ) −
1

2

(
RDα

x δu, p
)
L2(QT )

− 1

2

(
R
xD

α δu, p
)
L2(QT )

= (δf, p)L2(QT ).(13)
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According to [5], we have(
RDα

x δu, p
)
L2(QT )

=
(
δu, RxD

αp
)
L2(QT )

,(
R
xD

αδu, p
)
L2(QT )

=
(
δu, RDα

xp
)
L2(QT )

.
(14)

Now, consider the first term on the left hand side (13). Applying integration
by parts, we get

(δut, p)L2(QT ) =

∫ ℓ

0

∫ T

0

δut(x, t; f)p(x, t)dtdx

=

∫ ℓ

0

δu(x, t; f) |t=T p(x, T )dx −
∫ ℓ

0

δu(x, t; f) |t=0 p(x, 0)dx

− (δu, pt)L2(QT ).

So, we obtain

(δut, p)L2(QT ) =

∫ ℓ

0

δu(x, t; f) |t=T q(x)dx − (δu, pt)L2(QT ).(15)

For the second and third terms on the left hand side (13), using (14) we have

−1

2

(
RDα

x δu, p
)
L2(QT )

− 1

2

(
R
xD

αδu, p
)
L2(QT )

= −1

2

(
δu, RxD

αp
)
L2(QT )

− 1

2

(
δu, RDα

xp
)
L2(QT )

.

(16)

Applying (15) and (16) in (13), we can obtain∫ ℓ

0

δu(x, t; f) |t=T q(x)dx − (δu, pt)L2(QT )

−1

2

(
δu, RxD

αp
)
L2(QT )

− 1

2

(
δu, RDα

xp
)
L2(QT )

= (δf, p)L2(QT ),

and ∫ ℓ

0

δu(x, t; f) |t=T q(x)dx +

(
δu,−pt −

1

2
R
xD

αp− 1

2
RDα

xp

)
L2(QT )

= (δf, p)L2(QT ),

which leads to∫ ℓ

0

δu(x, t; f) |t=T q(x)dx =

∫ T

0

∫ ℓ

0

δf(x, t)p(x, t)dxdt.

□

Corollary 2.2. Let us choose an arbitrary control function q = q(x) in (12)

as q(x) := δu(x,t;f)|t=T

∥δu(x,t;f)|t=T ∥L2(Λ)
. Then we obtain

∥δu(x, t; f) |t=T ∥L2(Λ) ≤ ∥p∥L2(QT )∥δf∥L2(QT ),(17)

where δu = δu(x, t; f) is the solution of (6)-(8) and p = p(x, t) is defined in Lemma
2.1. We note that the existence and uniqueness of (9)- (11) are the straight forward
results of [5].

Next, in order to prove that the functional J(ϕ) is continuous, we will use the
stability estimate (17).
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Lemma 2.3. The functional J(f), is continuous on χ in the sense that if
∥fn − f∥L2(Λ) → 0, then |J(fn)− J(f)| → 0 as n→∞.

Proof. Let {fn}∞n=1 ∈ χ be a sequence of initial data which converges to
f ∈ χ. Thus we have

|J(fn)− J(f)| =

∣∣∣∣∫ ℓ

0

(u(x, t; fn) |t=T − ψ(x))2dx−
∫ ℓ

0

(u(x, t; f) |t=T − ψ(x))2dx

∣∣∣∣
=

∣∣∣∥u(·, T ; fn)− ψ(x)∥2L2(Λ) − ∥u(·, T ; f)− ψ(x)∥2L2(Λ)

∣∣∣
=

∣∣∣∥u(·, T ; fn)− ψ(x)∥L2(Λ) + ∥u(·, T ; f)− ψ(x)∥L2(Λ)

∣∣∣
×

∣∣∣∥u(·, T ; fn)− ψ(x)∥L2(Λ) − ∥u(·, T ; f)− ψ(x)∥L2(Λ)

∣∣∣
≤ C∥u(·, T ; fn)− u(·, T ; f)∥L2(Λ)

≤ C∥p∥L2(QT )∥fn − f∥L2(Λ),

The Lemma 2.1, Corollary 2.2 and the above inequality show that |J(fn)− J(f)|
goes to zero as n→∞. This completes the proof. □

Theorem 2.4. Let χc ⊂ χ be a compact subset of source functions. Then the
ISP (1)-(4) has at least one quasi solution in χc.

Proof. By using Weierstrass theorem and Lemma 2.3, existence result for
the ISP is proved. □

References

1. A. Hasanov, Simultaneous determination of source terms in a linear parabolic problem from
the final overdetermination: Weak solution approach, J. Math. Anal. Appl. 330 (2) (2007)
766–779.
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Abstract. In this paper, we present a numerical scheme for the solution
of two dimensional telegraph equation. We use spectral element method in
spatial direction and Crank-Nicolson method in temporal direction. The un-
conditional stability of the semi discrete scheme is proved and error estimate

of the fully discrete method is presented. Finally, we consider a test problem
to demonstrate the accuracy and applicability of the proposed method.
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1. Introduction

At the present work, we propose a numerical scheme for the solution of two di-
mensional telegraph equation as [4]

utt + 2αut + u = ∆u+ f(x, t), (x, t) ∈ Ω× (0, T ],

u(x, 0) = g1(x), ut(x, 0) = g2(x), x ∈ Ω,

u(x, t) = h(x, t), (x, t) ∈ ∂Ω× (0, T ],

(1)

where Ω ⊂ R2.
At the first time, Patera used the spectral element method to solve problems

of computational fluid dynamics in 1984. This method is combination of the finite
element method and the spectral method. Therefore, this method have the high
order accuracy of the spectral method and the geometric flexibility of the finite
element method [3]. This method is used to diversity of the partial differential
equations [2, 5].

In this work, we use Crank-Nicolson scheme to discretize Eq. (1) in temporal
direction and apply the spectral element method to approximate this equation in
spatial direction. Then we obtain an uncondition stable scheme of order O(τ2) for
Eq. (1).

The rest of this work is orgonized as: In Section 2, we use Crank-Nicolson
scheme to discretize Eq. (1) in temporal direction. We introduce the spectral
element method and implement this method on telegraph equation in Section 3.
Also, we present the error estimate of the fully discrete scheme in this section. We
consider a test problem to illustrate the efficiency and accuracy of the proposed

∗Presenter
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scheme in Section 4. In Section 5, a brief conclusion is dedicated. At the end,
some references are introduced.

2. Semi-Discrete Scheme

Suppose L2(Ω) is the space of measurable functions whose square is Lebesgue
integrable in Ω. Define the inner product and norm in this space as

(u, v) =

∫
Ω

uvdΩ, ∥v∥ = (v, v)
1
2 .

Also define sobolev space with the inner product and norm as

H1(Ω) = {v ∈ L2(Ω), ∇v ∈ L2(Ω)}, H1
0 (Ω) = {v ∈ H1(Ω), v|∂Ω = 0},

(u, v)1 = (u, v) + (∇u,∇v), ∥v∥1 = (v, v)
1
2
1 , |v|1 = (∇v,∇v) 1

2 .

Consider the following notations

tn = nτ, n = 0, 1, . . . , N, T = Nτ,

u(x, tn) = un, untt = (un+1 − 2un + un−1)/τ2, unt = (un+1 − un−1)/2τ.

Applying the Crank-Nicolson scheme on the Eq. (1) gives

untt + 2αunt +
1

2
(un+1 + un−1) =

1

2
(∆un+1 +∆un−1) + fn +R,

or

(1 + ατ +
τ2

2
)un+1 − τ2

2
(∆un+1) = 2un − (1− ατ + τ2

2
)un−1

+
τ2

2
∆un−1 + τ2fn + τ2R,

where |R| ≤ C1τ
2. Let Un is an approximation of the exact solution un. Omitting

the small term R gives

(1 + ατ +
τ2

2
)Un+1 − τ2

2
∆Un+1 = 2Un − (1− ατ + τ2

2
)Un−1(2)

+
τ2

2
∆Un−1 + τ2fn.

Theorem 2.1. The semi-discrete scheme (2) is unconditionally stable for all
U ∈ H1

0 . That is

||Un+1||2 ≤ C
(
(1 + ατ +

τ2

2
)2||U0||2

+ τ2||∇U0||2 + τ2(1 + ατ +
τ2

2
)||g2||2 + τ4||∇g2||2 + T 4 max

1≤k≤N
||fk||2

)
,

where C is positive constant.
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3. Spectral Element Method

In this section, we use the Legendre spectral element method to obtain fully dis-
crete scheme. The Galerkin formulation of the Eq. (2) as:

Find Un+1 ∈ H1
0 (Ω) such that for all v ∈ H1

0

(1 + ατ +
τ2

2
)(Un+1, v) +

τ2

2
(∇Un+1,∇v)(3)

= 2(Un, v)− (1− ατ + τ2

2
)(Un−1, v)

− τ2

2
(∇Un−1,∇v) + τ2fn.

We divide the domain into Ne non-overlapping subdomains. Then we can write
the solution approximation of order M for function U in per element as

Ue(x, tk) =
M∑
i=0

U(xi, tk)φi(x), 1 ≤ e ≤ Ne, 1 ≤ k ≤ N,

where Ne denotes the number of elements, U(xi, tk) is the ith local degree freedom
and φi(x) is the ith Lagrange polynomial of order M as

φi(η) =
1

M(M + 1)LM (ηi)

(η2 − 1)L
′

M (η)

η − ηi
, 0 ≤ i ≤M, −1 ≤ η ≤ 1,

where {ηi}Mi=0 are Gauss-Lobatto-Legendre (GLL) points and LM is the Legendre
polynomial of order M .

Let xe−1 and xe denote the boundary points of each element and the length
of element is he = xe − xe−1. The entries of the element mass matrix and the
element stiffness matrix, respectively, are presented by

Beij =

∫ xe

xe−1

φi(x)φj(x)dx =
he
2

∫ 1

−1

φi(η)φj(η)dη =
he
2
δijwi,(4)

De
ij =

∫ xe

xe−1

φi(x)

dx

φj(x)

dx
dx =

2

he

∫ 1

−1

φi(η)

dη

dφj
dη

dη =
2

he

M∑
l=0

dildjlwl,(5)

To evaluate the integrals in (4) and (5), we use Gaussian quadrature with theM+1
GLL points. {wl}Ml=0 are the GLL quadrature weights and dij are the entires of
transpose of matrix K as

Ke
ij =



LM (ηi)

LM (ηj)

1

ηi − ηj
, i ̸= j,

−M(M + 1)

4
, i = j = 0,

M(M + 1)

4
, i = j =M,

0, otherwise.
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3.1. Error Estimate. Suppose PM (Ω) is the space of polynomials defined
on Ω with the degree no greater than M ∈ N. Define

H0
M = {v ∈ H1

0 : v|Ωe ∈ PM (Ω)}.

Define the Ritz projection ℜh : H1
0 → H0

M , as

(∇(u−ℜhu),∇v) = 0, u ∈ H1
0 , v ∈ H0

M .

Lemma 3.1. [1] Let u ∈ Hς , and hk is the diameter of element k, then

||u−ℜhu|| ≤ Ch((min(M+1),ς)−1)
k M1−ς ||u||ς ,

Theorem 3.2. Suppose un be the exact solution of the Eq. (1), Un be the
solution of the full discrete scheme (3) and en = un − Un. Then the followimg
error estimate holds

||en|| ≤ C(τ2 +M1−ς), C = max

{
2Cu1, (1 + ατ +

τ2

2
)Cu,

√
3C1τ

}
.

4. Numerical Results

In this section, we report the numerical experiment of presented method. Let E1

and E2 are error correspond to time steps τ1 and τ2, then computational order of
the presented method can be calculate by

C − order =
log E1

E2

log τ1
τ2

.

Example 4.1. Consider Eq. (1) with α = 1 and the exact solution u(x, t) =
cos(t) sin(x) sin(y) [4]. We use the proposed scheme Ω = [0, 1]× [0, 1] and present
the L∞ and L2 norm of errors and computational order of the proposed method
with Ne = 5 andM = 5 in Table 1. The graphs of numerical solution and absolute
error for this problem are presented in Figure 1. In Figure 2, we present the graph
of error as a function of M with Ne = 3, and the error as a function of Ne with
M = 3.

Table 1. Errors and computational orders at T = 1 for Test problem 1.

τ L∞ C-order L2 C-order
1/20 3.4751× 10−5 4.9933× 10−4

1/40 8.6523× 10−6 2.0059 1.2240× 10−4 2.0284
1/80 2.1510× 10−6 2.0081 3.0411× 10−5 2.0089
1/160 5.3861× 10−7 1.9980 7.5940× 10−6 2.0017
1/320 1.3456× 10−7 2.0010 1.8979× 10−6 2.0005
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Figure 1. Numerical solution (left side) and absolute error (right
side) with τ = 0.002.

Figure 2. Error as function of M (left panel) and Ne (right
panel) with τ = 0.001.

5. Conclution

In this article, we studied the spectral element method for the solution of two
dimensional telegraph equation. A finite difference scheme of order O(τ2) is pre-
sented for discretizing temporal direction. The accuracy of the present method is
shown by an example.
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proximate the Wiener integrals which either their exact values are not avail-
able or finding their exact values are complicated. This suggested method
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1. Introduction

Definition 1.1. Brownian motion process {B(t)} is a stochastic process
which satisfies in the following properties [5]

1) B(t) − B(s) for t > s is independent of the past. That means for 0 <
u < v < s < t < T , the increments B(t) − B(s) and B(v) − B(u) are
independent.

2) B(t)−B(s) for t > s has Normal distribution with mean zero and variance
t−s. In other words, B(t)−B(s) ∼

√
t− sN(0, 1), where N(0, 1) denotes

Normal distribution with zero mean and unit variance.
3) B(t), t ≥ 0 are continuous functions of t.

The general form of Wiener integral is as follows∫ T

0

f(t)dB(t),

such that f(t) is a deterministic function (it dose not depend on B(t)) and B(t)
denotes a standard Brownian motion process.

Remark 1.2. If f(t) be a differentiable function (more generally, a function of

finite variation), then the Wiener integral
∫ T
0
f(t)dB(t) can be defined by formally

using the integration by parts formula as follows [2]∫ T

0

f(t)dB(t) = f(T )B(T )−
∫ T

0

B(t)df(t).
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2. Preliminaries

Definition 2.1. The functions RH(r, t), r = 1, 2, 3, . . . are composed of three
values +1, −1 and 0 and are defined on the interval [0, 1) as follows [4]

RH(r, t) =


+1, J1 ≤ t < J 1

2
,

−1, J 1
2
≤ t < J0,

0, otherwise,

where

Ju =
j − u
2i

, u = 0,
1

2
, 1,

r = 2i + j − 1, i = 0, 1, 2, . . . , j = 1, 2, 3, . . . , 2i.

The function RH(0, t) is defined for i = j = 0 as follows

RH(0, t) = 1, 0 ≤ t < 1.

The orthogonality property of these functions is given by∫ 1

0

RH(r, t)RH(s, t) =

{
2−i, r = s,

0, r ̸= s.

Theorem 2.2. The sequence {RH(r, t)}∞r=0 is a complete orthogonal basis for
Hilbert space L2[0, 1). So, we can approximate every function f(t) ∈ C[0, 1]) via
the following series [1]

f(t) ≃ fn(t) =
n∑
r=0

arRH(r, t),(1)

where ar = 2i
∫ 1

0
f(t)RH(r, t)dt, r = 0, 1, 2, . . ..

3. Approximation of Wiener Integrals

Theorem 3.1. Suppose that {φi}∞i=0 be an orthonormal basis for Hilbert space
L2[0, T ] and f(t) ∈ L2[0, T ]. Every square integrable function f(t) can be expanded
as follows

f(t) =
∞∑
i=0

⟨f, φi⟩φi(t),(2)

where ⟨·, ·⟩ denotes the inner product in Hilbert space L2[0, T ] and is defined as

⟨f, g⟩ =
∫ T

0

f(t)g(t)dt.

Theorem 3.2. The Wiener integral
∫ T
0
f(t)dB(t) is provided by stochastic

integrating from both sides of Eq. (2) over the interval [0, T ). Thus, we obtain∫ T

0

f(t)dB(t) =

∞∑
i=0

⟨f, φi⟩
∫ T

0

φi(t)dB(t),(3)

such that the existed series in Eq. (3) has almost surely convergence [3].
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APPROXIMATION OF WIENER INTEGRALS

The functions RH(r, t), r = 0, 1, 2, . . . introduced in Definition 2.1 are not
orthonormal. But, we can construct a orthonormal basis by dividing them by
their norm. So, we obtain orthonormal rationalized Haar functions ORH(r, t) as
follows

ORH(r, t) =
1√
2−i

RH(r, t).

From orthonormality property of functions {ORH(r, t)}∞r=0, we can write the ap-
proximation of every square integrable function f(t) ∈ L2[0, T ) as follows

f(t) ≃ fn(t) =
n∑
r=0

⟨f(t), ORH(r, t)⟩ORH(r, t).

To approximate the Winner integrals over the interval [0, T ) using rational Haar
functions, Eq. (1) yields∫ T

0

f(t)dB(t) ≃
∫ T

0

n∑
r=0

(
2i
∫ T

0

f(t)RH(r, t)dt
)
RH(r, t)dB(t)

=
n∑
r=0

(
2i
∫ T

0

f(t)RH(r, t)dt
)(∫ T

0

RH(r, t)dB(t)
)

=
(∫ T

0

f(t)RH(0, t)dt
)(∫ T

0

RH(0, t)dB(t)
)

+
n∑
r=1

(
2i
∫ T

0

f(t)RH(r, t)dt
)(∫ T

0

RH(r, t)dB(t)
)

= B(1)

∫ 1

0

f(t)dt

+
n∑
r=1

2i
(∫ J 1

2

J1

f(t)dt−
∫ J0

J 1
2

f(t)dt
)(

2B(J 1
2
)−B(J1)−B(J0)

)
.

4. Test Problems

In this section, we apply the present method for different values of n to estimate
some Wiener integrals and report obtained results in tables. All the numerical
calculations have achieved by running MATLAB code on an Intel COREi3 laptop.

Example 4.1. Approximate the values of Wiener integral
∫ 1

0
sin(t)dB(t). To

obtain the exact values of this Wiener integral, we utilize integration by parts
formula and get∫ 1

0

sin(t)dB(t) = sin(1)B(1)−
∫ 1

0

cos(t)B(t)dt,

where
∫ 1

0
cos(t)B(t)dt is approximated via Riemann sum idea as follows:∫ 1

0

cos(t)B(t)dt ≃
N−1∑
i=0

cos(ti)B(ti)(ti+1 − ti),
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where 0 = t0 < t1 < t2 < · · · < tN = 1. On the other hand, we approximate it via
the explained method as follows:∫ 1

0

sin(t)dB(t) ≃ B(1)

∫ 1

0

sin(t)dt

+
n∑

r=0

2i
(∫ J 1

2

J1

sin(t)dt−
∫ J0

J 1
2

sin(t)dt
)(

2B(J 1
2
)−B(J1)−B(J0)

)
.

The exact values, approximate values and absolute error values for different
amounts of n and N have been reported in Table 1. This results confirm that
our method is very accurate and efficient.

Table 1. Results of Example 4.1.

N = 25 N = 50
n Exact Approximate Error Exact Approximate Error
7 0.4156 0.3841 0.0318 -0.3814 -0.3734 0.0079
15 -0.2845 -0.2934 0.0089 0.1415 0.1466 0.0051
31 0.6903 0.6823 0.0079 -0.3599 -0.3639 0.0039
63 -0.3632 -0.3571 0.0061 -0.6481 -0.6468 0.0012
127 -0.4484 -0.4468 0.0015 -0.3182 -0.3187 0.0005

Example 4.2. Approximate the values of Wiener integral
∫ 1

0
cos(t)dB(t). To

obtain the exact values of this Wiener integral, we utilize integration by parts
formula and get∫ 1

0

cos(t)dB(t) = cos(1)B(1) +

∫ 1

0

sin(t)B(t)dt,

where
∫ 1

0
sin(t)B(t)dt is approximated via Riemann sum idea as follows:

∫ 1

0

sin(t)B(t)dt ≃
N−1∑
i=0

sin(ti)B(ti)(ti+1 − ti),

where 0 = t0 < t1 < t2 < · · · < tN = 1. On the other hand, we approximate it via
the explained method as follows:∫ 1

0

cos(t)dB(t) ≃ B(1)

∫ 1

0

cos(t)dt

+

n∑
r=0

2i
(∫ J 1

2

J1

cos(t)dt−
∫ J0

J 1
2

cos(t)dt
)(

2B(J 1
2
)−B(J1)−B(J0)

)
.

The exact values, approximate values and absolute error values for different
amounts of n and N have been reported in Table 2. This results confirm that
our method is very accurate and efficient.
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Table 2. Results of Example 4.2.

N = 25 N = 50
n Exact Approximate Error Exact Approximate Error
7 0.6773 0.6873 0.0099 0.3691 0.3615 0.0076
15 -0.4226 -0.4268 0.0041 -0.5209 -0.5156 0.0053
31 -0.5522 -0.5547 0.0024 0.6114 0.6157 0.0043
63 0.2301 0.2319 0.0018 0.0098 0.0091 0.0007
127 -0.6837 -0.6848 0.0010 -0.1667 -0.1662 0.0004

5. Conclusion

In this paper, an efficient algorithm has been applied to approximate the value
of Wiener integrals. Some test problems have been included to demonstrate the
efficiency and accuracy of suggested method. From obtained results, we conclude
that more accurate numerical results can be provided by

• increasing the number of used basis n,
• considering a larger value for N .
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1. Introduction

There are several iterative methods for the numerical solution of nonlinear equa-
tions, see for example Ostrowski [5], Traub [9], Petković et al. [6], Heydari et
al. [1] and references therein. Let α be a simple real root of a real function
f : D ⊂ R→ R and let x0 be an initial approximation to α.

Newton’s method is the well-known iterative method for finding simple root
α and it is given by

xk+1 = xk −
f(xk)

f ′(xk)
, k = 0, 1, 2, . . . .(1)

The sequence of successive iterates {xk} generated from (1) converges quadratically
to α. According to the conjecture of Kung and Traub [3], the order of convergence
of any multipoint method requiring n+1 evaluations cannot exceed the bound 2n.
Multipoint methods with this property are called optimal methods.

Kung and Traub obtained two-point method of fourth order [3],
yk = xk −

f(xk)

f ′(xk)
,

xk+1 = yk −
f(xk)

2f(yk)

f ′(xk)(f(yk)− f(xk))2
,

k = 0, 1, 2, . . . .(2)
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Another fourth order method is proposed by Ostrowski [5] as follows:
yk = xk −

f(xk)

f ′(xk)
,

xk+1 = yk −
f(yk)

f ′(xk)

f(xk)

f(xk)− 2f(yk)
,

k = 0, 1, 2, . . . .(3)

The iterative methods (2) and (3) require two evaluations of the given function
and one of its first derivative per iteration and therefore these methods support
the Kung-Traub conjecture.

In recent years, some fourth order iterative methods without derivative have
been proposed and analyzed for solving nonlinear equations [4, 7]. Recently Ren
et al. [7] proposed the following one-parameter family of derivative free two-point
methods of the four order,

yk = xk −
f(xk)

f [xk, zk]
,

xk+1 = yk −
f(yk)

f [xk, yk] + f [yk, zk]− f [xk, zk] + a(yk − xk)(yk − zk)
,

(4)

where k = 0, 1, 2, . . . , zk = xk + f(xk), f [xk, yk] =
f(xk)− f(yk)

xk − yk
is divided

difference and a is a real parameter.
Liu et al. [4] have shown that the derivative free two-point method

yk = xk −
f(xk)

f [zk, xk]
,

xl+1 = yk −
f(yk)(f [xk, yk]− f [yk, zk] + f [xk, zk])

(f [xk, yk])2
,

(5)

where k = 0, 1, 2, . . . has order four.
The main aim of this paper is to present a new two-point method without

derivative based on rational interpolation. In this technique the optimal order of
convergence will be achieved by only three function evaluations.

2. Methodology and Convergence Analysis

We start from the fourth order Steffensen-Newton scheme [6]
yk = xk −

λf(xk)
2

f(xk + λf(xk))− f(xk)
,

xk+1 = yk −
f(yk)

f ′(yk)
,

k = 0, 1, 2, . . . ,(6)

and replacing f ′(yk) by a suitable approximation which does not require new
information. Here, we apply the following rational interpolation formula [8]

q(x) = ϕ(xk) +
x− xk

ϕ(xk, yk) +
x− yk

ϕ(xk, yk, zk)

,(7)

where the inverse differences ϕ(xk), ϕ(xk, yk) and ϕ(xk, yk, zk) are determined from
the conditions

q(xk) = f(xk), q(yk) = f(yk), q(zk) = f(zk), zk = xk + λf(xk).(8)
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According to (8) we find

ϕ(xk) = f(xk), ϕ(xk, yk) =
1

f [xk, yk]
,(9)

ϕ(xk, yk, zk) =
(yk − zk)f [xk, yk]f [xk, zk]

f [xk, zk]− f [xk, yk]
.

Now, by substituting (9) in (7), we have

f ′(yk) ≈ q′(yk) = f [xk, yk]− (f [xk, yk])
2
( 1

f [xk, yk]
− 1

f [xk, zk]

)(yk − xk
yk − zk

)
.

Replacing this approximation of f ′(yk) in the second step of (6), we obtain
yk = xk − u(xk),

xk+1 = yk −
f(yk)

f [xk, yk]− (f [xk, yk])2
( 1

f [xk, yk]
−

1

f [xk, zk]

)( u(xk)

u(xk) + λf(xk)

) ,(10)

where k = 0, 1, 2, . . ., λ ∈ R−{0} and u(xk) =
f(xk)

f [xk, zk]
. According to the above

analysis, we can provide the following convergence theorem.

Theorem 2.1. Let α ∈ If ⊂ D be a simple zero of a sufficiently differentiable
function f : D ⊂ R → R for an open interval If . If x0 is sufficiently close to
α, then the new method defined by (10) is of fourth order, and satisfies the error
relation

εk+1 = [(f ′(α)λ+ 1)2c2(2c
2
2 − c3)]ε4k +O(ε5k),

where εk = xk − α and ck =
f (k)(α)

k!f ′(α)
, k = 1, 2, . . . .

Proof. Let α be a simple zero of f , ε̃k = yk − α and dk = zk − α. Using the
Taylor expansion around α, we obtain

f(xk) = f ′(α)[εk + c2ε
2
k + c3ε

3
k +O(ε4k)],

f(yk) = f ′(α)[ε̃k + c2ε̃
2
k + c3ε̃

3
k +O(ε̃4k)],

f(zk) = f ′(α)[dk + c2d
2
k + c3d

3
k +O(d4k)],

u(xk) = εk − [f ′(α)λ+ 1]c2ε
2
k(11)

+ [f ′(α)2(c22 − c3)λ2 + 2f ′(α)(c22 −
3

2
c3)λ+ 2c22 − 2c3]ε

3
k +O(ε4k),

and therefore, we can get

ε̃k = [f ′(α)λ+ 1]c2ε
2
k + [−f ′(α)2(c22 − c3)λ

2 − 2f ′(α)(c22 −
3

2
c3)λ− 2c22 + 2c3]ε

3
k +O(ε4k),

dk = [1 + λf ′(α)]εk + λf ′(α)c2ε
2
k + λf ′(α)c3ε

3
k +O(ε4k).

Also, by using Taylor expansion, we have

f [xk, zk] = f ′(α) + f ′(α)[f ′(α)λ+ 2]c2εk(12)

+ f ′(α)[f ′(α)2λ2c3 + λ(c22 + 3c3)f
′(α) + 3c3]ε

2
k

+ [(f ′(α)2λ2c4 + 2λ(c2c3 + c4)f
′(α) + 2c4)(f

′(α)λ+ 2)f ′(α)]ε3k

+ O(ε4k),
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f [xk, yk] = f ′(α) + f ′(α)c2εk + f ′(α)[(f ′(α)λ+ 1)c22 + c3]ε
2
k(13)

− f ′(α)[(f ′(α)2λ2 + 2f ′(α)λ+ 2)c32

− (f ′(α)2λ2c3 + 4f ′(α)λc3 + 3c3)c2 − c4]ε3k +O(ε4k).

Substituting (11)-(13) into (10), we get the following error equation:

εk+1 = [(f ′(α)λ+ 1)2c2(2c
2
2 − c3)]ε4k +O(ε5k).

This means that the method defined by (10) is of fourth order. This proof is
completed. □

3. Numerical Experiments

In this section, we present some numerical experiments using the presented method
(10) and compare the obtained results to Kung and Traub method (2), Ostrowski
method (3), Ren et al. method (4) and Liu et al. method (5). All computation
were done using the MAPLE package using 256 digit floating point arithmetic.
Here, we used the following test functions [2, 6]

f1(x) = (x− 2)(x10 + x+ 1)e−x−1, α = 2,

f2(x) = (2 + x3) cos(
πx

2
) + log(x2 + 2x+ 2), α = −1,

f3(x) = xex + log(1 + x+ x4), α = 0.

Tables 1-3 display the absolute values of the errors of approximations xk in the
first four iterations. The numerical results presented in Tables 1-3 show that the
proposed methods in this contribution have better performance as compared with
the methods (2)-(5).

Table 1. Numerical results for f1(x) with x0 = 2.1.

error (2) (3) (4) a = 0 (5) (10) λ = −0.01

|x1 − α| 3.45(−3) 1.72(−3) 2.66(−2) 2.66(−2) 3.09(−4)
|x2 − α| 1.36(−8) 3.13(−10) 2.09(−3) 2.10(−3) 2.15(−13)
|x3 − α| 3.38(−30) 3.49(−37) 1.26(−6) 1.31(−6) 5.14(−50)
|x4 − α| 1.31(−116) 5.43(−145) 2.53(−19) 3.02(−19) 1.66(−196)

Table 2. Numerical results f2(x) with x0 = −0.93.

error (2) (3) (4) a = 0 (5) (10) λ = −0.64

|x1 − α| 7.01(−4) 4.87(−4) 1.94(−3) 2.12(−3) 9.66(−5)
|x2 − α| 2.58(−11) 3.37(−12) 5.40(−9) 9.96(−9) 3.03(−19)
|x3 − α| 4.78(−41) 7.83(−45) 3.39(−31) 5.16(−30) 2.57(−77)
|x4 − α| 5.66(−160) 2.28(−175) 5.31(−120) 3.71(−115) 5.00(−256)
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Table 3. Numerical results f3(x) with x0 = −0.5.

error (2) (3) (4) a = 0 (5) (10) λ = −0.5

|x1 − α| 6.52(−2) 3.80(−2) 1.20 0.68 4.66(−5)
|x2 − α| 1.57(−6) 2.16(−7) 1.12 1.14 4.65(−29)
|x3 − α| 4.47(−25) 1.92(−28) 1.12 1.12 4.59(−173)
|x4 − α| 2.91(−99) 1.21(−112) 1.12 1.12 1.43(−342)
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1. Introduction

Most of the practical problems arising in physics, chemistry and biology can be de-
scribed as time dependent phenomena. Mathematical models forthese phenomena
often lead to nonlinear differential equations. In the present research, we study a
system of nonlinear differential equations that predict the spread of HIV infection.
The HIV infection in a human body depends on three major components T , I
and V that represent the concentration of susceptible CD4+ T-cells, CD4+ T-cells
infected by the HIV virus and free HIV virus particles in the blood at time t,
respectively. So, their acts can be mathematically described as follows [1]

dT
dt = q − αT + rT (1− T+I

Tmax
)− κV T,

dI
dt = κV T − βI,
dV
dt = µβI − γV,

(1)

with the initial conditions:

T (0) = r1, I(0) = r2, V (0) = r3, 0 ≤ t ≤ R.(2)

The parameters α, β and γ stand for natural turnover rates of uninfected T-cells,
infected T-cells and virusparticles, respectively, Tmax is the maximum level of
CD4+ T-cells, κ > 0 is the infection rate, µ is the number of virus particles that
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produced by each infected CD4+ T-cells, q is a constant rate to produce CD4+

T-cells, and r is a rate of T-cells multiplication.

2. Linear Barycentric Rational Interpolation

Let f : [a, b]→ R, n ∈ N, {tj}nj=0 be a set of equidistant nodes, where tj = a+ jh,
j = 0, 1, . . . , n, hn = b− a and {f(tj)}nj=0 be the corresponding n+ 1 given data.
A linear barycentric rational interpolation for this data can be written as follows:

rn(t) =
n∑
j=0

f(tj)ϕj(t), ϕj(t) =
( n∑
i=0

wi
t− ti

)−1 wj
t− tj

, j = 0, 1, . . . , n,(3)

where {wj}nj=0 are arbitrary nonzero set of weights. The basis functions {ϕj(t)}nj=0

have the following properties:

• Partition of Unity:
∑n
j=0 ϕj(t) = 1.

• Lagrange Property: ϕj(ti) = δij , i, j = 0, 1, . . . , n, where δij is the
Kronecker delta.

Let 0 ≤ d ≤ n be an integer parameter. Floater and Hormann [2] proposed a
family of rational interpolants based on the barycentric weights wj as follows:

wj = (−1)j
min(j,n−d)∑
i=max(j−d,0)

( i+d∏
k=i,k ̸=j

1

| tj − tk |

)
, j = 0, 1, . . . , n.(4)

By choosing the interpolation weights (4), interpolant (3) has no real poles [2].
Due to the Lagrange property of the basis functions (3), any function f on the
interval [a, b] can be approximated as:

f(t) ≃
n∑
j=0

f(tj)ϕj(t).(5)

By considering the barycentric weights (4), the approximation error of (5) can be
estimated as follows:

Theorem 2.1. [2] Consider f ∈ Cd+2[a, b]. Then

∥ f(t)−
n∑

j=0

f(tj)ϕj(t) ∥∞≤


hd+1(1 + γµ)(b− a)

∥f(d+2)∥∞
d+2

, (n− d) odd,

hd+1(1 + γµ)

(
(b− a)

∥f(d+2)∥∞
d+2

+
∥f(d+1)∥∞

d+1

)
, (n− d) even,

where

γ =

{
1, d = 0,
0, d ≥ 1,

h = max
0≤i≤n−1

(ti+1 − ti), µ = max
1≤i≤n−2

min

(
ti+1 − ti
ti − ti−1

,
ti+1 − ti
ti+2 − ti+1

)
.

3. Operational Matrices of Integration and Product

In this section, the operational matrices of integration and product for the barycen-
tric rational basis functions are determined. Let {ϕj(t)}nj=0 be the basis functions
in (3) and Φ(t) be a (n+ 1)× 1 vector as follows:

Φ(t) = [ϕ0(t), ϕ1(t), . . . , ϕn(t)]
T .(6)
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Lemma 3.1. Let Φ(t) be the vector defined in (6), then∫ t

a

Φ(s)ds ≃ PΦ(t),

where P = (pij) is the (n+1)× (n+1) operational matrix of integration in which
pij can be computed as:

pij =

∫ tj

a

ϕi(s)ds, i, j = 0, 1, . . . , n.

Proof. It is clear that∫ t

a

Φ(s)ds =
[ ∫ t

a

ϕ0(s)ds,

∫ t

a

ϕ1(s)ds, . . . ,

∫ t

a

ϕn(s)ds
]T
.(7)

By using (5), any components of the vector (7) can be approximated as:∫ t

a

ϕi(s)ds ≃
n∑
j=0

pijϕj(t), i = 0, 1, . . . , n.(8)

Hence, by substituting (8) in (7), the desirable result can be obtained. □

Lemma 3.2. Let F = [f0, f1, . . . , fn]
T be a column vector. Then

Φ(t)ΦT (t)F ≃ F̃Φ(t),

where F̃ is a (n+1)×(n+1) product operational matrix as F̃ = diag[f0, f1, . . . , fn].

Proof. The proof is similar to [3, Lemma 3.3]. □

4. Description of the Numerical Method

In this section, a numerical approach based on the operational matrices of integra-
tion and product for solving the nonlinear system of ODEs (1) is described. For
this purpose, by using (5), we approximate the functions dT

dt ,
dI
dt and dV

dt as

dT

dt
≃ T̃TΦ(t), dI

dt
≃ ĨTΦ(t), dV

dt
≃ Ṽ TΦ(t),(9)

where

T̃ = [T0, T1, . . . , Tn]
T , Ĩ = [I0, I1, . . . , In]

T , Ṽ = [V0, V1, . . . , Vn]
T ,

are unknown vectors. By integrating from (9) on the interval [0, t], using Lemma
3.1 and the initial conditions (2), one can get

T (t) ≃ T̃TPΦ(t) + r1, I(t) ≃ ĨTPΦ(t) + r2, V (t) ≃ Ṽ TPΦ(t) + r3.

Again, by applying (5), the functions T (t), I(t) , V (t) and q can be approximated
as

T (t) ≃ T Φ(t), I(t) ≃ IΦ(t), V (t) ≃ VΦ(t), q ≃ QTΦ(t),(10)

where

T = T̃TP+RT1 , I = ĨTP+RT2 , V = Ṽ TP+RT3 ,
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Table 1. Comparison between the proposed method and other
numerical results on the interval [0, 1].

T (t) Numerical OBCM [1] LWM [4] PM ET (t)
0.2 0.2088080786 0.2129281262 0.2088073215 0.2088079910 8.75e − 08
0.6 0.7644237744 0.7757846339 0.7641476415 0.7644231669 6.07e − 07
1.0 2.5915941109 2.7432245704 2.5571462314 2.5915926461 1.46e − 06
I(t) Numerical OBCM [1] LWM [4] PM EI (t)
0.2 0.6032701156e − 5 0.5903681847e − 5 0.6032704663e − 5 0.6032695618e − 5 5.54e − 12
0.6 0.2122378271e − 4 0.2123339357e − 4 0.2112628765e − 4 0.2122376415e − 4 1.86e − 11
1.0 0.4003780390e − 4 0.3943044147e − 4 0.3287654321e − 4 0.4003777698e − 4 2.69e − 11
V (t) Numerical OBCM [1] LWM [4] PM EV (t)
0.2 0.0618798419 0.0616038027 0.06187990765 0.0618798413 6.15e − 10
0.6 0.0237045487 0.0236278850 0.02381098734 0.0237045499 1.22e − 09
1.0 0.0091008437 0.0081082206 0.01605042314 0.0091008460 2.25e − 09

and R1, R2, R3 and Q are (n+ 1)× 1 vectors as follows

R1 = [r1, r1, . . . , r1]
T , R2 = [r2, r2, . . . , r2]

T ,

R3 = [r3, r3, . . . , r3]
T , Q = [q, q, . . . , q]T .

According to (10) and employing Lemma 3.2, we obtain

V (t)T (t) ≃ VΦ(t)T Φ(t) = VΦ(t)ΦT (t)T T = VB1Φ(t),(11)

T (t)T (t) ≃ T Φ(t)T Φ(t) = T Φ(t)ΦT (t)T T = T B1Φ(t),(12)

I(t)T (t) ≃ IΦ(t)T Φ(t) = IΦ(t)ΦT (t)T T = IB1Φ(t),(13)

where B1 is (n+1)× (n+1) diagonal matrix. By substituting (9), (10) and (11)-
(13) in the nonlinear system of ordinary differential equations (1) and canceling
Φ(t), we obtain the nonlinear system of algebraic equations as

T̃T −Q+ (α− r)T + r
Tmax

(T + I)B1 + κVB1 = 0,

ĨT − κVB1 + βI = 0,

Ṽ T − µβI + γV = 0.

(14)

By solving the nonlinear system of algebraic equations (14), the unknown vectors

T̃ , Ĩ and Ṽ are determined and by substituting in (9), the unknown functions
T (t), I(t) and V (t) are computed.

5. Numerical Results and Conclusion

In this section, we apply the proposed method (PM) to approximate the solution
of the system of ODEs (1) with the following parameters:

r1 = r3 = 0.1, r2 = 0, α = 0.02, β = 0.3, γ = 2.4, µ = 10, κ = 0.0027,

r = 3, R = 2, q = 0.1, Tmax = 1500.

To demonstrate the efficiency of the proposed method, we compare the results
obtained by this method with the numerical method based on fourth-order Runge-
Kutta method (RK4), orthonormal Bernstein collocation method (OBCM) [1] and
Legendre wavelet method (LWM) [4]. Figure 1 illustrates the approximation and
numerical results for T (t), I(t) and V (t) with n = 20 and d = 19. Figure 2 provides
the absolute error of the proposed method, where Ef (t) = |f(t)RK4 − f(t)PM |.

Table 1 gives a comparison between the proposed method, OBCM [1] and
LWM [4] for n = 8 and d = 7.
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Figure 1. Graphs of the approximation and numerical results for T (t), I(t)
and V (t) on th interval [0, 2].
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Figure 2. Graphs of the absolute error of the proposed method with n = 20
and d = 19 on the interval [0, 2].

Graphical and tabulated results confirm that the proposed method can be
successfully applied for solving the model of HIV Infection of CD4+ T-cells.
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A Modified Conjugate Gradient Method for Nonsmooth
Optimization Problems
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Abstract. In this paper, we introduce an efficient conjugate gradient method

for solving nonsmooth optimization problems by using the Moreau-Yosida
regularization approach. The search directions generated by our proposed
procedure satisfy the sufficient descent property, and more importantly, be-

long to a suitable trust region. Our proposed method is globally convergent
under mild assumptions. The numerical comparative results on a collection
of test problems show the efficiency and superiority of our proposed method.

Keywords: Conjugate gradient method, Nonsmooth optimization,
Global convergence.
AMS Mathematical Subject Classification [2010]: 65K10,
65Kxx.

1. Introduction

Consider the following optimization problem

min
x∈Rn

f(x).(1)

In this paper, we investigate optimization problems like (1), where f is a non-
smooth convex function.

Optimization problems are appeared in many research fields such as engi-
neering, management, economics, medicine, pharmacy, astronomy, etc. They are
highly regarded and also there exist many effective ways to solve them. A chal-
lenging issue regarding to (1) is solving large-scale nonsmooth problems.

There are a lot of methods for solving (1) with continuously differentiable ob-
jective function such as Newton and Quasi-Newton methods, trust region methods
and conjugate gradient methods. All the introduced methods find the optimal solu-
tion by generating descent directions using exact or inexact line search procedures.

Conjugate gradient methods have been extensively employed by researchers
in recent decades due to their strong local and global convergence properties and
also low memory requirements for solving large-scale problems. Conjugate gradient
iterations are generally defined as follows.

xk+1 = xk + αkdk,(2)

where αk > 0 is a step length and the search direction dk is computed by

dk+1 =− gk+1 + βkdk, (d0 = −g0),
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recursively, where gk =: ∇f(xk). The scalar βk known as the conjugate gradient
parameter is indeed one of the most important parameters of these methods. In
fact, various choices of βk lead to different conjugate gradient algorithms. There
are many articles that addressed different types of these algorithms and compared
them numerically. Although these methods originally have been developed for
solving smooth optimization problems, some researchers have recently used them
to solve nonsmooth convex optimization problems.

Some well-known methods available for solving nonsmooth convex optimiza-
tion problems are subgradient and bundle methods. But, our approach here to cast
these problems is transforming them to equivalent smooth problems via Moreau-
Yosida regularization technique.

Consider

min
x∈Rn

F (x),(3)

where F : Rn −→ R is the so-called Moreau-Yosida regularization of f , which is
defined by

F (x) = min
z∈Rn

{f(z) + 1

2λ
||z − x||2},(4)

where λ is a positive parameter. The set of minimizers of (1) coincide with the
set of minimizers of (3). Fortunately, F is a differentiable convex function even
when the function f is nondifferentiable [5]. There are various iterative methods
for solving (3) in many articles.

The good features of conjugate gradient methods for smooth problems encour-
aged us to modify these methods for nonsmooth problems.

2. A Brief Review

Note that the right hand side of (4) is well-defined in the convex case and while it
is strongly convex, it has a unique minimizer which is denoted by

p(x) = arg min
z∈Rn

{f(z) + 1

2λ
||z − x||2}.

Therefore, F can be expressed by

F (x) = f(p(x)) +
1

2λ
||p(x)− x||2,

which its gradient is

g(x) =
x− p(x)

λ
.

F (x) and g(x) have remarkable properties, as follows.

Theorem 2.1. [3] The function F in (4) is finite-valued, convex, everywhere
differentiable and its gradient is

g(x) =
x− p(x)

λ
.

g is globally Lipschitz continuous with the constant term 1
λ , namely

∥g(x1)− g(x2)∥ ≤
1

λ
||x1 − x2||.
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Finally, the following statements are equivalent.

i) x is the minimizer of f .
ii) x is the minimizer of F .
iii) g(x) = 0.
iv) x = p(x).

In order to provide an efficient conjugate gradient algorithm, Fatemi [1] intro-
duced an optimization problem by combining the three conditions

dTk+1yk = 0, dTi gk = 0 (i = 0, 1, . . . , k − 1), dTk gk ≤ η||gk||2 (η > 0 is a constant),

where yk := gk+1 − gk that are familiar in the linear conjugate gradient theory.
The problem was

min
βk

[
gTk+1dk+1 +M

((
gTk+2sk

)2
+
(
dTk+1yk

)2)]
,

where sk := xk+1 − xk and M is a penalty parameter. By solving this problem
and using the secant condition Bk+1sk = yk, a new βk was proposed as follows.

βk =
−1

2M(1 + t2)

gTk+1dk

(yTk dk)
2
+
yTk gk+1

yTk dk
− t

(1 + t2)

sTk gk+1

yTk dk
,(5)

where t > 0 is a suitable approximation of the step length αk. The author showed
that the resulting method is globally converged for general functions and also is
highly efficient than some other methods.

3. Preliminary Results

The good features of the method presented in [1], inspired us to modify it for
solving nonsmooth problems.

Considering gk = ∇F (xk), we define

dk+1 = −gk+1 + βNk dk, (d0 = −g0),(6)

where

βNk = (yk −
1

2M(1 + t2)

dk
Tk
− t

1 + t2
sk)

T gk+1

Tk
,(7)

and

Tk = max{γ∥dk∥.∥yk∥, ∥dk∥.∥sk∥, |dTk yk|} ≥ 0,(8)

for some constant γ > 0.
Equality (7) is our modified version of (5) suitable for nonsmooth problems

as we will show in the following.

Lemma 3.1. Consider conjugate gradient iterations based on (2) and (6) with
any step length αk > 0 and βk in (7). Then, for a positive scalar 0 < c < 1, we
have

dTk+1gk+1 ≤ −(1− c)||gk+1||2,

where

M =
2c

(1 + t2)∥yk∥2
.(9)
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It is easy to see that replacing (9) in (7) yields

βNk = (yk −
∥yk∥2

4c

dk
Tk
− t

1 + t2
sk)

T gk+1

Tk
.(10)

Lemma 3.2. For the search direction dk introduced by (6) and (10), we have

∥dk∥ ≤ (2 +
1

γ
+

1

4cγ2
)∥gk∥.

4. Global Convergence

We now sum up the contents of the previous sections to introduce our new conju-
gate gradient algorithm.

Algorithm 1. New Conjugate Gradient Algorithm (NCG).

• Step 1. Choose a starting point x0 ∈ Rn and a suitable value for positive
parameters λ, γ, δ, 0 < σ < 1, 0 < c < 1 and 0 < ϵ < 1. Compute
g0 = ∇F (x0), set d0 = −g0 and k = 0.
• Step 2. Check the stopping condition. if ∥gk∥ < ϵ then stop; else go to
step 3.
• Step 3. Compute the step length αk using the following Armijo-type line
search.

F (xk + αkdk)− F (xk) ≤ σαkgTk dk,

where αk = δ × 2−ik for ik ∈ {0, 1, 2, . . . }.
• Step 4. Compute xk+1 = xk + αkdk, gk+1 = ∇F (xk+1), sk = xk+1 − xk
and yk = gk+1 − gk.
• Step 5. Compute the conjugate gradient parameter βNk using (10) and
(8).
• Step 6. Compute the search direction dk+1 = −gk+1 + βNk dk.
• Step 7. Set k = k + 1 and go to step 2.

In order to prove the global convergence of the Algorithm 1, we consider the
following necessary assumptions.

1. The function F is bounded from below.
2. The sequence {Vi} is bounded, i.e. there is a constant L such that for each

i, ∥Vi∥ ≤ L.

Lemma 4.1. Let {xk, αk} be the sequence generated by the Algorithm 1 and
the above assumptions 1 and 2 hold. Then, for sufficiently large k, there exists
constant α0 > 0 such that

αk ≥ α0.

Theorem 4.2. Assume that the conditions in Lemma 4.1 hold. Then we have

lim
k−→∞

inf ||gk|| = 0.

and any accumulation point of xk is an optimal solution of (1).
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5. Numerical Experiments and Comparisons

In this section, we investigate the numerical performance of the Algorithm 1, by
solving some unconstrained nonsmooth test problems and comparing its results
by the algorithm 4.2 presented in [6].

The algorithms are terminated if either ||gk|| ≤ 10−7 or the number of itera-
tions are exceeded 3000.

We considered small and large scale problems reported by [2] and [4] in our
numerical tests.

The reported results express that the proposed algorithm can successfully solve
all test problems. We can see, by Figure 1, that the Algorithm 1 acts better than
the algorithm 4.2 in the sense of Dolan-Moré performance profile. Therefore, it
can be introduced as an acceptable and efficient way to solve nonsmooth problems.

Figure 1. Performance profiles of these methods.
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2. M. Haarala, K. Miettinen and M. M. Mäkelä, New limited memory bundle method for large-
scale nonsmooth optimization, Optim. Methods Softw. 19 (6) (2004) 673–692.

3. J. B. Hiriart-Urruty and C. Lemaréchal, Acceleration of the cutting-plane algorithm: Primal
forms of bundle methods, In: Convex Analysis and Minimization Algorithms II, Springer,
Berlin, (1993) pp. 275–330.
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Abstract. The Quadratic Programming (QP) is used in many important
issues in our lives, such as finance, agriculture, economics, and marketing. So
far, a variety methods have been presented to solve this problem and each

method has its own advantages and disadvantages. In this article, we will
reach the minimal zero norm solution of the non-linear problem equal with
QP, using the Karush-Kuhn-Tucker (KKT) method. Since the conditions in

KKT method are the sufficient conditions required for solving the problem,
with the new method the general optimal would be found. In the last part,
there would be numerical examples solved and the results would be compared
with other resources, to study the efficiency of the method.

Keywords: Karush-Kuhn-Tucker conditions, Minimal zero norm,
Non-linear programming, Quadratic Programming.
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1. Introduction and Introducing the Problem

A Quadratic Programming (QP) would be stated as

min f(X) = CTX + 1
2X

TQX

S. to : AX ≤ b,

X ≥ 0.

(1)

In which

C = (c1, c2, . . . , cn), b = (b1, b2, . . . , bm), X = (x1, x2, . . . , xn),

are vectors and Am×n, Qn×n are matrix. Since the constraints in problem (1)
are linear, the defined region by these conditions is convex. Therefore, if the
objective function f(X) is convex and there is one local solution for problem (1),
this solution will be global. If Q is positive definite (or positive semi-definite),
the function f(X) is a convex one. When Q is not a positive semi-definite matrix
(either indefinite or negative semi-definite), the objective function is nonconvex
and may have local minimizers that are not global.

In linear programming if there is one optimal solution, there is always one
vertex optima in the admissible region. In QP, the mentioned conditions are not
necessary and the optimal solution might be positioned in an inner point of the
admissible region.

QP has been very successful for modeling many real life problems. Most appli-
cations of QP have been in finance, agriculture, economics, production operations,
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marketing and public policy [1, 4, 7]. In economics, it is used in demand-supply
response and enterprise selection. In finance, it is used in portfolio analysis, in
agriculture, in crop selection [1].

2. Solving Method of QP

Several different methods have been presented for solving problem (1). One of the
most important methods is using Karush-Kuhn-Tucker (KKT) theorem.

2.1. KKT Optimality Conditions. Suppose that X is a local optimal so-
lution of the QP such that it satisfies AX = b, X ≥ 0 and assume that Q is a
positive semi-definite matrix. Then, there exist vectors Y,U and V such that the
following conditions hold

ATU +QX − Y = CT ,

AX + V = b,

XTY + UTV = 0,

X ≥ 0, U ≥ 0, Y ≥ 0, V ≥ 0.

(2)

Furthermore, X is a global optimal solution [8].
Two last cases of these conditions are indicative of complementary relation-

ships which are satisfied for xj = 0 or yj = 0, (j = 1, 2, . . . , n) (or both of them).
Also, which are satisfied for ui = 0 or vi = 0 (i = 1, 2, . . . ,m) (or both of them).

Problem (2) is solvable through phase I of the two-phase Simplex method.
Non-basic variables whose complementary variable is currently basic should not
be chosen as an input variable. Interior-Point Method (IPM) is the latter method
for solving problem (2).

IPM finds primal-dual solution (X,Y, U, V ) by applying variants of Newton’s
method to the optimality conditions and modifying the search directions and step
lengths so that X ≥ 0, Y ≥ 0, U ≥ 0 and V ≥ 0 are satisfied strictly at every
iteration [2, 9]. In this method, the existence of nonnegative constraints creates
a difficulty and regarding solutions, complementary condition should be examined
at each phase. Moreover, this method starts with a strictly feasible iterate that is
not always a trivial task [9].

3. Outline of Work

In this paper, for solving non-linear system (2), a simple and effective method is
presented based on minimal zero norm. Then, for examining the effectiveness of
the method, the numerical examples solved through previously presented methods,
will be solved using the new method. Minimal zero norm solution are often desired
in some real applications such as bimatrix game and portfolio selection [6].

Zero norm of a vector is defined by

∥X∥0 = lim
p→0+

∥X∥p =
n∑
i=1

sign(|xi|),

which is equal to the number of non-zero elements of vector X.
If p ≥ 1, it is usual to refer to ∥X∥p as the ℓp norm of X ∈ Rn. The notation

sign(.) represents the operator such that, for any real number a, sign(a) = 1 if
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a > 0, sign(a) = 0 if a = 0 and sign(a) = −1 if a < 0 (See [6]). Non-linear system
(2), can turn into a problem of non-linear programming which is easily solved by
MATLAB software, by introducing a proper objective function. Since in solving
the non-linear programming problem, not all the conditions necessarily satisfied
and some tolerance is accepted, the objective function must be chosen the way
that the non-linear conditions satisfy.

If we consider the problem with the objective function of minimal zero norm
of the unknown vectors, the optimal solution would be easily found. Here, consid-
ering the complement non-linear conditions and target function of minimal zero
norm, the general optimal solution is found. The function min ∥(X,Y, U, V )∥0,
minimizes the number of non-zero elements of the unknown vector.

3.1. Suggestions for Continuing the Process. As it was mentioned in
the previous section, we can solve the problem by defining the objective function
min ∥(X,Y, U, V )∥0. If we can separately consider the objective function as
the minimal zero norm for the complement conditions, means, every complement
condition is a function of the minimizing zero norm, then we have a problem of
multi-objective programming as follow:

min zi = |sign(xi)|+ |sign(yi)|, i = 1, 2, . . . , n,

min z
′

j = |sign(uj)|+ |sign(vj)|, j = 1, 2, . . . ,m.

The multi-objective programming problem with linear constraints, is solvable with
the help of inventive algorithms such as Genetic algorithm. Unfortunately, if the
complement conditions are not considered for all constraints, this method would
not work for all examples, since there is no effective and efficient method for
solving multi-objective programming with non-linear conditions [5]. Usually con-
straints would be added to target functions using the penalty functions. Finding a
method for solving multi-objective problems with linear and non-linear constraints
be studied as a suggestion.

4. Numerical Examples

In this section, to study the efficiency of this method, there are examples from the
specified reference. These examples are solved using the mentioned method and
the answers are satisfying in comparison with previous work.

Example 4.1. Solve the following quadratic programming problem [3]:

min f(X) = 15x1 + 30x2 + 4x1x2 − 2x21 + 4x22

S.to : x1 + 2x2 ≤ 30,

x1 ≥ 0, x2 ≥ 0.

Considering the KKT proposition, the problem would be rewritten as follow:

4x1 − 4x2 + u1 − y1 = 15,

−4x1 + 8x2 + 2u1 − y2 = 30,

x1 + 2x2 + v1 = 30,

xiyi = 0, u1v1 = 0,

xi, yi, u1, v1 ≥ 0, i = 1, 2.
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By defining the objective function

min Z = sign(|x1|)+ sign(|x2|)+ sign(|y1|)+ sign(|y2|)+ sign(|u1|)+ sign(|v1|),
(the minimal zero norm of the variables) we have a non-linear programming prob-
lem which is solvable with MATLAB software and the fmincon formula. The
optimal solution of the problem, with the new method is

(x∗1, x
∗
2, u

∗
1) = (12, 9, 3).

This result satisfies in all constraints and complement conditions and has the best
value of the objective function.

Example 4.2. Solve the following problem [3]:

min f(X) = 4x1 + 6x2 − 2x21 − 2x1x2 − 2x22

S.to : x1 + 2x2 ≤ 2,

x1 ≥ 0, x2 ≥ 0.

Considering KKT constraints and the objective function of zero norm we have the
following:

min Z = ∥(X,Y, U, V )∥0
S.to : 4x1 + 2x2 + u1 − y1 = 4,

2x1 + 4x2 + 2u1 − y2 = 6,

x1 + 2x2 + v1 = 2,

xiyi = 0, u1v1 = 0,

xi, yi, u1, v1 ≥ 0, i = 1, 2.

The optimal solution is

(x∗1, x
∗
2, u

∗
1) = (

1

3
,
5

6
, 1).

Example 4.3. Solve the following problem [8]

min f(X) = −4x1 + x21 − 2x1x2 + 2x22

S.to : 2x1 + x2 ≤ 6,

x1 − 4x2 ≤ 0,

x1 ≥ 0, x2 ≥ 0.

Considering KKT conditions, we have

min Z = ∥(X,Y, U, V )∥0
S.to : 2x1 − 2x2 + 2u1 + u2 − y1 = 4,

−2x1 + 4x2 + u1 − 4u2 − y2 = 0,

2x1 + x2 + v1 = 6,

x1 − 4x2 + v2 = 0,

xiyi = 0, uivi = 0,

xi, yi, ui, vi ≥ 0, i = 1, 2.
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The optimal solution is

(x∗1, x
∗
2, u

∗
1, v

∗
2) = (

32

13
,
14

13
,
8

13
,
24

13
).

Example 4.4. Solve the following problem [8]

min f(X) = −8x1 − 16x2 + x21 + 4x22

S.to : x1 + x2 ≤ 5,

x1 ≤ 3,

x1 ≥ 0, x2 ≥ 0.

Considering KKT conditions, we have

min Z = ∥(X,Y, U, V )∥0
S.to : 2x1 + u1 + u2 − y1 = 8,

8x1 + u1 − y2 = 16,

x1 + x2 + v1 = 5,

x1 + v2 = 3,

xiyi = 0, uivi = 0,

xi, yi, ui, vi ≥ 0, i = 1, 2.

The optimal solution is

(x∗1, x
∗
2, u

∗
1, u

∗
2) = (3, 2, 0, 2).

5. Conclusion

In this article, a simple and effective method is introduced for solving quadratic
programming problem, with the help of KKT constraints and definition of the
objective function. In non-linear problems, the result might be approximate. Al-
though, in the new method we have a non-linear programming problem, with the
help of KKT constraints, the global optimal result would be found. With regard
to the complement conditions in non-linear constraints, the objective function of
zero norm, is the most suitable function for solving this problem. The results are
completely satisfactory comparing to the others represented for QP problem.
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1. Introduction

Large scale unconstrained optimization (LUO) problems are famous due to the
widespread applications in science and engineering [15], which are formulated as
follows:

min
x∈Rn

f(x),

where f : Rn → R is a multivariable continuously differentiable function and its
gradient, g, is available. As an important class of iterative methods, scaled or
spectral conjugate gradient (SCG) methods are popular for solving UO problems.
Starting from an initial solution x0 ∈ Rn, we update it by following sequential
expression:

xk+1 = xk + αkdk,

where αk is the step length and dk is the direction at k-th iteration. The search
direction can be calculated by following recursive formula [7]

dk+1 = −θk+1gk+1 + βkdk,(1)

where gk = g(xk). In Eq. (1), θk+1 and βk are the scaled and conjugate pa-
rameters, respectively, and the initial search direction is set as d0 = −g0. SCGs
are an extend family of the conjugate gradient (CG) methods, which have advan-
tages such as simplicity iterations, low memory requirements and strong global
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convergence properties [4]. For θk+1 = 1, the SCG methods are converted to CG
methods, and for βk = 0, they converted to spectral gradient method (SGM) [14].
Moreover, the step length αk usually chosen by Wolfe conditions [15], requiring
that:

f(xk + αkdk)− f(xk) ≤ δαkgTk dk,(2)

g(xk + αkdk)
T dk ≥ σgTk dk,(3)

where 0 < δ < σ < 1, fk = f(xk).
Bergin and Martinze [7], proposed the first SCG algorithm based on SGM,

which introduced by Raydan [14] as an extended Barzilai and Borwein idea in [2].
The SGM scaled parameter, which is the inverse of the Raydan quotient and is
grounded on the eigenvalue of the average Hessian matrix, is defined as follows [2]

θk+1 =
sTk sk
sTk yk

,(4)

where sk = xk+1 − xk and yk = gk+1 − gk. The spectral parameter for SGM in
Eq. (4), is determined using a two-point approximation of the standard secant
equation.

Using the SGM scaled parameter in Eq. (4) and the classic CG parameters,
Bergin and Martinz [7] proposed standard SCGs with following CG parameters:

βSHSk =
θk+1g

T
k+1yk

yTk dk
, βSFRk =

θkg
2
k+1

θk+1g2k
,

βSPRk =
θkg

T
k+1yk

θk+1∥gk∥
, βSPk =

gTk+1(θk+1yk − sk)
yTk dk

.

It is clear that, in the case of θk+1 = θk = 1, these formulas are reduced to the
corresponded on the classical CGs [11].

Setting the SCG parameters, (θk+1, βk) in Eq. (1), is an interesting issue in
literatures, which affects on numerical performance and global convergence prop-
erties. These parameters deal with satisfying some essential properties in SCGs,
contains descent and conjugacy. There are two groups of strategies to set the SCG
parameters. In the first group, the parameters are set such that the search direc-
tions satisfies descent or sufficient descent conditions (For instance, see [10, 16]).
In the second group, using the secant equation (or modified version of it), the
conjugacy conditions are applied to set the SCG parameters (For instance, see the
references [1, 6, 10, 13]). Here, using both strategies, we propose a new SCG
method, which has both features: sufficient descent and conjugacy.

The remainder of this paper is organized as follows. In Section 2, the new
SCG algorithm is proposed. In Section 3, we numerically compare our methods
with SCGs in [9].

2. A Modified SCG Method

In this section, inspired by the JC SCG method introduced by Jian et al. [9], a
modified SCG method is proposed for solving LUO problems, which the conju-
gate parameter is set based on Dai and Kou (DK) [5] CG family and the scaled
parameter is set based on quasi-Newton (QN) approach.
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The QN methods are based on secant equation as Bk+1sk = yk, where Bk+1 is
the approximation of the Hessian matrix in xk+1. To improve the quality of these
methods modified versions of them are introduced in literatures. For example, Li
and Fukushima [12], proposed a modified secant equation as Bk+1sk = zk, where

zk = yk + hk||gk||rsk, hk = D +max

{
− sTk yk
||sk||2

, 0

}
||gk||−r,(5)

where r is a positive constant parameter. This equation in leads to global conver-
gence property even without convexity assumption on the objective function for
QN methods [12]. Moreover, it achieves a high-order accuracy in approximating
the second-order curvature of the objective function. Based on the modified secant
equation in Eq. (5) and inspired by [9], we set the CG parameter as follows:

βHk =
gTk+1zk

dTk zk
−
∥zk∥2gTk+1dk

(dTk zk)
2

,(6)

where zk defined in (5). The conjugacy parameter βHk in Eq. (6) is a especial
version of DK conjugate parameter. A main feature of the CG parameter βHk
is that the corresponding direction has sufficient descent condition property [9].
Also, from Eq. (5), the following inequality holds:

sTk zk ≥ D||gk|r||sk||2 > 0,

which is necessary to global convergence property. Now, to set the scaled parame-
ter, we use QN search direction as dk+1 = −B−1

k+1gk+1, which with comparing with
SCG search direction in Eq. (1) leads to new scaled parameter. Therefore, similar
to [9], based on double-truncating technique, which insure both the sufficient de-
scent property and bounded property of the sequence of spectral parameters, the
scale parameter is defined as follows:

θM±
k+1 =

{
θM±
k+1 , θM±

k+1 ∈ [ 14 + η, τ ],
1, otherwise,

(7)

where θM±
k+1 is the notation of θM−

k+1 or θM+
k+1, with the following definitions:

θM+
k+1 = 1− 1

gTk+1zk

(
∥yk∥2dTk gk+1

dTk zk
− sTk gk+1

)
, θM−

k+1 = 1− ∥yk∥2dTk gk+1

(dTk zk)(g
T
k+1zk)

,

where τ is a suitable large upper bound and positive η is a suitable small and
positive constant. The SCG method with the parameters (βHk , θ

M±
k+1), is named

modified JC method, with the following search direction:

dk+1 = −θM±
k+1gk+1 + βHk dk.

The global convergence of the modified JC method is very similar to JC methods.

3. Numerical Experiments

In this section, we present some numerical experiments, obtained by applying a
MATLAB 8.8.0.1 (R2013a). The numerical results are compared with two version
of the JC SCG methods, contain JC+ and JC−, proposed in [9]. The implemen-
tations were performed on a computer, Intel(R) Core (TM) A10-8700P CPU 3.20
Gigahertz 64-bit desktop with 8 Gigabyte RAM. Our experiments have been done
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on the test problems of unconstrained optimization problems of CUTEr collection
[8].

In all the methods, we used the effective approximate Wolfe conditions de-
scribed in Eqs. (2)-(3) with parameters σ = 0.9 and δ = 10−4. For the modified
JC method, we use the parameters D = 10−4 and r = 3, in Eq. (5), and η = 10−4

and τ = 10, in Eq. (7). Moreover, the same stop condition is considered for all
methods which is ∥gk∥∞ ≤ 10−6 and the maximum number of iterations is limited
to 1000.

The comparing data contain the CPU time and the number of evaluations
for function, nf , and gradient, ng as nf + 3ng. To approximately assess the
performance of different algorithms, we use the performance profile introduced by
Dolan and More [3].

As shown in Figure 1, with respect to CPU time and the number of evaluations
for function and gradient, the proposed methods, modified JC+ SCG method is
the best method among modified JC− and JC± SCG methods.
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Figure 1. Performance profiles based on number iteration for
JC± and the proposed modified JC±, (a): CPU time and (b):
number of evaluations, nf + 3ng.
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1. Introduction

Artificial neural networks (ANNs), as a major topic in computational intelligence,
have many applications in science and engineering such as pattern recognition,
function approximation and classification [3, 5]. As the most broadly case, feed-
forward ANNs have been widely used in many researches. Backpropagation (BP)
algorithm is the most famous method used for learning these ANNs, which is im-
plemented by two practical ways: batch updating approach and online updating
approach [6]. These methods differ in the ways of weight corrections and training
schemes of data set.

There are two main groups for training ANNs in BP methods, supervised and
unsupervised approaches. Gradient descent method is the most famous approach
in supervised methods. The main drawback of gradient descent method is low
convergence. To accelerate the convergence, some authors applied second order
algorithms in training process of for BP algorithm such as Newton, Levenberg-
Marquardt and CG. Function approximation is a well-known problem, which can
be solved by ANNs. For example, Yang et al. [7] proposed three types of neural
networks contain Radial Basis Function (RBF), BP and Generalized Regression
neural network (GRNN) for solving these problems.

Here, using a batch updating approach in BP algorithm, we apply some CGs
for training phase. Also similar to [5], to more suitable learning rate in each
training epoch the generalized Armijo method is used.

The remainder of this paper is organized as follows. In Section 2, a new ANN
algorithm is proposed. In Section 3, we present some numerical experiments for
function approximation.
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2. A New BP Neural Network Algorithm

In this section a new BP feedforward ANN is proposed for function approximation,
which used CGs for training phase. Also, the learning rate is set based on the line
search approach proposed in [5], which is a generalized Armijo procedure.

At first, we construct a three layer BP network with m input, n hidden
and one output neurons, respectively. Given a data set of size J , as a couple
(Xi, Oi), i = 1, 2, . . . , J , where Xi ∈ Rm and Oi ∈ R are the input and ideal
output of the i-th sample. Let u ∈ Rn be the connecting weight vector between
hidden and output layers and V = (wij)n×m be the matrix of weights connect-
ing input and hidden layers. Also we denote the connecting weights between the
input layer and the i-th neuron of the hidden layer as a column vector vi ∈ Rm,
where vi = [w1i, w2i, . . . , wmi]

T , as the i-th row of the weight matrix V . Now,
for simplicity, the all the weights of the network can be combined in a vector
as W = [uT , vT1 , v

T
2 , . . . , v

T
n ]
T ∈ Rn(m+1). For each input, such as Xi, the out-

put of hidden layer is as z = G(V Xi), where G is a vector valued function as
G(z) = [g(z1), g(z2), . . . , g(zn)]

T and g is a smooth active function. Now, the
output of the ANN is evaluated as follows:

y = f(uT z) = f(uTG(V X)),

where f is a real smooth function as an active function of output layer. For the
specific weight vector W , the error function, as the mean square error between
real and ideal outputs, can be experted as follows:

E(W ) =
1

2

J∑
k=0

(
Ok − f(uTG(V Xk))

)2

.(1)

As a second order algorithm, CG methods can be used to train the ANNs.
Using W0 as a initial weight vector, CGs construct a sequence {Wk}, as follows:

Wk+1 =Wk + αkdk,(2)

where αk is step length or learning rate and dk is search direction defined by
following recursive formula:

dk+1 = −Ek+1
w + βkdk, d0 = −Ew(W0),(3)

where Ekw is the gradient vector of the error function, defined in Eq. (1), in Wk,
which is Ekw = Ew(W

k) and Ew = [Eu, Ev1 , . . . , Evn ]
T . The partial derivations of

the error function with respect to u and vi, i = 1, 2, . . . , n can be calculated as
follows:

Eu =
J∑
k=0

(Ok − yk)f ′(uTG(V Xk))G(V Xk),

Evi =
J∑
k=0

(Ok − yk)f ′(uTG(V Xk))uig
′(vTi X

k)Xk.

In Eq. (3), βk is conjugate parameter of CG, called CG parameter. There
are different CG methods which distinguished by definition of CG parameters.
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Some of well-known CGs are Fletcher-Reeves (FR) [1], Hestenes-Stiefel (HS) [2],
Polak-Ribiere-Polyak (PRP)[4], with following CG parameter:

βFRk =
∥Ek+1

w ∥2

∥Ekw∥2
, βPRk =

yTk E
k+1
w

∥Ekw∥2
, βHSk =

yTk E
k+1
w

yTk dk
.(4)

In order to compare the efficiency of different CGs for training ANNs, we apply
three FR, PR and HS CGs for them. Therefore, three BP algorithms are intro-
duced named: BPFR, BPPR and BPHS.

To set the learning rate we use the generalized Armijo technique, proposed in
[5]. Let µ1, µ2 be in (0, 1), µ1 ≤ µ2, and γ1 and γ2 are positive constant values. To
set the learning rate αk, at first a parameter α∗ is evaluated so that the following
inequality satisfies:

E(W k + α∗dk) > E(W k) + µ2α
∗dTkE

k
W .

Next, the learning rate αk is calculated by following inequalities:

E(Wk + αkdk) ≤ E(Wk) + µ1αkd
T
kE

k
W ,

αk ≥ γ1, or αk ≥ γ2α∗
k > 0.

Now with the iterative method in (2) and different CGs, as training procedures,
we can construct BP algorithms for function approximation. Algorithm 1, shows
the steps of three BP algorithms.

Algorithm 1. The BP algorithms (BPFR, BPPR, BPHS).

• Initialization: Input the number neurons for hidden layer, n, the num-
ber of inputs, m, the number of samples, J , the dataset (Xi, Oi), i =
1, 2, . . . , J , W0 as a random weight vector and α0 as arbitrary positive
constant.
• Step 1. Let d0 = −EW (W0) and k = 0.
• Step 2. Let Wk+1 =Wk + αkdk.
• Step 3. Evaluate αk+1 with the generalized Armijo procedure.
• Step 4. Let dk+1 = −Ek+1

W + αkdk.
• Step 5. Update βk, based on βFRk , βPRPk or βHSk in Eq. (4).
• Step 6. Let k = k + 1.
• Step 7. If stop conditions are not satisfied, go to Step 2.

3. Numerical Experiments

In this section, we present numerical experiments to approximate three test func-
tions, obtained by applying a MATLAB 8.8.0.1 (R2013a). The implementations
were performed on a computer, Intel(R) Core (TM) A10-8700P CPU 3.20 Giga-
hertz 64-bit desktop with 8 Gigabyte RAM. For this purpose, we consider three
following functions:

f1(x1, x2) = sin(x1) + sin(x2),

f2(x1, x2) = x1 exp(x2),

f3(x1, x2, x3) = x1x2 cos(x3) + x2 exp(x1x3).

To set up the training data set, 1000 input data are selected uniformly in [0, 1]d,
where d is the dimension of the function. The structure of the ANN contains input

729



S. Nezhadhosein and F. Nikzad

nodes, 10 hidden nodes and one output node. Also, the active function for the
hidden layer is “tanh”, while for the output layer, the identical active function is
selected. For the initial weights in Algorithm 1, we choose random vector in (0, 1)
with normal distribution. The training procedure will be terminated when the
number of epochs reached to 1000 or the norm of objective function gradient less
than 10−3.

To make clear comparison of BPFR, BPPR and BPHS methods, we graphi-
cally plot the norm of gradient and function evaluation in Figure 1. It is shown
that with respect to the rate of convergent, BPFR method is the best method
among BPHS and BPPR methods.

Figure 1. Performance profiles of BPFR, BPPR and BPHS
methods for function evaluation (a) and norm of function (b).
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1. Introduction

Let S be a closed subset in Rn, the distance function is defined as dS(x) =
mins∈S ∥x−s∥. The mathematical model of the constrained single facility minimax
location problem with closest distance is as follows:

min
x∈S

F (x) := max
i∈M

widAi
(x),(1)

where S is a closed set in Rn, wi (i ∈ M) are positive weights, and Ai = {x ∈
Rn | ∥x−ai∥ ⩽ ri} (i ∈M) are the circles in Rn, called the demand regions. When
S is convex (nonconvex), then we say that problem (1) is a convex (nonconvex)
problem.

The concept of closest distance between sets is well known in mathematics and
have received considerable attention in the facility location problems. Brimberg
and Wesolowsky discussed in [2] the case, where the demand regions are some
polygons. In particular, they present some applications for their model. In the
unconstrained case, a graphical approach is provided in [2]. In addition, two
efficient algorithms are investigated in [1] for solving problem (1), when the weights
are equal to 1 and the demand regions are some polyhedral sets. In the constrained
case, in [5] an algorithm is proposed for finding the optimal solution of problem (1)
with planar polyhedral sets. Nobakhtian and Raeisi Dehkordi discussed in [6] the
minimum of the sum of weighted Euclidean distances to the closest points of the
demand regions and an algorithm is established for solving the proposed problem.
An efficient algorithm is developed in [7] for finding the optimal solution set of the
rectilinear distance location problem with box constraints.
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At the primary contribution of this paper, we consider the single facility min-
imax location problem (1) and a geometric approach is proposed for seeking the
optimal solution. However, finding the optimal solution of a nonconvex optimiza-
tion problem is very difficult, and the proposed geometric condition intends to
present an algorithm for finding an optimal solution in the nonconvex case. More-
over, the global convergence of the presented algorithm is proved. In particular,
we show that the optimal solution is unique in the convex case.

The advantages of the proposed algorithm are as follows: (1) it is simple
and easy to implement, (2) it solves a simple subproblem in each iteration, (3) it
uses a few parameters, (4) it reduces the value of the objective function in each
iteration, (5) the sequence generated by the proposed algorithm converges to a
Clarke stationary point under mild assumptions.

Our second contribution is to present the existence and uniqueness results.
This paper is organized as follows. Section 2 proposes a necessary and sufficient

condition of optimality for problemsfmc. In Section 3, we present a new algorithm
for solving the problem in the nonconvex case.

1.1. The Existence and Uniqueness Results. The existence and unique-
ness of the optimal solution of optimization problems play a key role for improving
the numerical methods and solving these problems.

In the following theorem, we prove the existence of an optimal solution for
problem (1) under a compactness hypothesis.

Theorem 1.1. Suppose that one of the sets A1, A2, . . . , Am or S is compact,
then problem (1) has at least one optimal solution.

We now proceed to discuss the uniqueness of the optimal solution for problem
(1).

Theorem 1.2. Suppose that S is compact and convex. Then the optimal
solution of problem (1) is unique.

The following theorem provides a geometric condition for the optimal solution
of problem (1).

Theorem 1.3. If x∗ is an optimal solution of problem (1), then

x∗ ∈ ∩mi=1B r∗
wi

(ai) ∩ S, and ∩mi=1 B◦
r∗
wi

(ai) ∩ S = ∅,

where r∗ = f(x∗). Conversely, suppose that there exist x̃ ∈ Rn and r̃ > 0 such
that

x̃ ∈ ∩mi=1B r̃
wi

(ai) ∩ S, and ∩mi=1 B◦
r̃
wi

(ai) ∩ S = ∅,

then r̃ = f(x̃) and x̃ is an optimal solution of problem (1).

2. Algorithm

An algorithm for finding the optimal solution of problem (1) proceeds as follows.

Algorithm 1.
Input: Given the tolerance ϵ > 0, choose the initial bracket [L0, U0] containing the
minimum value r∗ of the objective function of problem (1) such that L0, U0 ⩾ 0,
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and set k = 0.

Step 1. Set rk =
Uk + Lk

2
.

Step 2. If ∩mi=1B rk

wi

(ai) ∩ S ̸= ∅, then Set Lk+1 = Lk and Uk+1 = rk,

else set Lk+1 = rk and Uk+1 = Uk.
Step 3. If Uk+1−Lk+1 ⩽ ϵ, then Set x̃ ∈ ∩mi=1BUk+1

wi

(ai)∩S as an ϵ-approximated

solution of problem (1); Otherwise Set k = k + 1 and go to Step 1.

The initial bracket [L0, U0] can be given by L0 = 0 and U0 = f(x0) for a
feasible solution x0 ∈ S. Also the established problem in Step 2 is a feasibility
problem, and one can determine whether balls and the set S intersect by using
the cyclic projection algorithm [3, 4].

The following theorem presents the convergence analysis for Algorithm 1.

Theorem 2.1. Algorithm 1 stops at an ϵ-approximated solution x̃ in at most

⌊log2
U0 − L0

ϵ
⌋+ 1 iterations.
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Abstract. We study the Tsallis entropy rate of a hidden Markov process,
defined by observing the output of a symmetric channel whose input is a first

order Markov process. Although this definition is very simple, obtaining the
exact amount of entropy rate in calculation is very difficult. We introduce
some probability matrices based on Markov chain’s and channel’s parameters.
Then, we try to obtain an estimate for the Tsallis entropy rate of hidden

Markov chain by matrix algebra and its spectral representation. To do so, we
use the Taylor expansion, and calculate some estimates for the first terms,
for the entropy rate of the hidden Markov process.

Keywords: Perron-Frobenius theorem, Probability matrices,
Spectral representation, Taylor expansion.
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94A17.

1. Introduction

Suppose that there is a first-order stationary Markov process as an input of a
symmetric channel with a noisy process. The output of this channel is a hidden
Markov chain. In recent years, the Shannon entropy rate of hidden Markov chain
studied by different scientists. The Tsallis entropy rate of hidden Markov chain by
an special noisy process will be studied in this paper. To reach this goal, we will
use the Taylor expansion and Perron-Frobenius theorem for stochastic matrices.

Computing the Shannon entropy (here it is called entropy) of a hidden Markov
process was studied by Blackwell [1], which is based on the intrinsic complexity
of expressing the hidden Markov process entropy as a function of the process
parameters.

Zuk et al. [9] showed formulas for higher-order coefficients of the Taylor
expansion in the symmetric case for binary Hidden Markov Chain.

Tsallis [7] proposed the generalization of the entropy by postulating a non-
extensive entropy, (i.e., Tsallis entropy), which covers Shannon entropy in par-
ticular cases. This measure is non-logarithmic. Vila et al. [8] investigated the
application of three different Tsallis-based generalizations of mutual information
to analyze the similarity between scanned documents. Another paper by Castello
et al. [3] presented a study and a comparison of the use of different information-
theoretic measures for polygonal mesh simplification by applying generalized mea-
sures from Information Theory such as Havrda-Charvát-Tsallis entropy and mu-
tual information.

For Shannon and Tsallis entropies, Nikooravesh [6] applied the problem of the
maximum entropy for generalization of a direct method for quantile estimation,
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which used the integral-order probability weighted moments of in place of the
product moments.

Our study will focus on the estimation of the entropy rate of the hidden Markov
chain, where the channel parameters are small.

2. Preliminaries

Let X = {Xk}k≥1 be a first-order stationary Markov process on X = {0, 1, . . . ,
m−1}, with transition matrixP = {pab} such that for every k ≥ 1, pab = PX(Xk =
b|Xk−1 = a), where a, b ∈ X. Also the initial distribution of the Markov chain
is denoted by the vector Π0 such that Π0(i) = Pr{X0 = i} for i ∈ X. Consider
also a noise process E = {Ek}k≥1, independent of X, such that P (Ei = l) = εl,

where l ∈ X and
∑m−1
l=0 εl = 1. Now, define the process Z = {Zk}k≥1, with

Zk = Xk ⊕Ek, k ≥ 1, where ⊕ denotes addition modulo m. Consider a stochastic
process {Yk}k≥1 with state space Y. The Tsallis entropy rate of the stochastic
process {Yk}k≥1 is

Sq(Y) = lim
n→∞

Sq(Y1, Y2, . . . , Yn)

n
, q > 0, q ̸= 1,

where Yt is a random variable demonstrating the state at time t, and

Sq(Y1, Y2, . . . , Yn) = −
∑
y1∈Y

∑
y2∈Y

· · ·
∑
yn∈Y

P q(y1, y2, . . . , yn)(1)

lnq P (y1, y2, . . . , yn),

where lnq(x) = (x1−q − 1)/(1 − q). The process {Zk}k≥1 is a stochastic process,
also it is an example of a hidden Markov process. Let

Pn := [P (Zn1 , En = 0), P (Zn1 , En = 1), . . . , P (Zn1 , En = m− 1)],

and get M(Zn−1, Zn) as a probability matrix with dimension m ×m and entries
εj−1PX(Zn ⊕ (j − 1)|Zn−1 ⊕ (i − 1)) in ith row and jth column. So it is easy to
show

Pn = Pn−1M(Zn−1, Zn), PZ(Z
n
1 ) = P1M(Z1, Z2) . . .M(Zn−1, Zn)1

t, n > 1,

where 1 = [1, 1, . . . , 1]1×m and superscript t denotes transposition.
We construct these matrices for a given realization zn1 of Zn1 . Using the nota-

tion Mi = M(zi, zi+1) we get

Mi = M
(0)
i + ε1M

(1)
i + · · ·+ εm−1M

(m−1)
i , 1 ≤ i ≤ n− 1.(2)

Similarly, one can show P1 = P
(0)
1 + ε1P

(1)
1 + · · ·+ εm−1P

(m−1)
1 , and

PZ(z
n
1 ) = P1M1M2 . . .Mn−11

t(3)

= (P
(0)
1 +

m−1∑
i=1

εiP
(i)
1 )

n−1∏
k=1

(M
(0)
k +

m−1∑
i=1

εiM
(i)
k )1t.
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3. The Tsallis Entropy Rate of a Hidden Markov Chain

The following formula will be useful in computing the Tsallis entropy of Z i.e.,

Rn(q,Υ) =
∑
zn1

P qZ(z
n
1 ), where the exponent s of PZ is a complex variable, and

the summation is over all n tuples of X. Note that by the Eq. (3), for Υ = 0, we

can write Rn(q,0) =
∑
zn1

P qX(zn1 ). Now by different form of both sides of Eq. (1),

we have

Sq(X
n
1 ) =

1

q − 1
(1−

∑
xn
1

P qX(xn1 )) =
1

q − 1
(1−Rn(q,0)),

and similarly Sq(Z
n
1 ) =

1

q − 1
(1−Rn(q,Υ)). Using Taylor expansion near Υ = 0,

we have

Rn(q,Υ) = Rn(q,0) +
m−1∑
k=1

εk
∂

∂εk
Rn(q,Υ)|Υ=0 + o(ε2max),

where εmax = max{ε1, ε2, . . . , εm−1}. Now by noting on both sides of above for-
mula, we can implies

Sq(Z
n
1 ) = Sq(X

n
1 )−

1

q − 1

m−1∑
k=1

εk
∂

∂εk
Rn(q,Υ)|Υ=0 + o(ε2max)).

For our aims, we must compute ∂Rn(q,Υ)/∂εk at Υ = 0,

∂

∂εk
Rn(q,Υ)|Υ=0 =

∑
zn1

qP q−1
Z (zn1 )

∂

∂εk
PZ(z

n
1 )|Υ=0.

Using Eq. (2), the derivative of PZ(z
n
1 ) at Υ = 0 can be calculated as

∂

∂εk
PZ(z

n
1 )|Υ=0 = −nPX(zn1 ) + PX(z1 ⊕ k zn2 )

+
n−2∑
i=1

PX(zi1 zi+1 ⊕ k zni+2) + PX(zn−1
1 zn ⊕ k).

Now we can compute Sq(Z)(the entropy rate of the hidden Markov chain
{Zi}i≥1), i.e.,

Sq(Z) = lim
n→∞

1

n
Sq(Z

n
1 ).

Theorem 3.1. Suppose pab > 0 for any a, b ∈ X. The first order term in the
entropy rate of the hidden Markov chain Z is converges to Sq(X ) exponentially for
q > 1 and is divergent for q < 1.

To prove the Theorem 3.1, it is necessary to express spectral representation
of matrices and Perron-Frobenius theorem. We use the spectral representation
[5] of the matrix P(q). Since pab > 0, for any a, b ∈ X, the Perron-Frobenius
theorem [2] applies. So there exists a real eigenvalue λ1(q) with algebraic geometric
multiplicity one such that λ1(q) > 0, and λ1(q) > |λj(q)| for any other eigenvalue
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λj(q). Moreover the left eigenvector l1(q) and the right eigenvector r1(s) associated
with λ1(q) can be chosen positive and such that l1(q)r

t
1(q) = 1.

Let λ2(q), λ3(s), . . . , λm(q) be the eigenvalues of the P(q) other than λ1 or-
dered in such a way that λ1(q) > |λ2(q)| > |λ3(q)| > · · · > |λm(q)| and we know
that the vectors r1 and l1 are real-valued with nonnegative components. The
matrix spectral representation yields

Pk(q) = λk1(q)(r
t
1(q)l1(q)) + o(|λ2|k).

In addition if P ≥ 0 is irreducible (which of course includes P > 0){
λ1(P

′) > λ1(P), P′ ≥ P,P′ ̸= P,
λ1(P

′) < λ1(P), P′ ≤ P,P′ ̸= P,

where λ1(P) and λ1(P
′) are the greatest eigenvalue of matrices P and P′, respec-

tively [4].

4. A Numerical Example

In Section 3 we proved that the first order term in the entropy rate of the hidden
Markov chain {Zn} is converges to Sq(X ) exponentially for q > 1 and is divergent
for q < 1. Now, we want to calculate the Tsallis entropy rate for a hidden Markov
chain {Zn}, whit stat space S = {0, 1}, transition probability matrix P for Markov
chain {Xn} whit stat space S and noise process E = {Ek}k≥1, independent of X,
such that P (Ei = 1) = ε and P (Ei = 0) = 1 − ε for 0 ≤ ε ≤ 1. Now, define the
process Z = {Zk}k≥1, with

Zk = Xk ⊕ Ek, k ≥ 1,

We obtained the Tsallis entropy Sq(Z
n
1 ) by using Eq. (2), for P with initial

distribution Π0 and noise parameter ε = 0.5 for q = 2 and q = 0.2, that one can
see in Table 1, where

P =

[
0.75 0.25
0.4 0.6

]
, Π0 = [0.5, 0.5].

Table 1. Sq(Z
n
1 ) for q = 2 and q = 0.2 and n = 2, 3, . . . , 23.

n S2(Z
n
1 ) S0.2(Z

n
1 ) n S2(Z

n
1 ) S0.2(Z

n
1 )

2 0.3569 1.2453 13 0.0768 110.6876
3 0.2774 1.7256 14 0.0714 176.6506
4 0.2251 2.4479 15 0.0666 283.3263
5 0.1881 3.5441 16 0.0625 456.4097
6 0.1607 5.2237 17 0.0588 738.0745
7 0.1398 7.8209 18 0.0556 1.1977e+03
8 0.1234 11.8695 19 0.0526 1.9494e+03
9 0.1102 18.2267 20 0.0500 3.1819e+03
10 0.0995 28.2731 21 0.0476 5.2064e+03
11 0.0906 44.2411 22 0.0455 8.5385e+03
12 0.0832 69.7504 23 0.0435 1.4032e+04

The results are shown in the Figure 1.
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Figure 1. Sq(Z
n
1 ) for q = 2 (the left) and q = 0.2 (the right)

and n = 2, 3, . . . , 23.

5. Conclusions

We studied the Tsallis entropy rate of a hidden Markov process defined as the
output of a binary symmetric channel whose input is a binary Markov process.
We first expressed the entropy rate of the hidden Markov process as a well-defined
product of random matrices. These exponents are notoriously difficult to com-
pute. Therefore, we turned our attention to asymptotic expansions, and derived
a Taylor expansion of Tsallis entropy rate of the hidden Markov process when the
probability of error is small. We observed that the first order term in the Tsallis
entropy rate of the hidden Markov chain is converges to Tsallis entropy rate of the
input Markov chain exponentially for q > 1, and is divergent for q < 1.
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Abstract. In this paper, the entropy of the stochastic processes created by
the movement of a walker in a graph is investigated. The Shannon-Khinchin
entropy has four axioms that ignore one of them can make the generalized
entropy. Here, we investigate the number of different finite paths asymptot-

ically, for determining a generalized entropy. Then, we will study a special
graph with finite nodes, with two different types of motion.
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1. Introduction

With recent surge of interest in complex networks in various fields including sta-
tistical physics and mathematical physics, many quantities have been proposed
to characterize the structural properties of graphs, [3] and [5]. The study of a
graph invariant in one field may also be a result of relevant importance in other
areas of physics. This is because graphs are nowadays ubiquitous in many areas
of physics such as in problems associated with the Ising, Potts and Hubbard mod-
els, in the solution of Feynman integrals in perturbative field theory, in quantum
information theory such as quantum error correcting codes (graph states) or ar-
rangements of interacting quantum mechanical particles (spin networks) and in
many other fields, [2] and [7]. Among various graph invariants, a special role has
been played by the concept of entropy. Dehmer and Mowshowitz [4] have used
entropy measures for graphs for a long time in different fields. Inspired by connec-
tions between quantum information and graph theory, Passerini and Severini [12]
have defined the von Neumann entropy for graphs, which in general depends on
the regularity, the number of connected components, the shortest-path distance
and nontrivial symmetries in the graph. Here, we define graph entropies based on
walks in a graph. Walks in graphs play a fundamental role in the analysis of the
structure and dynamical processes in networks [6]. The walk entropies thereby
characterize the spread of a walk among the vertices or edges of the graph; in
other words, we understand by the walk entropies how much the walk is Before
proceeding, we summarize a few definitions which are necessary to make this paper
self-contained. Let us consider here simple graphs G = (V,E) with |V | = n nodes
and |E| = m edges. A walk of length k is a sequence of (not necessarily distinct)
nodes v0, v1, . . . , vk such that for each i = 1, 2, . . . , k there is a link from v(i−1) to

vi. The number of walks of length N from node p to node q is given by [AN ]pq,
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where A is the adjacency matrix of the graph. The degree of the node p, denoted
by pk, is the number of edges incident to it.

In order to define graph entropies based on the walks, we consider a random
walker which walks from one node to another by using the edges of the graph.

This paper is organized as follows: Section 2 discusses extensive or generalized
entropies that one can see more details in [10]. In this section, the four axioms of
Khinchin, what the unique result is Shannon’s entropy, are outlined. By ignoring
the fourth axiom, one can obtain the general form of extensive entropies that
depend on two parameters (c, d). Section 3 contains two cases as the main results.
In this section, we examine two different types of motion in graphs. In the first
case, at each step there is a choice of a new direction for the walker, while in the
second case, after selecting a direction for walking, the change of direction is not
possible for a finite number of next steps.

2. Review of Generalized Entropies

Shannon and Khinchin showed that, assuming four information theoretic axioms,
the entropy must be of the Boltzmann-Gibbs type, S = −

∑
i pi log pi. In many

physical systems, one of these axioms may be violated. For non-ergodic systems,
the so-called separation axiom is not valid.

Scientifics proved there are some entropies that not necessarily satisfies in all
of Shannon and Khinchin axioms. These entropic forms are called generalized
entropies and usually assume trace form for example in [13]

Sg(p) =
W∑
i

g(pi),(1)

where W is the number of states. Obviously not all generalized entropic forms are

of this type. Renyi entropy, for example, is of the form, G(
∑W
i g(pi)), with G a

monotonic function. We use trace forms Eq. (1) for simplicity. Renyi forms can
be studied in exactly the same way, as will be shown, however, at more technical
cost.

As mentioned, if all of Shannon and Khinchin axioms hold, the only pos-
sible entropy is the Boltzmann-Gibbs-Shannon (BGS) entropy. The generalized
entropy for (large) admissible statistical systems (all of Shannon and Khinchin
axioms except separability axiom hold) is derived from two hitherto unexplored
fundamental scaling laws of extensive entropies [8]. Both scaling laws are char-
acterized by exponents c and d, respectively, which allow one to uniquely define
equivalence classes of entropies, meaning that two entropies are equivalent in the
thermodynamic limit if their exponents (c, d) coincide. Each admissible system
belongs to one of these equivalence classes (c, d), [8]. In terms of the exponents
(c, d), Hanel and Thurner [8] showed that all generalized entropies have the form

S(c,d) ∝
W∑
i=1

Γ(d+ 1, 1− c log pi),

with

Γ(µ, t) =

∫ ∞

t

yµ−1e−ydy =

∫ e−t

0

(− lnx)µ−1dx.
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Also, Γ(µ, t) named the incomplete Gamma-function.

2.1. Determining the Exponents, c and d. Consider a system with N
elements. The number of system configurations (microstates) as a function of N
are denoted by W (N). Hanel and Thurner [9] said

1

1− c
= lim
N→∞

N
W ′(N)

W (N)
,

and

d = lim
N→∞

[
W (N)

NW ′(N)
+ c− 1

]
logW (N),

Here, W ′ means the derivative with respect to N .

3. Random Walks in Graphs without Self-Loop and with Self-Loop

In this section, we have two cases as the main results of this paper. We examine
two different types of motion in graphs. In the first case, at each step there is a
choice of a new direction for the walker, while in the second case, after selecting
a direction for walking, the change of direction is not possible for a finite number
of next steps.

Case 1: We now focus our discussion on random walks in undirected graphs
with uniform edge weights, with no multi edges or self-loops. At each node, the
random walk is equally likely to take any connected edges. Assume the graph
G(V,E) with |V | = n nodes and |E| = m edges, is connected. On the other hand,
since the graph G is connected and has a cycle of odd length, one can find an
integer k such that all of entries Ak are positive, where A is the adjacency matrix
of the graph. We know the number of walks of length N i.e. W (N) from node p

to node q is given by [AN ]pq.
Now it is necessary to express spectral representation of matrices and Perron-

Frobenius theorem. We use the spectral representation of the matrix A [11].

Since aij ≥ 0, and there is an integer k such that [Ak]ij > 0, the Perron-Frobenius
theorem applies [1]. So there exists a real eigenvalue λ1 with algebraic geometric
multiplicity one such that λ1 > 0, and λ1 > |λj | for any other eigenvalue λj .
Moreover the left eigenvector l1 and the right eigenvector r1 associated with λ1 can
be chosen positive and such that l1r

t
1 = 1. Let λ2, λ3, . . . , λm be the eigenvalues of

the A other than λ1 ordered in such a way that λ1 > |λ2| ≥ |λ3 ≥ | · · · ≥ |λm| and
we know that the vectors r1 and l1 are real-valued with nonnegative components.
The matrix spectral representation yields

AN = λN1 (rt1l1) + |λ2|N (rt2l2)⇒ AN = λN1 (rt1l1) + o(|λ2|N ).

We can consider

λN1 (rt1l1) = o(λN1 ), |λ2|N (rt2l2) = o(|λ2|N ).

So

AN = λN1 (rt1l1)(1 + o(
|λ2|N

λN1
)).
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Now we know the number of walks of length N from node p to node q is given

by [AN ]pq, soW (N) ∼ λN1 (rt1l1)pq(1+o(ρ)), where ρ = |λ2|N
λN
1

< 1. One can obtain

1

1− c
= lim
N→∞

N log λ1 =∞⇒ c = 1,

and

d = lim
N→∞

[
N log λ1 + log (rt1l1)pq(1 + o(ρ))

]
(

1

N log λ1
+ c− 1) = 1.

So (c, d) = (1, 1) and this random walk in graphs has Shannon entropy.
Case 2: We now focus our discussion on random walks in undirected graphs

with uniform edge weights. At each node, the random walk is equally likely to
take any edge. Now suppose the graph has self-loop with probability weight zero.
A super diffusion walk in this graph is described as remaining in the same node
for [Nβ ]+ timesteps after selecting an edge in step N . In other words, the walker
moves on self-loop without making any new decisions and the next free decision is
possible at time step N +[Nβ ]+. Clearly, the number of decision grows like N1−β ,
and the number of possible sequences without considering self-loops, is related to

AN1−β

, therefore

W (N) ∼ λN
1−β

1 (rt1l1)pq(1 + o(ρ)),

where here ρ = |λ2|N
1−β

λN1−β
1

< 1. Consequently the associated extensive entropy is of

class (c, d) = (1, 1
1−β ), because

1

1− c
= lim
N→∞

(1− β)N1−β log λ1 =∞⇒ c = 1,

and

d = lim
N→∞

(
1

((1− β)N1−β log λ1)
+ c− 1

)
[N1−β log λ1

+(1− β) log (rt1l1)pq(1 + o(ρ))] = 1
1−β .

4. Conclusion

We studied the relationship between the volume of state space of a stochastic
process and its extensive (generalized) entropy. If the volume of state space ω is
given as a function of system size, we know that how to determine the associated
generalized entropy by computing the parameters (c, d). We demonstrated in two
concrete cases how statistical systems determine their own extensive entropies.
These cases examine the motion of a walker in undirected and connected graphs.
In the first case, the walker selects the next node for displacement, from set of
the possible nodes, at any time-step uniformly. In the second case, the walker
selects a new node for movement and stays on his new place for a certain number
of time-steps moving on its self-loop, meaning that after several time-steps, the
walker goes to another node. In the first case that the certain kind of the Markov
chains were shown, we obtained their generalized entropies as the same as the
Shannon entropy. Whereas in the second case, where non-Markovian processes
were investigated, their generalized entropies were not the Shannon entropy.
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Abstract. Some important variables such as wind directions are plays ma-
jor role in the weather studies. Given the widespread use of the gamma

variance probability distribution in the study of circular data, in this paper,
we have proposed a generalization of this probability distribution named as
the wrapped variance gamma probability distribution along with its proba-
bility density function. We also have studied some important features of this

probability distribution. In practice, we have applied this probability distri-
bution to a data set which consists of the wind directions data at a site on
the Black mountain in the Australian Capital Territory. Because it has been
made clear that wind directions and its characteristics are important for the

maintenance of climate change and wind energy functioning.

Keywords: Circular data, Wrapped probability distribution,
Wrapped variance gamma probability density function, Moments,
Wind directions.
AMS Mathematical Subject Classification [2010]: 60E05.

1. Introduction

An axis is an undirected line, where there is no reason to distinguish one end of
the line from the other. Phenomena in nature that can be described as axial data
are numerous such as dance direction of insects, movement of sea creatures, etc.
(Godfroy-Cooper and et al. [7]). Wells and SenGupta [21] modeled this kind of
data by introduce the method of construction for axial distributions. This method
was the wrapping of the circular probability distribution. Madan and Seneta [12]
first was proposed the variance gamma probability distribution. This probability
distribution is uses in weather studies, financial fields, pricing, etc (Tadikamalla
[19], Fragiadakis and et al. [5], Mastrantonio and Calise [15]). Study of variance
gamma probability distribution in the case of circular data can play a key role,
because some important variables are axial in weather studies such as wind di-
rections. Wrapped probability distribution first was introduced by Levy [11] and
studied by the other researchers such as Mardia [13, 14], Jammaladaka and Sen-
Gupta [9], Jammalamadaka and Kozubowski [8], Gatto [6], Choelo [2], Umbach
and Jammakadaka [20], Roy and Adnan [16, 17], Biswas and et al. [1] and Joshi
and Jose [10]. Their studies include several wrapped probability distributions
such as wrapped exponential probability distribution, wrapped gamma probability
distribution, wrapped chi-square probability distribution, wrapped weighted ex-
ponential probability distribution, Wrapped Linley probability distribution, etc.
However, it seems that the wrapped gamma variance distribution is better one

∗Presenter
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to model the directional data for the weather studies. Therefore, we define the
variance gamma probability distribution and then study concept of the wrapped
probability density function.

A random variable X has variance gamma probability distribution, if its den-
sity function is as follows:

f (x) =
a2b.ec.(x−d).|x− d|b−0.5

.Hb−0.5 (m. |x− d|)
√
π.Γ (b) .(2m)

b−0.5
, x ∈ R,

where a > 0, b > 0, c > 0, d ∈ R is the location parameter, H is the modified
Bessel function of the third kind, m > 0, a =

√
m2 − c2 and 0 ≤ |d| < m.

On the other hand, the methods of create a circular model are:

1) Wrapping a linear probability distribution around a unit circle,
2) Specify properties such as maximum entropy, etc,
3) One may start with a probability distribution on the real line and apply

a stereographic projection that identifies points Xon R with those on the
circumference of the circle, say α.

Which a circular probability distribution is a probability distribution whose
total probability is focused on the unit circle in the plane {(cosα, sinα) | 0 ≤ α <
2π}, with properties:

1) ∀α, f (α) ≥ 0,

2)
∫ 2π

α=0
f (α) dα = 1,

3) f (α) = f (α+ 2πk) , k ∈ Z,
where f (α) is the probability density function.

Therefore, if X is a random variable defined on R, then the corresponding
wrapped random variable is defined as Xw = x mod 2π. Where this random
variable is a many-valued function as follows:

Xw (α) = {f (α+ 2πk) , k ∈ Z} .

So, given a wrapped random variable Xw defined on [0, 2π) , by the trans-
formation (α+ 2πk) , k ∈ Z, we expand the support of the random variable Xw

to R such that we can apply an in line probability density function h (x) to the
argument (α+ 2πk).

Also the wrapped probability density function f (α) related to the probability
density function h (x) of a linear random variable X is defined as follow:

f (α) =
∞∑

k=−∞

f (α+ 2πk) ; α ∈ [ 0, 2π) ,

The order of contents of this paper is so that the form of the probability
distribution function of a wrapped variance gamma probability distribution is
obtained through the concern wrapping in Section 2. In Section 3, some important
features from this probability distribution are proposed [3]. In Section 4, the
maximum likelihood estimation method has been used [18]. In Section 5, this
estimation method is used for a real data set. Such a way, that as an example of
axial data, we use a data set which consists of the wind directions data at a site
on the Black mountain in the Australian Capital Territory. Finally, the conclusion
appears in Section 6.
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2. Probability Density Function of the Wrapped Variance Gamma
Probability Distribution

If we consider
α ≡ α (x) = x mod 2π,

then α is wrapped around the circle or is a wrapped variance gamma random
variable with the probability density function as follows:

f (α) =
∞∑

k=−∞
f (α+ 2πk)

=
a2b

√
π.Γ (b) .(2m)b−0.5

.
∞∑

k=−∞
ec.(α+2kπ−d).|α+ 2kπ − d|b−0.5.Hb−0.5 (m. |α+ 2kπ − d|)

=
a2b.ec.(α−d)

√
π.Γ (b) .(2m)b−0.5

×
∞∑

k=−∞

ec.k2π .Hb−0.5 (m. |α+ 2kπ − d|)
|α+ 2kπ − d|b−0.5

, α ∈ [ 0, 2π) ,

where a > 0, b > 0, c > 0, d ∈ R is the location parameter, H is the modified
Bessel function of the third kind, m > 0, a =

√
m2 − c2, 0 ≤ |d| < mand we say

that random variable α has a wrapped variance gamma probability distribution
with parameters a, b, c, d and m.

In The Figure 1 we show the probability density functions of some wrapped
variance gamma distributions.

Figure 1. Some wrapped variance gamma distributions with
solid line fora = 2.49, b = 1.50, c = 0.20, d = −2.00 andm = 2.50,
dot line for a = 1.49, b = 1.30, c = 0.20, d = −2.00 and m = 1.50,
dash line for a = 1.00, b = 1.00, c = 0, d = 0 and m = 1.00
and dash dot linea = 1.18, b = 1.00, c = −1.00, d = 1.00 and
m = 1.50.

3. Some Features of the Wrapped Variance Gamma Probability
Distribution

In this section, we propose some main properties of thewrapped variance gamma
probability distribution. These characteristics are as follows:
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• Characteristics function:

φα (r) = E
(
ei.r.α

)
=

 a[
m2 − (c+ i.r)

2
]0.5


2b

.ei.d.r; r = ±1,±2, . . . .

• Non-central trigonometric moments:

µr =

{
a[

m2 − (c+ i.r)2
]0.5

}2b

. cos (d.r) + i.

{
a[

m2 − (c+ i.r)2
]0.5

}2b

. sin (d.r) ,

where r = ±1,±2, . . . .
• Alternative probability density function obtained under the non-central
trigonometric moments:

f (α) =
1

2π
.

1 + 2

∞∑
r=1


{

a[
m2 − (c+ i.r)2

]0.5
}2b

. cos [r. (α− d)]


 , α ∈ [ 0, 2π) .

• Central trigonometric moments:

µ′
r =

 a[
m2 − (c+ i.r)

2
]0.5


2b

, r = ±1,±2, . . . .

• Circular mean:

µ = d.

• Circular variance:

σ2 = 1−

 a[
m2 − (c+ i)

2
]0.5


2b

.

• Circular standard deviation:

C.S.D =

∣∣∣∣∣∣∣∣∣

√√√√√√√−2 log

 a[

m2 − (c+ i)
2
]0.5


2b

∣∣∣∣∣∣∣∣∣ .

• Circular dispersion:

δ =

1−
{

a

[m2−(c+2i)2]
0.5

}2b

2

{{
a

[m2−(c+i)2]
0.5

}2b
}2 .
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• Kurtosis:

K =

{
a

[m2−(c+2i)2]
0.5

}2b

−

{{
a

[m2−(c+i)2]
0.5

}2b
}4

{
1−

{
a

[m2−(c+2i)2]
0.5

}2b
}2 .

In Table 1, we obtained values of some features of the wrapped variance gamma
probability distribution based on the values of the parameters that we used in the
drawing of the Figure 1.

Table 1. Values of some features of the wrapped variance
gamma probability distribution for various values of the parame-
ters a, b, c, d,m.

a = 2.49 a = 1.49 a = 1.00 a = 1.18
b = 1.50 b = 1.30 b = 1.00 b = 1.00

Parameters values c = 0.20 c = 0.20 c = 0 c = −1.00
d = −2.00 d = −2.00 d = 0 d = 1.00
m = 2.50 m = 1.50 m = 1.00 m = 1.50

Features

Circular variance 0.22 0.41 0.50 0.74
Circular standard deviation 0.70 1.02 1.17 1.51
Kurtosis 2.49 0.89 0.55 0.38

4. Maximum Likelihood Estimation for the Wrapped Variance
Gamma Probability Distribution Parameters

Let that α1, α2, . . . , αn be a random sample of size n from a wrapped variance
gamma probability distribution. Then the likelihood function is as follows:

L (a, b, c, d,m;α1, α2, . . . , αn) =
n∏
i=1

a2b.ec.(αi−d)

√
π.Γ (b) .(2m)

b−0.5

·
∞∑

k=−∞

ec.k2π.Hb−0.5 (m. |αi + 2kπ − d|)
|αi + 2kπ − d|b−0.5

.(1)

With taking log in the relation (1) we achieve:

logL (a, b, c, d,m, α1, α2, . . . , αn) = n.[2b. log (a)− 0.5 log
(√
π
)
− 0.5 log (b)

− (b− 0.5) . log (2m)] +
n∑

i=1

[c. (αi − d)]

+

n∑
i=1

∞∑
k=−∞

log
[
ec.k2π.Hb−0.5 (m. |αi + 2kπ − d|)

]
−

n∑
i=1

∞∑
k=−∞

[(b− 0.5) . log (αi + 2kπ − d)].(2)

Here estimates of the parameters can be achieved from the relation (2) by applying
the numerical methods.
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5. Real Data Study

The following data set are the wind directions that contain hourly measurements
of three days at a site on the Black mountain in the Australian Capital Territory
[4]:

0, 15, 50, 90, 150, 180, 220, 235, 240, 245, 250, 255,

265, 270, 280, 285, 300, 315, 330, 335, 340, 345.

Our purpose is to show that the wrapped variance gamma distribution is ef-
fective in the study of wind directions. To do this, we first find the maximum
likelihood estimates of the wrapped variance gamma probability distribution pa-
rameters. Next, we find the maximum likelihood estimates of the generalized
von-Mises probability distribution as another famous circular probability distri-
bution applicable in the weather studies. Then we compare the goodness of fit
of two probability distributions based on the calculation of the Kuiper statistic,
Watson’s U2 statistic, maximized log-likelihood criterion, Akaike’s information
criterion and Bayesian information criterion for the each probability distribution.
Numerical results for this comparison are summarized in Table 2.

Table 2. Summarized results for the comparison between the
two probability distributions according to the wind directions data
set.

Probability
distributions

Maximum
likelihood
estimates

Kuiper
statistic

Watson’s
U2

statistic

Maximized
log-
likelihood
criterion

Akaike’s
information
criterion

Bayesian
infor-
mation
criterion

P-
value

Wrapped a = 4.07 4.35 1.28 -63.40 136.80 133.51 0.120
variance b = 2.00
gamma c = 0.98

d = 2.10
m = 0.50

Generalized a = 4.07 4.66 1.71 -67.20 144.40 141.11 0.001
von-Mises b = 2.00

c = 0.98
d = 2.10
m = 0.50

Results of Table 2 show that the generalized von-Mises probability distribution
is not suitable to model this data set. The smaller values of the criterions for the
wrapped variance gamma probability distribution, indicates a better fit. Thus, the
goodness of fit test confirms the superiority of our proposed probability distribution
for fit this data set than the generalized von-Mises probability distribution.

6. Conclusion

What we have done in this paper, is to introduce a new probability distribution
named as wrapped variance gamma probability distribution and study some of
its important features. We have also applied this new probability distribution
to real data set of wind directions in meteorology science and demonstrated the
superiority of its in modelling of this kind of data in comparison with generalized
von-Mises probability distribution as another applicable well-known probability
distribution. Finally, we can say that the methods and results of this paper can
also be applied to climate change studies.
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3. J. J. Fernández-Durán and M. M. Gregoŕıo-Dominguez, Bayesian analysis of circular distri-
butions based on non-negative trigonometric sums, J. Statist. Comput. Sim. 86 (16) (2016)
3175–3187.

4. N. I. Fisher, Statistical Analysis of Circular Data, Cambridge University Press, Cambridge,

UK, 1995.
5. K. Fragiadakis, D. Karlis and S. G. Meintanis, Inference procedures for the variance gamma

model and applications, J. Statist. Comput. Sim. 83 (3) (2013) 555–567.
6. R. Gatto, A bootstrap test for circular data, Commun. Statist.-Theory Methods 35 (2) (2006)

281–292.
7. M. Godfroy-Cooper, P. M. B. Sandor, J. D. Miller and R. B. Welch, The interaction of vision

and audition in two-dimensional space, Front. Neurosci. 9 (2015) 311.

8. R. S. Jammalamadaka and T. J. Kozubowski, New families of wrapped distributions foe mod-
eling skew circular data, Commun. Statist.-Theory Methods 33 (9) (2004) 2059–2074.

9. R. S. Jammaladaka and A. SenGupta, Predictive inference for directional data, Statist. Prob.
Lett. 40 (3) (1998) 247–257.

10. S. Joshi and K. K. Jose, Wrapped Lindley distribution, Commun. Statist.-Theory Methods
47 (5) (2018) 1013–1021.
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